1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * cpuid support routines 5 * 6 * derived from arch/x86/kvm/x86.c 7 * 8 * Copyright 2011 Red Hat, Inc. and/or its affiliates. 9 * Copyright IBM Corporation, 2008 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kvm_host.h> 14 #include "linux/lockdep.h" 15 #include <linux/export.h> 16 #include <linux/vmalloc.h> 17 #include <linux/uaccess.h> 18 #include <linux/sched/stat.h> 19 20 #include <asm/processor.h> 21 #include <asm/user.h> 22 #include <asm/fpu/xstate.h> 23 #include <asm/sgx.h> 24 #include <asm/cpuid.h> 25 #include "cpuid.h" 26 #include "lapic.h" 27 #include "mmu.h" 28 #include "trace.h" 29 #include "pmu.h" 30 #include "xen.h" 31 32 /* 33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be 34 * aligned to sizeof(unsigned long) because it's not accessed via bitops. 35 */ 36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly; 37 EXPORT_SYMBOL_GPL(kvm_cpu_caps); 38 39 u32 xstate_required_size(u64 xstate_bv, bool compacted) 40 { 41 int feature_bit = 0; 42 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 43 44 xstate_bv &= XFEATURE_MASK_EXTEND; 45 while (xstate_bv) { 46 if (xstate_bv & 0x1) { 47 u32 eax, ebx, ecx, edx, offset; 48 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); 49 /* ECX[1]: 64B alignment in compacted form */ 50 if (compacted) 51 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret; 52 else 53 offset = ebx; 54 ret = max(ret, offset + eax); 55 } 56 57 xstate_bv >>= 1; 58 feature_bit++; 59 } 60 61 return ret; 62 } 63 64 #define F feature_bit 65 66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */ 67 #define SF(name) \ 68 ({ \ 69 BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \ 70 (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0); \ 71 }) 72 73 /* 74 * Magic value used by KVM when querying userspace-provided CPUID entries and 75 * doesn't care about the CPIUD index because the index of the function in 76 * question is not significant. Note, this magic value must have at least one 77 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find() 78 * to avoid false positives when processing guest CPUID input. 79 */ 80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull 81 82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find( 83 struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index) 84 { 85 struct kvm_cpuid_entry2 *e; 86 int i; 87 88 /* 89 * KVM has a semi-arbitrary rule that querying the guest's CPUID model 90 * with IRQs disabled is disallowed. The CPUID model can legitimately 91 * have over one hundred entries, i.e. the lookup is slow, and IRQs are 92 * typically disabled in KVM only when KVM is in a performance critical 93 * path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break 94 * if this rule is violated, this assertion is purely to flag potential 95 * performance issues. If this fires, consider moving the lookup out 96 * of the hotpath, e.g. by caching information during CPUID updates. 97 */ 98 lockdep_assert_irqs_enabled(); 99 100 for (i = 0; i < nent; i++) { 101 e = &entries[i]; 102 103 if (e->function != function) 104 continue; 105 106 /* 107 * If the index isn't significant, use the first entry with a 108 * matching function. It's userspace's responsibility to not 109 * provide "duplicate" entries in all cases. 110 */ 111 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index) 112 return e; 113 114 115 /* 116 * Similarly, use the first matching entry if KVM is doing a 117 * lookup (as opposed to emulating CPUID) for a function that's 118 * architecturally defined as not having a significant index. 119 */ 120 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) { 121 /* 122 * Direct lookups from KVM should not diverge from what 123 * KVM defines internally (the architectural behavior). 124 */ 125 WARN_ON_ONCE(cpuid_function_is_indexed(function)); 126 return e; 127 } 128 } 129 130 return NULL; 131 } 132 133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu, 134 struct kvm_cpuid_entry2 *entries, 135 int nent) 136 { 137 struct kvm_cpuid_entry2 *best; 138 u64 xfeatures; 139 140 /* 141 * The existing code assumes virtual address is 48-bit or 57-bit in the 142 * canonical address checks; exit if it is ever changed. 143 */ 144 best = cpuid_entry2_find(entries, nent, 0x80000008, 145 KVM_CPUID_INDEX_NOT_SIGNIFICANT); 146 if (best) { 147 int vaddr_bits = (best->eax & 0xff00) >> 8; 148 149 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) 150 return -EINVAL; 151 } 152 153 /* 154 * Exposing dynamic xfeatures to the guest requires additional 155 * enabling in the FPU, e.g. to expand the guest XSAVE state size. 156 */ 157 best = cpuid_entry2_find(entries, nent, 0xd, 0); 158 if (!best) 159 return 0; 160 161 xfeatures = best->eax | ((u64)best->edx << 32); 162 xfeatures &= XFEATURE_MASK_USER_DYNAMIC; 163 if (!xfeatures) 164 return 0; 165 166 return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures); 167 } 168 169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */ 170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, 171 int nent) 172 { 173 struct kvm_cpuid_entry2 *orig; 174 int i; 175 176 if (nent != vcpu->arch.cpuid_nent) 177 return -EINVAL; 178 179 for (i = 0; i < nent; i++) { 180 orig = &vcpu->arch.cpuid_entries[i]; 181 if (e2[i].function != orig->function || 182 e2[i].index != orig->index || 183 e2[i].flags != orig->flags || 184 e2[i].eax != orig->eax || e2[i].ebx != orig->ebx || 185 e2[i].ecx != orig->ecx || e2[i].edx != orig->edx) 186 return -EINVAL; 187 } 188 189 return 0; 190 } 191 192 static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries, 193 int nent, const char *sig) 194 { 195 struct kvm_hypervisor_cpuid cpuid = {}; 196 struct kvm_cpuid_entry2 *entry; 197 u32 base; 198 199 for_each_possible_hypervisor_cpuid_base(base) { 200 entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT); 201 202 if (entry) { 203 u32 signature[3]; 204 205 signature[0] = entry->ebx; 206 signature[1] = entry->ecx; 207 signature[2] = entry->edx; 208 209 if (!memcmp(signature, sig, sizeof(signature))) { 210 cpuid.base = base; 211 cpuid.limit = entry->eax; 212 break; 213 } 214 } 215 } 216 217 return cpuid; 218 } 219 220 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu, 221 const char *sig) 222 { 223 return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries, 224 vcpu->arch.cpuid_nent, sig); 225 } 226 227 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries, 228 int nent, u32 kvm_cpuid_base) 229 { 230 return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES, 231 KVM_CPUID_INDEX_NOT_SIGNIFICANT); 232 } 233 234 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu) 235 { 236 u32 base = vcpu->arch.kvm_cpuid.base; 237 238 if (!base) 239 return NULL; 240 241 return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries, 242 vcpu->arch.cpuid_nent, base); 243 } 244 245 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu) 246 { 247 struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu); 248 249 /* 250 * save the feature bitmap to avoid cpuid lookup for every PV 251 * operation 252 */ 253 if (best) 254 vcpu->arch.pv_cpuid.features = best->eax; 255 } 256 257 /* 258 * Calculate guest's supported XCR0 taking into account guest CPUID data and 259 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0). 260 */ 261 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent) 262 { 263 struct kvm_cpuid_entry2 *best; 264 265 best = cpuid_entry2_find(entries, nent, 0xd, 0); 266 if (!best) 267 return 0; 268 269 return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0; 270 } 271 272 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries, 273 int nent) 274 { 275 struct kvm_cpuid_entry2 *best; 276 struct kvm_hypervisor_cpuid kvm_cpuid; 277 278 best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT); 279 if (best) { 280 /* Update OSXSAVE bit */ 281 if (boot_cpu_has(X86_FEATURE_XSAVE)) 282 cpuid_entry_change(best, X86_FEATURE_OSXSAVE, 283 kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)); 284 285 cpuid_entry_change(best, X86_FEATURE_APIC, 286 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE); 287 } 288 289 best = cpuid_entry2_find(entries, nent, 7, 0); 290 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) 291 cpuid_entry_change(best, X86_FEATURE_OSPKE, 292 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)); 293 294 best = cpuid_entry2_find(entries, nent, 0xD, 0); 295 if (best) 296 best->ebx = xstate_required_size(vcpu->arch.xcr0, false); 297 298 best = cpuid_entry2_find(entries, nent, 0xD, 1); 299 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) || 300 cpuid_entry_has(best, X86_FEATURE_XSAVEC))) 301 best->ebx = xstate_required_size(vcpu->arch.xcr0, true); 302 303 kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE); 304 if (kvm_cpuid.base) { 305 best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base); 306 if (kvm_hlt_in_guest(vcpu->kvm) && best) 307 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT); 308 } 309 310 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) { 311 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT); 312 if (best) 313 cpuid_entry_change(best, X86_FEATURE_MWAIT, 314 vcpu->arch.ia32_misc_enable_msr & 315 MSR_IA32_MISC_ENABLE_MWAIT); 316 } 317 } 318 319 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu) 320 { 321 __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent); 322 } 323 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime); 324 325 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent) 326 { 327 #ifdef CONFIG_KVM_HYPERV 328 struct kvm_cpuid_entry2 *entry; 329 330 entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE, 331 KVM_CPUID_INDEX_NOT_SIGNIFICANT); 332 return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX; 333 #else 334 return false; 335 #endif 336 } 337 338 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 339 { 340 struct kvm_lapic *apic = vcpu->arch.apic; 341 struct kvm_cpuid_entry2 *best; 342 bool allow_gbpages; 343 344 BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES); 345 bitmap_zero(vcpu->arch.governed_features.enabled, 346 KVM_MAX_NR_GOVERNED_FEATURES); 347 348 /* 349 * If TDP is enabled, let the guest use GBPAGES if they're supported in 350 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 351 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 352 * walk for performance and complexity reasons. Not to mention KVM 353 * _can't_ solve the problem because GVA->GPA walks aren't visible to 354 * KVM once a TDP translation is installed. Mimic hardware behavior so 355 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 356 * If TDP is disabled, honor *only* guest CPUID as KVM has full control 357 * and can install smaller shadow pages if the host lacks 1GiB support. 358 */ 359 allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 360 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 361 if (allow_gbpages) 362 kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES); 363 364 best = kvm_find_cpuid_entry(vcpu, 1); 365 if (best && apic) { 366 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER)) 367 apic->lapic_timer.timer_mode_mask = 3 << 17; 368 else 369 apic->lapic_timer.timer_mode_mask = 1 << 17; 370 371 kvm_apic_set_version(vcpu); 372 } 373 374 vcpu->arch.guest_supported_xcr0 = 375 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent); 376 377 kvm_update_pv_runtime(vcpu); 378 379 vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu); 380 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 381 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 382 383 kvm_pmu_refresh(vcpu); 384 vcpu->arch.cr4_guest_rsvd_bits = 385 __cr4_reserved_bits(guest_cpuid_has, vcpu); 386 387 kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries, 388 vcpu->arch.cpuid_nent)); 389 390 /* Invoke the vendor callback only after the above state is updated. */ 391 static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu); 392 393 /* 394 * Except for the MMU, which needs to do its thing any vendor specific 395 * adjustments to the reserved GPA bits. 396 */ 397 kvm_mmu_after_set_cpuid(vcpu); 398 } 399 400 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) 401 { 402 struct kvm_cpuid_entry2 *best; 403 404 best = kvm_find_cpuid_entry(vcpu, 0x80000000); 405 if (!best || best->eax < 0x80000008) 406 goto not_found; 407 best = kvm_find_cpuid_entry(vcpu, 0x80000008); 408 if (best) 409 return best->eax & 0xff; 410 not_found: 411 return 36; 412 } 413 414 /* 415 * This "raw" version returns the reserved GPA bits without any adjustments for 416 * encryption technologies that usurp bits. The raw mask should be used if and 417 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs. 418 */ 419 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu) 420 { 421 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63); 422 } 423 424 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, 425 int nent) 426 { 427 int r; 428 429 __kvm_update_cpuid_runtime(vcpu, e2, nent); 430 431 /* 432 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as 433 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't 434 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page 435 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with 436 * the core vCPU model on the fly. It would've been better to forbid any 437 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately 438 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do 439 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check 440 * whether the supplied CPUID data is equal to what's already set. 441 */ 442 if (kvm_vcpu_has_run(vcpu)) { 443 r = kvm_cpuid_check_equal(vcpu, e2, nent); 444 if (r) 445 return r; 446 447 kvfree(e2); 448 return 0; 449 } 450 451 #ifdef CONFIG_KVM_HYPERV 452 if (kvm_cpuid_has_hyperv(e2, nent)) { 453 r = kvm_hv_vcpu_init(vcpu); 454 if (r) 455 return r; 456 } 457 #endif 458 459 r = kvm_check_cpuid(vcpu, e2, nent); 460 if (r) 461 return r; 462 463 kvfree(vcpu->arch.cpuid_entries); 464 vcpu->arch.cpuid_entries = e2; 465 vcpu->arch.cpuid_nent = nent; 466 467 vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE); 468 #ifdef CONFIG_KVM_XEN 469 vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE); 470 #endif 471 kvm_vcpu_after_set_cpuid(vcpu); 472 473 return 0; 474 } 475 476 /* when an old userspace process fills a new kernel module */ 477 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, 478 struct kvm_cpuid *cpuid, 479 struct kvm_cpuid_entry __user *entries) 480 { 481 int r, i; 482 struct kvm_cpuid_entry *e = NULL; 483 struct kvm_cpuid_entry2 *e2 = NULL; 484 485 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 486 return -E2BIG; 487 488 if (cpuid->nent) { 489 e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e)); 490 if (IS_ERR(e)) 491 return PTR_ERR(e); 492 493 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT); 494 if (!e2) { 495 r = -ENOMEM; 496 goto out_free_cpuid; 497 } 498 } 499 for (i = 0; i < cpuid->nent; i++) { 500 e2[i].function = e[i].function; 501 e2[i].eax = e[i].eax; 502 e2[i].ebx = e[i].ebx; 503 e2[i].ecx = e[i].ecx; 504 e2[i].edx = e[i].edx; 505 e2[i].index = 0; 506 e2[i].flags = 0; 507 e2[i].padding[0] = 0; 508 e2[i].padding[1] = 0; 509 e2[i].padding[2] = 0; 510 } 511 512 r = kvm_set_cpuid(vcpu, e2, cpuid->nent); 513 if (r) 514 kvfree(e2); 515 516 out_free_cpuid: 517 kvfree(e); 518 519 return r; 520 } 521 522 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, 523 struct kvm_cpuid2 *cpuid, 524 struct kvm_cpuid_entry2 __user *entries) 525 { 526 struct kvm_cpuid_entry2 *e2 = NULL; 527 int r; 528 529 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 530 return -E2BIG; 531 532 if (cpuid->nent) { 533 e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2)); 534 if (IS_ERR(e2)) 535 return PTR_ERR(e2); 536 } 537 538 r = kvm_set_cpuid(vcpu, e2, cpuid->nent); 539 if (r) 540 kvfree(e2); 541 542 return r; 543 } 544 545 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, 546 struct kvm_cpuid2 *cpuid, 547 struct kvm_cpuid_entry2 __user *entries) 548 { 549 if (cpuid->nent < vcpu->arch.cpuid_nent) 550 return -E2BIG; 551 552 if (copy_to_user(entries, vcpu->arch.cpuid_entries, 553 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) 554 return -EFAULT; 555 556 cpuid->nent = vcpu->arch.cpuid_nent; 557 return 0; 558 } 559 560 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */ 561 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf) 562 { 563 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); 564 struct kvm_cpuid_entry2 entry; 565 566 reverse_cpuid_check(leaf); 567 568 cpuid_count(cpuid.function, cpuid.index, 569 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx); 570 571 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg); 572 } 573 574 static __always_inline 575 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask) 576 { 577 /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */ 578 BUILD_BUG_ON(leaf < NCAPINTS); 579 580 kvm_cpu_caps[leaf] = mask; 581 582 __kvm_cpu_cap_mask(leaf); 583 } 584 585 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask) 586 { 587 /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */ 588 BUILD_BUG_ON(leaf >= NCAPINTS); 589 590 kvm_cpu_caps[leaf] &= mask; 591 592 __kvm_cpu_cap_mask(leaf); 593 } 594 595 void kvm_set_cpu_caps(void) 596 { 597 #ifdef CONFIG_X86_64 598 unsigned int f_gbpages = F(GBPAGES); 599 unsigned int f_lm = F(LM); 600 unsigned int f_xfd = F(XFD); 601 #else 602 unsigned int f_gbpages = 0; 603 unsigned int f_lm = 0; 604 unsigned int f_xfd = 0; 605 #endif 606 memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps)); 607 608 BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) > 609 sizeof(boot_cpu_data.x86_capability)); 610 611 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability, 612 sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps))); 613 614 kvm_cpu_cap_mask(CPUID_1_ECX, 615 /* 616 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not* 617 * advertised to guests via CPUID! 618 */ 619 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | 620 0 /* DS-CPL, VMX, SMX, EST */ | 621 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | 622 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) | 623 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | 624 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | 625 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | 626 F(F16C) | F(RDRAND) 627 ); 628 /* KVM emulates x2apic in software irrespective of host support. */ 629 kvm_cpu_cap_set(X86_FEATURE_X2APIC); 630 631 kvm_cpu_cap_mask(CPUID_1_EDX, 632 F(FPU) | F(VME) | F(DE) | F(PSE) | 633 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 634 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | 635 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 636 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | 637 0 /* Reserved, DS, ACPI */ | F(MMX) | 638 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | 639 0 /* HTT, TM, Reserved, PBE */ 640 ); 641 642 kvm_cpu_cap_mask(CPUID_7_0_EBX, 643 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | 644 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) | 645 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) | 646 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) | 647 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) | 648 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) | 649 F(AVX512VL)); 650 651 kvm_cpu_cap_mask(CPUID_7_ECX, 652 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) | 653 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) | 654 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) | 655 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ | 656 F(SGX_LC) | F(BUS_LOCK_DETECT) 657 ); 658 /* Set LA57 based on hardware capability. */ 659 if (cpuid_ecx(7) & F(LA57)) 660 kvm_cpu_cap_set(X86_FEATURE_LA57); 661 662 /* 663 * PKU not yet implemented for shadow paging and requires OSPKE 664 * to be set on the host. Clear it if that is not the case 665 */ 666 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) 667 kvm_cpu_cap_clear(X86_FEATURE_PKU); 668 669 kvm_cpu_cap_mask(CPUID_7_EDX, 670 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | 671 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) | 672 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) | 673 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) | 674 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D) 675 ); 676 677 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */ 678 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST); 679 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES); 680 681 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS)) 682 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL); 683 if (boot_cpu_has(X86_FEATURE_STIBP)) 684 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP); 685 if (boot_cpu_has(X86_FEATURE_AMD_SSBD)) 686 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD); 687 688 kvm_cpu_cap_mask(CPUID_7_1_EAX, 689 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) | 690 F(FZRM) | F(FSRS) | F(FSRC) | 691 F(AMX_FP16) | F(AVX_IFMA) | F(LAM) 692 ); 693 694 kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX, 695 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) | 696 F(AMX_COMPLEX) 697 ); 698 699 kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX, 700 F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) | 701 F(BHI_CTRL) | F(MCDT_NO) 702 ); 703 704 kvm_cpu_cap_mask(CPUID_D_1_EAX, 705 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd 706 ); 707 708 kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX, 709 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA) 710 ); 711 712 kvm_cpu_cap_mask(CPUID_8000_0001_ECX, 713 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | 714 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | 715 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | 716 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) | 717 F(TOPOEXT) | 0 /* PERFCTR_CORE */ 718 ); 719 720 kvm_cpu_cap_mask(CPUID_8000_0001_EDX, 721 F(FPU) | F(VME) | F(DE) | F(PSE) | 722 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 723 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | 724 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 725 F(PAT) | F(PSE36) | 0 /* Reserved */ | 726 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | 727 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) | 728 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW) 729 ); 730 731 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64)) 732 kvm_cpu_cap_set(X86_FEATURE_GBPAGES); 733 734 kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX, 735 SF(CONSTANT_TSC) 736 ); 737 738 kvm_cpu_cap_mask(CPUID_8000_0008_EBX, 739 F(CLZERO) | F(XSAVEERPTR) | 740 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | 741 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) | 742 F(AMD_PSFD) 743 ); 744 745 /* 746 * AMD has separate bits for each SPEC_CTRL bit. 747 * arch/x86/kernel/cpu/bugs.c is kind enough to 748 * record that in cpufeatures so use them. 749 */ 750 if (boot_cpu_has(X86_FEATURE_IBPB)) 751 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB); 752 if (boot_cpu_has(X86_FEATURE_IBRS)) 753 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS); 754 if (boot_cpu_has(X86_FEATURE_STIBP)) 755 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP); 756 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD)) 757 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD); 758 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 759 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO); 760 /* 761 * The preference is to use SPEC CTRL MSR instead of the 762 * VIRT_SPEC MSR. 763 */ 764 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 765 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 766 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 767 768 /* 769 * Hide all SVM features by default, SVM will set the cap bits for 770 * features it emulates and/or exposes for L1. 771 */ 772 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0); 773 774 kvm_cpu_cap_mask(CPUID_8000_001F_EAX, 775 0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ | 776 F(SME_COHERENT)); 777 778 kvm_cpu_cap_mask(CPUID_8000_0021_EAX, 779 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ | 780 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ | 781 F(WRMSR_XX_BASE_NS) 782 ); 783 784 kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB); 785 kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE); 786 kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO); 787 788 kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX, 789 F(PERFMON_V2) 790 ); 791 792 /* 793 * Synthesize "LFENCE is serializing" into the AMD-defined entry in 794 * KVM's supported CPUID if the feature is reported as supported by the 795 * kernel. LFENCE_RDTSC was a Linux-defined synthetic feature long 796 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most 797 * CPUs that support SSE2. On CPUs that don't support AMD's leaf, 798 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing 799 * the mask with the raw host CPUID, and reporting support in AMD's 800 * leaf can make it easier for userspace to detect the feature. 801 */ 802 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 803 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC); 804 if (!static_cpu_has_bug(X86_BUG_NULL_SEG)) 805 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE); 806 kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR); 807 808 kvm_cpu_cap_mask(CPUID_C000_0001_EDX, 809 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | 810 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | 811 F(PMM) | F(PMM_EN) 812 ); 813 814 /* 815 * Hide RDTSCP and RDPID if either feature is reported as supported but 816 * probing MSR_TSC_AUX failed. This is purely a sanity check and 817 * should never happen, but the guest will likely crash if RDTSCP or 818 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in 819 * the past. For example, the sanity check may fire if this instance of 820 * KVM is running as L1 on top of an older, broken KVM. 821 */ 822 if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) || 823 kvm_cpu_cap_has(X86_FEATURE_RDPID)) && 824 !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) { 825 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 826 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 827 } 828 } 829 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps); 830 831 struct kvm_cpuid_array { 832 struct kvm_cpuid_entry2 *entries; 833 int maxnent; 834 int nent; 835 }; 836 837 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array) 838 { 839 if (array->nent >= array->maxnent) 840 return NULL; 841 842 return &array->entries[array->nent++]; 843 } 844 845 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array, 846 u32 function, u32 index) 847 { 848 struct kvm_cpuid_entry2 *entry = get_next_cpuid(array); 849 850 if (!entry) 851 return NULL; 852 853 memset(entry, 0, sizeof(*entry)); 854 entry->function = function; 855 entry->index = index; 856 switch (function & 0xC0000000) { 857 case 0x40000000: 858 /* Hypervisor leaves are always synthesized by __do_cpuid_func. */ 859 return entry; 860 861 case 0x80000000: 862 /* 863 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which 864 * would result in out-of-bounds calls to do_host_cpuid. 865 */ 866 { 867 static int max_cpuid_80000000; 868 if (!READ_ONCE(max_cpuid_80000000)) 869 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000)); 870 if (function > READ_ONCE(max_cpuid_80000000)) 871 return entry; 872 } 873 break; 874 875 default: 876 break; 877 } 878 879 cpuid_count(entry->function, entry->index, 880 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); 881 882 if (cpuid_function_is_indexed(function)) 883 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 884 885 return entry; 886 } 887 888 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func) 889 { 890 struct kvm_cpuid_entry2 *entry; 891 892 if (array->nent >= array->maxnent) 893 return -E2BIG; 894 895 entry = &array->entries[array->nent]; 896 entry->function = func; 897 entry->index = 0; 898 entry->flags = 0; 899 900 switch (func) { 901 case 0: 902 entry->eax = 7; 903 ++array->nent; 904 break; 905 case 1: 906 entry->ecx = F(MOVBE); 907 ++array->nent; 908 break; 909 case 7: 910 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 911 entry->eax = 0; 912 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 913 entry->ecx = F(RDPID); 914 ++array->nent; 915 break; 916 default: 917 break; 918 } 919 920 return 0; 921 } 922 923 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function) 924 { 925 struct kvm_cpuid_entry2 *entry; 926 int r, i, max_idx; 927 928 /* all calls to cpuid_count() should be made on the same cpu */ 929 get_cpu(); 930 931 r = -E2BIG; 932 933 entry = do_host_cpuid(array, function, 0); 934 if (!entry) 935 goto out; 936 937 switch (function) { 938 case 0: 939 /* Limited to the highest leaf implemented in KVM. */ 940 entry->eax = min(entry->eax, 0x1fU); 941 break; 942 case 1: 943 cpuid_entry_override(entry, CPUID_1_EDX); 944 cpuid_entry_override(entry, CPUID_1_ECX); 945 break; 946 case 2: 947 /* 948 * On ancient CPUs, function 2 entries are STATEFUL. That is, 949 * CPUID(function=2, index=0) may return different results each 950 * time, with the least-significant byte in EAX enumerating the 951 * number of times software should do CPUID(2, 0). 952 * 953 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less 954 * idiotic. Intel's SDM states that EAX & 0xff "will always 955 * return 01H. Software should ignore this value and not 956 * interpret it as an informational descriptor", while AMD's 957 * APM states that CPUID(2) is reserved. 958 * 959 * WARN if a frankenstein CPU that supports virtualization and 960 * a stateful CPUID.0x2 is encountered. 961 */ 962 WARN_ON_ONCE((entry->eax & 0xff) > 1); 963 break; 964 /* functions 4 and 0x8000001d have additional index. */ 965 case 4: 966 case 0x8000001d: 967 /* 968 * Read entries until the cache type in the previous entry is 969 * zero, i.e. indicates an invalid entry. 970 */ 971 for (i = 1; entry->eax & 0x1f; ++i) { 972 entry = do_host_cpuid(array, function, i); 973 if (!entry) 974 goto out; 975 } 976 break; 977 case 6: /* Thermal management */ 978 entry->eax = 0x4; /* allow ARAT */ 979 entry->ebx = 0; 980 entry->ecx = 0; 981 entry->edx = 0; 982 break; 983 /* function 7 has additional index. */ 984 case 7: 985 max_idx = entry->eax = min(entry->eax, 2u); 986 cpuid_entry_override(entry, CPUID_7_0_EBX); 987 cpuid_entry_override(entry, CPUID_7_ECX); 988 cpuid_entry_override(entry, CPUID_7_EDX); 989 990 /* KVM only supports up to 0x7.2, capped above via min(). */ 991 if (max_idx >= 1) { 992 entry = do_host_cpuid(array, function, 1); 993 if (!entry) 994 goto out; 995 996 cpuid_entry_override(entry, CPUID_7_1_EAX); 997 cpuid_entry_override(entry, CPUID_7_1_EDX); 998 entry->ebx = 0; 999 entry->ecx = 0; 1000 } 1001 if (max_idx >= 2) { 1002 entry = do_host_cpuid(array, function, 2); 1003 if (!entry) 1004 goto out; 1005 1006 cpuid_entry_override(entry, CPUID_7_2_EDX); 1007 entry->ecx = 0; 1008 entry->ebx = 0; 1009 entry->eax = 0; 1010 } 1011 break; 1012 case 0xa: { /* Architectural Performance Monitoring */ 1013 union cpuid10_eax eax; 1014 union cpuid10_edx edx; 1015 1016 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) { 1017 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1018 break; 1019 } 1020 1021 eax.split.version_id = kvm_pmu_cap.version; 1022 eax.split.num_counters = kvm_pmu_cap.num_counters_gp; 1023 eax.split.bit_width = kvm_pmu_cap.bit_width_gp; 1024 eax.split.mask_length = kvm_pmu_cap.events_mask_len; 1025 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed; 1026 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed; 1027 1028 if (kvm_pmu_cap.version) 1029 edx.split.anythread_deprecated = 1; 1030 edx.split.reserved1 = 0; 1031 edx.split.reserved2 = 0; 1032 1033 entry->eax = eax.full; 1034 entry->ebx = kvm_pmu_cap.events_mask; 1035 entry->ecx = 0; 1036 entry->edx = edx.full; 1037 break; 1038 } 1039 case 0x1f: 1040 case 0xb: 1041 /* 1042 * No topology; a valid topology is indicated by the presence 1043 * of subleaf 1. 1044 */ 1045 entry->eax = entry->ebx = entry->ecx = 0; 1046 break; 1047 case 0xd: { 1048 u64 permitted_xcr0 = kvm_get_filtered_xcr0(); 1049 u64 permitted_xss = kvm_caps.supported_xss; 1050 1051 entry->eax &= permitted_xcr0; 1052 entry->ebx = xstate_required_size(permitted_xcr0, false); 1053 entry->ecx = entry->ebx; 1054 entry->edx &= permitted_xcr0 >> 32; 1055 if (!permitted_xcr0) 1056 break; 1057 1058 entry = do_host_cpuid(array, function, 1); 1059 if (!entry) 1060 goto out; 1061 1062 cpuid_entry_override(entry, CPUID_D_1_EAX); 1063 if (entry->eax & (F(XSAVES)|F(XSAVEC))) 1064 entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss, 1065 true); 1066 else { 1067 WARN_ON_ONCE(permitted_xss != 0); 1068 entry->ebx = 0; 1069 } 1070 entry->ecx &= permitted_xss; 1071 entry->edx &= permitted_xss >> 32; 1072 1073 for (i = 2; i < 64; ++i) { 1074 bool s_state; 1075 if (permitted_xcr0 & BIT_ULL(i)) 1076 s_state = false; 1077 else if (permitted_xss & BIT_ULL(i)) 1078 s_state = true; 1079 else 1080 continue; 1081 1082 entry = do_host_cpuid(array, function, i); 1083 if (!entry) 1084 goto out; 1085 1086 /* 1087 * The supported check above should have filtered out 1088 * invalid sub-leafs. Only valid sub-leafs should 1089 * reach this point, and they should have a non-zero 1090 * save state size. Furthermore, check whether the 1091 * processor agrees with permitted_xcr0/permitted_xss 1092 * on whether this is an XCR0- or IA32_XSS-managed area. 1093 */ 1094 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) { 1095 --array->nent; 1096 continue; 1097 } 1098 1099 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 1100 entry->ecx &= ~BIT_ULL(2); 1101 entry->edx = 0; 1102 } 1103 break; 1104 } 1105 case 0x12: 1106 /* Intel SGX */ 1107 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) { 1108 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1109 break; 1110 } 1111 1112 /* 1113 * Index 0: Sub-features, MISCSELECT (a.k.a extended features) 1114 * and max enclave sizes. The SGX sub-features and MISCSELECT 1115 * are restricted by kernel and KVM capabilities (like most 1116 * feature flags), while enclave size is unrestricted. 1117 */ 1118 cpuid_entry_override(entry, CPUID_12_EAX); 1119 entry->ebx &= SGX_MISC_EXINFO; 1120 1121 entry = do_host_cpuid(array, function, 1); 1122 if (!entry) 1123 goto out; 1124 1125 /* 1126 * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la 1127 * feature flags. Advertise all supported flags, including 1128 * privileged attributes that require explicit opt-in from 1129 * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is 1130 * expected to derive it from supported XCR0. 1131 */ 1132 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK; 1133 entry->ebx &= 0; 1134 break; 1135 /* Intel PT */ 1136 case 0x14: 1137 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) { 1138 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1139 break; 1140 } 1141 1142 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { 1143 if (!do_host_cpuid(array, function, i)) 1144 goto out; 1145 } 1146 break; 1147 /* Intel AMX TILE */ 1148 case 0x1d: 1149 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { 1150 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1151 break; 1152 } 1153 1154 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { 1155 if (!do_host_cpuid(array, function, i)) 1156 goto out; 1157 } 1158 break; 1159 case 0x1e: /* TMUL information */ 1160 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { 1161 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1162 break; 1163 } 1164 break; 1165 case KVM_CPUID_SIGNATURE: { 1166 const u32 *sigptr = (const u32 *)KVM_SIGNATURE; 1167 entry->eax = KVM_CPUID_FEATURES; 1168 entry->ebx = sigptr[0]; 1169 entry->ecx = sigptr[1]; 1170 entry->edx = sigptr[2]; 1171 break; 1172 } 1173 case KVM_CPUID_FEATURES: 1174 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | 1175 (1 << KVM_FEATURE_NOP_IO_DELAY) | 1176 (1 << KVM_FEATURE_CLOCKSOURCE2) | 1177 (1 << KVM_FEATURE_ASYNC_PF) | 1178 (1 << KVM_FEATURE_PV_EOI) | 1179 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | 1180 (1 << KVM_FEATURE_PV_UNHALT) | 1181 (1 << KVM_FEATURE_PV_TLB_FLUSH) | 1182 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) | 1183 (1 << KVM_FEATURE_PV_SEND_IPI) | 1184 (1 << KVM_FEATURE_POLL_CONTROL) | 1185 (1 << KVM_FEATURE_PV_SCHED_YIELD) | 1186 (1 << KVM_FEATURE_ASYNC_PF_INT); 1187 1188 if (sched_info_on()) 1189 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); 1190 1191 entry->ebx = 0; 1192 entry->ecx = 0; 1193 entry->edx = 0; 1194 break; 1195 case 0x80000000: 1196 entry->eax = min(entry->eax, 0x80000022); 1197 /* 1198 * Serializing LFENCE is reported in a multitude of ways, and 1199 * NullSegClearsBase is not reported in CPUID on Zen2; help 1200 * userspace by providing the CPUID leaf ourselves. 1201 * 1202 * However, only do it if the host has CPUID leaf 0x8000001d. 1203 * QEMU thinks that it can query the host blindly for that 1204 * CPUID leaf if KVM reports that it supports 0x8000001d or 1205 * above. The processor merrily returns values from the 1206 * highest Intel leaf which QEMU tries to use as the guest's 1207 * 0x8000001d. Even worse, this can result in an infinite 1208 * loop if said highest leaf has no subleaves indexed by ECX. 1209 */ 1210 if (entry->eax >= 0x8000001d && 1211 (static_cpu_has(X86_FEATURE_LFENCE_RDTSC) 1212 || !static_cpu_has_bug(X86_BUG_NULL_SEG))) 1213 entry->eax = max(entry->eax, 0x80000021); 1214 break; 1215 case 0x80000001: 1216 entry->ebx &= ~GENMASK(27, 16); 1217 cpuid_entry_override(entry, CPUID_8000_0001_EDX); 1218 cpuid_entry_override(entry, CPUID_8000_0001_ECX); 1219 break; 1220 case 0x80000005: 1221 /* Pass host L1 cache and TLB info. */ 1222 break; 1223 case 0x80000006: 1224 /* Drop reserved bits, pass host L2 cache and TLB info. */ 1225 entry->edx &= ~GENMASK(17, 16); 1226 break; 1227 case 0x80000007: /* Advanced power management */ 1228 cpuid_entry_override(entry, CPUID_8000_0007_EDX); 1229 1230 /* mask against host */ 1231 entry->edx &= boot_cpu_data.x86_power; 1232 entry->eax = entry->ebx = entry->ecx = 0; 1233 break; 1234 case 0x80000008: { 1235 /* 1236 * GuestPhysAddrSize (EAX[23:16]) is intended for software 1237 * use. 1238 * 1239 * KVM's ABI is to report the effective MAXPHYADDR for the 1240 * guest in PhysAddrSize (phys_as), and the maximum 1241 * *addressable* GPA in GuestPhysAddrSize (g_phys_as). 1242 * 1243 * GuestPhysAddrSize is valid if and only if TDP is enabled, 1244 * in which case the max GPA that can be addressed by KVM may 1245 * be less than the max GPA that can be legally generated by 1246 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't 1247 * support 5-level TDP. 1248 */ 1249 unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U); 1250 unsigned int phys_as, g_phys_as; 1251 1252 /* 1253 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as 1254 * the guest operates in the same PA space as the host, i.e. 1255 * reductions in MAXPHYADDR for memory encryption affect shadow 1256 * paging, too. 1257 * 1258 * If TDP is enabled, use the raw bare metal MAXPHYADDR as 1259 * reductions to the HPAs do not affect GPAs. The max 1260 * addressable GPA is the same as the max effective GPA, except 1261 * that it's capped at 48 bits if 5-level TDP isn't supported 1262 * (hardware processes bits 51:48 only when walking the fifth 1263 * level page table). 1264 */ 1265 if (!tdp_enabled) { 1266 phys_as = boot_cpu_data.x86_phys_bits; 1267 g_phys_as = 0; 1268 } else { 1269 phys_as = entry->eax & 0xff; 1270 g_phys_as = phys_as; 1271 if (kvm_mmu_get_max_tdp_level() < 5) 1272 g_phys_as = min(g_phys_as, 48); 1273 } 1274 1275 entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16); 1276 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8)); 1277 entry->edx = 0; 1278 cpuid_entry_override(entry, CPUID_8000_0008_EBX); 1279 break; 1280 } 1281 case 0x8000000A: 1282 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) { 1283 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1284 break; 1285 } 1286 entry->eax = 1; /* SVM revision 1 */ 1287 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper 1288 ASID emulation to nested SVM */ 1289 entry->ecx = 0; /* Reserved */ 1290 cpuid_entry_override(entry, CPUID_8000_000A_EDX); 1291 break; 1292 case 0x80000019: 1293 entry->ecx = entry->edx = 0; 1294 break; 1295 case 0x8000001a: 1296 entry->eax &= GENMASK(2, 0); 1297 entry->ebx = entry->ecx = entry->edx = 0; 1298 break; 1299 case 0x8000001e: 1300 /* Do not return host topology information. */ 1301 entry->eax = entry->ebx = entry->ecx = 0; 1302 entry->edx = 0; /* reserved */ 1303 break; 1304 case 0x8000001F: 1305 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) { 1306 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1307 } else { 1308 cpuid_entry_override(entry, CPUID_8000_001F_EAX); 1309 /* Clear NumVMPL since KVM does not support VMPL. */ 1310 entry->ebx &= ~GENMASK(31, 12); 1311 /* 1312 * Enumerate '0' for "PA bits reduction", the adjusted 1313 * MAXPHYADDR is enumerated directly (see 0x80000008). 1314 */ 1315 entry->ebx &= ~GENMASK(11, 6); 1316 } 1317 break; 1318 case 0x80000020: 1319 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1320 break; 1321 case 0x80000021: 1322 entry->ebx = entry->ecx = entry->edx = 0; 1323 cpuid_entry_override(entry, CPUID_8000_0021_EAX); 1324 break; 1325 /* AMD Extended Performance Monitoring and Debug */ 1326 case 0x80000022: { 1327 union cpuid_0x80000022_ebx ebx; 1328 1329 entry->ecx = entry->edx = 0; 1330 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) { 1331 entry->eax = entry->ebx; 1332 break; 1333 } 1334 1335 cpuid_entry_override(entry, CPUID_8000_0022_EAX); 1336 1337 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 1338 ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp; 1339 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 1340 ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE; 1341 else 1342 ebx.split.num_core_pmc = AMD64_NUM_COUNTERS; 1343 1344 entry->ebx = ebx.full; 1345 break; 1346 } 1347 /*Add support for Centaur's CPUID instruction*/ 1348 case 0xC0000000: 1349 /*Just support up to 0xC0000004 now*/ 1350 entry->eax = min(entry->eax, 0xC0000004); 1351 break; 1352 case 0xC0000001: 1353 cpuid_entry_override(entry, CPUID_C000_0001_EDX); 1354 break; 1355 case 3: /* Processor serial number */ 1356 case 5: /* MONITOR/MWAIT */ 1357 case 0xC0000002: 1358 case 0xC0000003: 1359 case 0xC0000004: 1360 default: 1361 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1362 break; 1363 } 1364 1365 r = 0; 1366 1367 out: 1368 put_cpu(); 1369 1370 return r; 1371 } 1372 1373 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func, 1374 unsigned int type) 1375 { 1376 if (type == KVM_GET_EMULATED_CPUID) 1377 return __do_cpuid_func_emulated(array, func); 1378 1379 return __do_cpuid_func(array, func); 1380 } 1381 1382 #define CENTAUR_CPUID_SIGNATURE 0xC0000000 1383 1384 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func, 1385 unsigned int type) 1386 { 1387 u32 limit; 1388 int r; 1389 1390 if (func == CENTAUR_CPUID_SIGNATURE && 1391 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR) 1392 return 0; 1393 1394 r = do_cpuid_func(array, func, type); 1395 if (r) 1396 return r; 1397 1398 limit = array->entries[array->nent - 1].eax; 1399 for (func = func + 1; func <= limit; ++func) { 1400 r = do_cpuid_func(array, func, type); 1401 if (r) 1402 break; 1403 } 1404 1405 return r; 1406 } 1407 1408 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, 1409 __u32 num_entries, unsigned int ioctl_type) 1410 { 1411 int i; 1412 __u32 pad[3]; 1413 1414 if (ioctl_type != KVM_GET_EMULATED_CPUID) 1415 return false; 1416 1417 /* 1418 * We want to make sure that ->padding is being passed clean from 1419 * userspace in case we want to use it for something in the future. 1420 * 1421 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we 1422 * have to give ourselves satisfied only with the emulated side. /me 1423 * sheds a tear. 1424 */ 1425 for (i = 0; i < num_entries; i++) { 1426 if (copy_from_user(pad, entries[i].padding, sizeof(pad))) 1427 return true; 1428 1429 if (pad[0] || pad[1] || pad[2]) 1430 return true; 1431 } 1432 return false; 1433 } 1434 1435 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, 1436 struct kvm_cpuid_entry2 __user *entries, 1437 unsigned int type) 1438 { 1439 static const u32 funcs[] = { 1440 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE, 1441 }; 1442 1443 struct kvm_cpuid_array array = { 1444 .nent = 0, 1445 }; 1446 int r, i; 1447 1448 if (cpuid->nent < 1) 1449 return -E2BIG; 1450 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 1451 cpuid->nent = KVM_MAX_CPUID_ENTRIES; 1452 1453 if (sanity_check_entries(entries, cpuid->nent, type)) 1454 return -EINVAL; 1455 1456 array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL); 1457 if (!array.entries) 1458 return -ENOMEM; 1459 1460 array.maxnent = cpuid->nent; 1461 1462 for (i = 0; i < ARRAY_SIZE(funcs); i++) { 1463 r = get_cpuid_func(&array, funcs[i], type); 1464 if (r) 1465 goto out_free; 1466 } 1467 cpuid->nent = array.nent; 1468 1469 if (copy_to_user(entries, array.entries, 1470 array.nent * sizeof(struct kvm_cpuid_entry2))) 1471 r = -EFAULT; 1472 1473 out_free: 1474 kvfree(array.entries); 1475 return r; 1476 } 1477 1478 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu, 1479 u32 function, u32 index) 1480 { 1481 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent, 1482 function, index); 1483 } 1484 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index); 1485 1486 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, 1487 u32 function) 1488 { 1489 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent, 1490 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT); 1491 } 1492 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); 1493 1494 /* 1495 * Intel CPUID semantics treats any query for an out-of-range leaf as if the 1496 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics 1497 * returns all zeroes for any undefined leaf, whether or not the leaf is in 1498 * range. Centaur/VIA follows Intel semantics. 1499 * 1500 * A leaf is considered out-of-range if its function is higher than the maximum 1501 * supported leaf of its associated class or if its associated class does not 1502 * exist. 1503 * 1504 * There are three primary classes to be considered, with their respective 1505 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary 1506 * class exists if a guest CPUID entry for its <base> leaf exists. For a given 1507 * class, CPUID.<base>.EAX contains the max supported leaf for the class. 1508 * 1509 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff 1510 * - Hypervisor: 0x40000000 - 0x4fffffff 1511 * - Extended: 0x80000000 - 0xbfffffff 1512 * - Centaur: 0xc0000000 - 0xcfffffff 1513 * 1514 * The Hypervisor class is further subdivided into sub-classes that each act as 1515 * their own independent class associated with a 0x100 byte range. E.g. if Qemu 1516 * is advertising support for both HyperV and KVM, the resulting Hypervisor 1517 * CPUID sub-classes are: 1518 * 1519 * - HyperV: 0x40000000 - 0x400000ff 1520 * - KVM: 0x40000100 - 0x400001ff 1521 */ 1522 static struct kvm_cpuid_entry2 * 1523 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index) 1524 { 1525 struct kvm_cpuid_entry2 *basic, *class; 1526 u32 function = *fn_ptr; 1527 1528 basic = kvm_find_cpuid_entry(vcpu, 0); 1529 if (!basic) 1530 return NULL; 1531 1532 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) || 1533 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx)) 1534 return NULL; 1535 1536 if (function >= 0x40000000 && function <= 0x4fffffff) 1537 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00); 1538 else if (function >= 0xc0000000) 1539 class = kvm_find_cpuid_entry(vcpu, 0xc0000000); 1540 else 1541 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000); 1542 1543 if (class && function <= class->eax) 1544 return NULL; 1545 1546 /* 1547 * Leaf specific adjustments are also applied when redirecting to the 1548 * max basic entry, e.g. if the max basic leaf is 0xb but there is no 1549 * entry for CPUID.0xb.index (see below), then the output value for EDX 1550 * needs to be pulled from CPUID.0xb.1. 1551 */ 1552 *fn_ptr = basic->eax; 1553 1554 /* 1555 * The class does not exist or the requested function is out of range; 1556 * the effective CPUID entry is the max basic leaf. Note, the index of 1557 * the original requested leaf is observed! 1558 */ 1559 return kvm_find_cpuid_entry_index(vcpu, basic->eax, index); 1560 } 1561 1562 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, 1563 u32 *ecx, u32 *edx, bool exact_only) 1564 { 1565 u32 orig_function = *eax, function = *eax, index = *ecx; 1566 struct kvm_cpuid_entry2 *entry; 1567 bool exact, used_max_basic = false; 1568 1569 entry = kvm_find_cpuid_entry_index(vcpu, function, index); 1570 exact = !!entry; 1571 1572 if (!entry && !exact_only) { 1573 entry = get_out_of_range_cpuid_entry(vcpu, &function, index); 1574 used_max_basic = !!entry; 1575 } 1576 1577 if (entry) { 1578 *eax = entry->eax; 1579 *ebx = entry->ebx; 1580 *ecx = entry->ecx; 1581 *edx = entry->edx; 1582 if (function == 7 && index == 0) { 1583 u64 data; 1584 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) && 1585 (data & TSX_CTRL_CPUID_CLEAR)) 1586 *ebx &= ~(F(RTM) | F(HLE)); 1587 } else if (function == 0x80000007) { 1588 if (kvm_hv_invtsc_suppressed(vcpu)) 1589 *edx &= ~SF(CONSTANT_TSC); 1590 } 1591 } else { 1592 *eax = *ebx = *ecx = *edx = 0; 1593 /* 1594 * When leaf 0BH or 1FH is defined, CL is pass-through 1595 * and EDX is always the x2APIC ID, even for undefined 1596 * subleaves. Index 1 will exist iff the leaf is 1597 * implemented, so we pass through CL iff leaf 1 1598 * exists. EDX can be copied from any existing index. 1599 */ 1600 if (function == 0xb || function == 0x1f) { 1601 entry = kvm_find_cpuid_entry_index(vcpu, function, 1); 1602 if (entry) { 1603 *ecx = index & 0xff; 1604 *edx = entry->edx; 1605 } 1606 } 1607 } 1608 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact, 1609 used_max_basic); 1610 return exact; 1611 } 1612 EXPORT_SYMBOL_GPL(kvm_cpuid); 1613 1614 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) 1615 { 1616 u32 eax, ebx, ecx, edx; 1617 1618 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) 1619 return 1; 1620 1621 eax = kvm_rax_read(vcpu); 1622 ecx = kvm_rcx_read(vcpu); 1623 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false); 1624 kvm_rax_write(vcpu, eax); 1625 kvm_rbx_write(vcpu, ebx); 1626 kvm_rcx_write(vcpu, ecx); 1627 kvm_rdx_write(vcpu, edx); 1628 return kvm_skip_emulated_instruction(vcpu); 1629 } 1630 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); 1631