xref: /linux/arch/x86/kernel/vm86_32.c (revision 1342635638cba9b7c8eac776da5e54390d14d313)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/signal.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/smp.h>
43 #include <linux/highmem.h>
44 #include <linux/ptrace.h>
45 #include <linux/audit.h>
46 #include <linux/stddef.h>
47 #include <linux/slab.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/io.h>
51 #include <asm/tlbflush.h>
52 #include <asm/irq.h>
53 #include <asm/traps.h>
54 #include <asm/vm86.h>
55 
56 /*
57  * Known problems:
58  *
59  * Interrupt handling is not guaranteed:
60  * - a real x86 will disable all interrupts for one instruction
61  *   after a "mov ss,xx" to make stack handling atomic even without
62  *   the 'lss' instruction. We can't guarantee this in v86 mode,
63  *   as the next instruction might result in a page fault or similar.
64  * - a real x86 will have interrupts disabled for one instruction
65  *   past the 'sti' that enables them. We don't bother with all the
66  *   details yet.
67  *
68  * Let's hope these problems do not actually matter for anything.
69  */
70 
71 
72 /*
73  * 8- and 16-bit register defines..
74  */
75 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
76 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
77 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
78 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
79 
80 /*
81  * virtual flags (16 and 32-bit versions)
82  */
83 #define VFLAGS	(*(unsigned short *)&(current->thread.vm86->v86flags))
84 #define VEFLAGS	(current->thread.vm86->v86flags)
85 
86 #define set_flags(X, new, mask) \
87 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
88 
89 #define SAFE_MASK	(0xDD5)
90 #define RETURN_MASK	(0xDFF)
91 
92 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
93 {
94 	struct tss_struct *tss;
95 	struct task_struct *tsk = current;
96 	struct vm86plus_struct __user *user;
97 	struct vm86 *vm86 = current->thread.vm86;
98 	long err = 0;
99 
100 	/*
101 	 * This gets called from entry.S with interrupts disabled, but
102 	 * from process context. Enable interrupts here, before trying
103 	 * to access user space.
104 	 */
105 	local_irq_enable();
106 
107 	if (!vm86 || !vm86->user_vm86) {
108 		pr_alert("no user_vm86: BAD\n");
109 		do_exit(SIGSEGV);
110 	}
111 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->v86mask);
112 	user = vm86->user_vm86;
113 
114 	if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
115 		       sizeof(struct vm86plus_struct) :
116 		       sizeof(struct vm86_struct))) {
117 		pr_alert("could not access userspace vm86 info\n");
118 		do_exit(SIGSEGV);
119 	}
120 
121 	put_user_try {
122 		put_user_ex(regs->pt.bx, &user->regs.ebx);
123 		put_user_ex(regs->pt.cx, &user->regs.ecx);
124 		put_user_ex(regs->pt.dx, &user->regs.edx);
125 		put_user_ex(regs->pt.si, &user->regs.esi);
126 		put_user_ex(regs->pt.di, &user->regs.edi);
127 		put_user_ex(regs->pt.bp, &user->regs.ebp);
128 		put_user_ex(regs->pt.ax, &user->regs.eax);
129 		put_user_ex(regs->pt.ip, &user->regs.eip);
130 		put_user_ex(regs->pt.cs, &user->regs.cs);
131 		put_user_ex(regs->pt.flags, &user->regs.eflags);
132 		put_user_ex(regs->pt.sp, &user->regs.esp);
133 		put_user_ex(regs->pt.ss, &user->regs.ss);
134 		put_user_ex(regs->es, &user->regs.es);
135 		put_user_ex(regs->ds, &user->regs.ds);
136 		put_user_ex(regs->fs, &user->regs.fs);
137 		put_user_ex(regs->gs, &user->regs.gs);
138 
139 		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
140 	} put_user_catch(err);
141 	if (err) {
142 		pr_alert("could not access userspace vm86 info\n");
143 		do_exit(SIGSEGV);
144 	}
145 
146 	tss = &per_cpu(cpu_tss, get_cpu());
147 	tsk->thread.sp0 = vm86->saved_sp0;
148 	tsk->thread.sysenter_cs = __KERNEL_CS;
149 	load_sp0(tss, &tsk->thread);
150 	vm86->saved_sp0 = 0;
151 	put_cpu();
152 
153 	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
154 
155 	lazy_load_gs(vm86->regs32.gs);
156 
157 	regs->pt.ax = retval;
158 }
159 
160 static void mark_screen_rdonly(struct mm_struct *mm)
161 {
162 	pgd_t *pgd;
163 	pud_t *pud;
164 	pmd_t *pmd;
165 	pte_t *pte;
166 	spinlock_t *ptl;
167 	int i;
168 
169 	down_write(&mm->mmap_sem);
170 	pgd = pgd_offset(mm, 0xA0000);
171 	if (pgd_none_or_clear_bad(pgd))
172 		goto out;
173 	pud = pud_offset(pgd, 0xA0000);
174 	if (pud_none_or_clear_bad(pud))
175 		goto out;
176 	pmd = pmd_offset(pud, 0xA0000);
177 	split_huge_page_pmd_mm(mm, 0xA0000, pmd);
178 	if (pmd_none_or_clear_bad(pmd))
179 		goto out;
180 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
181 	for (i = 0; i < 32; i++) {
182 		if (pte_present(*pte))
183 			set_pte(pte, pte_wrprotect(*pte));
184 		pte++;
185 	}
186 	pte_unmap_unlock(pte, ptl);
187 out:
188 	up_write(&mm->mmap_sem);
189 	flush_tlb();
190 }
191 
192 
193 
194 static int do_vm86_irq_handling(int subfunction, int irqnumber);
195 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
196 
197 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
198 {
199 	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
200 }
201 
202 
203 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
204 {
205 	switch (cmd) {
206 	case VM86_REQUEST_IRQ:
207 	case VM86_FREE_IRQ:
208 	case VM86_GET_IRQ_BITS:
209 	case VM86_GET_AND_RESET_IRQ:
210 		return do_vm86_irq_handling(cmd, (int)arg);
211 	case VM86_PLUS_INSTALL_CHECK:
212 		/*
213 		 * NOTE: on old vm86 stuff this will return the error
214 		 *  from access_ok(), because the subfunction is
215 		 *  interpreted as (invalid) address to vm86_struct.
216 		 *  So the installation check works.
217 		 */
218 		return 0;
219 	}
220 
221 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
222 	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
223 }
224 
225 
226 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
227 {
228 	struct tss_struct *tss;
229 	struct task_struct *tsk = current;
230 	struct vm86 *vm86 = tsk->thread.vm86;
231 	struct kernel_vm86_regs vm86regs;
232 	struct pt_regs *regs = current_pt_regs();
233 	unsigned long err = 0;
234 
235 	if (!vm86) {
236 		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
237 			return -ENOMEM;
238 		tsk->thread.vm86 = vm86;
239 	}
240 	if (vm86->saved_sp0)
241 		return -EPERM;
242 
243 	if (!access_ok(VERIFY_READ, user_vm86, plus ?
244 		       sizeof(struct vm86_struct) :
245 		       sizeof(struct vm86plus_struct)))
246 		return -EFAULT;
247 
248 	memset(&vm86regs, 0, sizeof(vm86regs));
249 	get_user_try {
250 		unsigned short seg;
251 		get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
252 		get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
253 		get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
254 		get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
255 		get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
256 		get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
257 		get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
258 		get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
259 		get_user_ex(seg, &user_vm86->regs.cs);
260 		vm86regs.pt.cs = seg;
261 		get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
262 		get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
263 		get_user_ex(seg, &user_vm86->regs.ss);
264 		vm86regs.pt.ss = seg;
265 		get_user_ex(vm86regs.es, &user_vm86->regs.es);
266 		get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
267 		get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
268 		get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
269 
270 		get_user_ex(vm86->flags, &user_vm86->flags);
271 		get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
272 		get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
273 	} get_user_catch(err);
274 	if (err)
275 		return err;
276 
277 	if (copy_from_user(&vm86->int_revectored,
278 			   &user_vm86->int_revectored,
279 			   sizeof(struct revectored_struct)))
280 		return -EFAULT;
281 	if (copy_from_user(&vm86->int21_revectored,
282 			   &user_vm86->int21_revectored,
283 			   sizeof(struct revectored_struct)))
284 		return -EFAULT;
285 	if (plus) {
286 		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
287 				   sizeof(struct vm86plus_info_struct)))
288 			return -EFAULT;
289 		vm86->vm86plus.is_vm86pus = 1;
290 	} else
291 		memset(&vm86->vm86plus, 0,
292 		       sizeof(struct vm86plus_info_struct));
293 
294 	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
295 	vm86->user_vm86 = user_vm86;
296 
297 /*
298  * The flags register is also special: we cannot trust that the user
299  * has set it up safely, so this makes sure interrupt etc flags are
300  * inherited from protected mode.
301  */
302 	VEFLAGS = vm86regs.pt.flags;
303 	vm86regs.pt.flags &= SAFE_MASK;
304 	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
305 	vm86regs.pt.flags |= X86_VM_MASK;
306 
307 	vm86regs.pt.orig_ax = regs->orig_ax;
308 
309 	switch (vm86->cpu_type) {
310 	case CPU_286:
311 		vm86->v86mask = 0;
312 		break;
313 	case CPU_386:
314 		vm86->v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
315 		break;
316 	case CPU_486:
317 		vm86->v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
318 		break;
319 	default:
320 		vm86->v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
321 		break;
322 	}
323 
324 /*
325  * Save old state
326  */
327 	vm86->saved_sp0 = tsk->thread.sp0;
328 	lazy_save_gs(vm86->regs32.gs);
329 
330 	tss = &per_cpu(cpu_tss, get_cpu());
331 	/* make room for real-mode segments */
332 	tsk->thread.sp0 += 16;
333 	if (cpu_has_sep)
334 		tsk->thread.sysenter_cs = 0;
335 	load_sp0(tss, &tsk->thread);
336 	put_cpu();
337 
338 	if (vm86->flags & VM86_SCREEN_BITMAP)
339 		mark_screen_rdonly(tsk->mm);
340 
341 	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
342 	force_iret();
343 	return regs->ax;
344 }
345 
346 static inline void set_IF(struct kernel_vm86_regs *regs)
347 {
348 	VEFLAGS |= X86_EFLAGS_VIF;
349 }
350 
351 static inline void clear_IF(struct kernel_vm86_regs *regs)
352 {
353 	VEFLAGS &= ~X86_EFLAGS_VIF;
354 }
355 
356 static inline void clear_TF(struct kernel_vm86_regs *regs)
357 {
358 	regs->pt.flags &= ~X86_EFLAGS_TF;
359 }
360 
361 static inline void clear_AC(struct kernel_vm86_regs *regs)
362 {
363 	regs->pt.flags &= ~X86_EFLAGS_AC;
364 }
365 
366 /*
367  * It is correct to call set_IF(regs) from the set_vflags_*
368  * functions. However someone forgot to call clear_IF(regs)
369  * in the opposite case.
370  * After the command sequence CLI PUSHF STI POPF you should
371  * end up with interrupts disabled, but you ended up with
372  * interrupts enabled.
373  *  ( I was testing my own changes, but the only bug I
374  *    could find was in a function I had not changed. )
375  * [KD]
376  */
377 
378 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
379 {
380 	set_flags(VEFLAGS, flags, current->thread.vm86->v86mask);
381 	set_flags(regs->pt.flags, flags, SAFE_MASK);
382 	if (flags & X86_EFLAGS_IF)
383 		set_IF(regs);
384 	else
385 		clear_IF(regs);
386 }
387 
388 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
389 {
390 	set_flags(VFLAGS, flags, current->thread.vm86->v86mask);
391 	set_flags(regs->pt.flags, flags, SAFE_MASK);
392 	if (flags & X86_EFLAGS_IF)
393 		set_IF(regs);
394 	else
395 		clear_IF(regs);
396 }
397 
398 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
399 {
400 	unsigned long flags = regs->pt.flags & RETURN_MASK;
401 
402 	if (VEFLAGS & X86_EFLAGS_VIF)
403 		flags |= X86_EFLAGS_IF;
404 	flags |= X86_EFLAGS_IOPL;
405 	return flags | (VEFLAGS & current->thread.vm86->v86mask);
406 }
407 
408 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
409 {
410 	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
411 		:"=r" (nr)
412 		:"m" (*bitmap), "r" (nr));
413 	return nr;
414 }
415 
416 #define val_byte(val, n) (((__u8 *)&val)[n])
417 
418 #define pushb(base, ptr, val, err_label) \
419 	do { \
420 		__u8 __val = val; \
421 		ptr--; \
422 		if (put_user(__val, base + ptr) < 0) \
423 			goto err_label; \
424 	} while (0)
425 
426 #define pushw(base, ptr, val, err_label) \
427 	do { \
428 		__u16 __val = val; \
429 		ptr--; \
430 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
431 			goto err_label; \
432 		ptr--; \
433 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
434 			goto err_label; \
435 	} while (0)
436 
437 #define pushl(base, ptr, val, err_label) \
438 	do { \
439 		__u32 __val = val; \
440 		ptr--; \
441 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
442 			goto err_label; \
443 		ptr--; \
444 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
445 			goto err_label; \
446 		ptr--; \
447 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
448 			goto err_label; \
449 		ptr--; \
450 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
451 			goto err_label; \
452 	} while (0)
453 
454 #define popb(base, ptr, err_label) \
455 	({ \
456 		__u8 __res; \
457 		if (get_user(__res, base + ptr) < 0) \
458 			goto err_label; \
459 		ptr++; \
460 		__res; \
461 	})
462 
463 #define popw(base, ptr, err_label) \
464 	({ \
465 		__u16 __res; \
466 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
467 			goto err_label; \
468 		ptr++; \
469 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
470 			goto err_label; \
471 		ptr++; \
472 		__res; \
473 	})
474 
475 #define popl(base, ptr, err_label) \
476 	({ \
477 		__u32 __res; \
478 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
479 			goto err_label; \
480 		ptr++; \
481 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
482 			goto err_label; \
483 		ptr++; \
484 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
485 			goto err_label; \
486 		ptr++; \
487 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
488 			goto err_label; \
489 		ptr++; \
490 		__res; \
491 	})
492 
493 /* There are so many possible reasons for this function to return
494  * VM86_INTx, so adding another doesn't bother me. We can expect
495  * userspace programs to be able to handle it. (Getting a problem
496  * in userspace is always better than an Oops anyway.) [KD]
497  */
498 static void do_int(struct kernel_vm86_regs *regs, int i,
499     unsigned char __user *ssp, unsigned short sp)
500 {
501 	unsigned long __user *intr_ptr;
502 	unsigned long segoffs;
503 	struct vm86 *vm86 = current->thread.vm86;
504 
505 	if (regs->pt.cs == BIOSSEG)
506 		goto cannot_handle;
507 	if (is_revectored(i, &vm86->int_revectored))
508 		goto cannot_handle;
509 	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
510 		goto cannot_handle;
511 	intr_ptr = (unsigned long __user *) (i << 2);
512 	if (get_user(segoffs, intr_ptr))
513 		goto cannot_handle;
514 	if ((segoffs >> 16) == BIOSSEG)
515 		goto cannot_handle;
516 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
517 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
518 	pushw(ssp, sp, IP(regs), cannot_handle);
519 	regs->pt.cs = segoffs >> 16;
520 	SP(regs) -= 6;
521 	IP(regs) = segoffs & 0xffff;
522 	clear_TF(regs);
523 	clear_IF(regs);
524 	clear_AC(regs);
525 	return;
526 
527 cannot_handle:
528 	save_v86_state(regs, VM86_INTx + (i << 8));
529 }
530 
531 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
532 {
533 	struct vm86 *vm86 = current->thread.vm86;
534 
535 	if (vm86->vm86plus.is_vm86pus) {
536 		if ((trapno == 3) || (trapno == 1)) {
537 			save_v86_state(regs, VM86_TRAP + (trapno << 8));
538 			return 0;
539 		}
540 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
541 		return 0;
542 	}
543 	if (trapno != 1)
544 		return 1; /* we let this handle by the calling routine */
545 	current->thread.trap_nr = trapno;
546 	current->thread.error_code = error_code;
547 	force_sig(SIGTRAP, current);
548 	return 0;
549 }
550 
551 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
552 {
553 	unsigned char opcode;
554 	unsigned char __user *csp;
555 	unsigned char __user *ssp;
556 	unsigned short ip, sp, orig_flags;
557 	int data32, pref_done;
558 	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
559 
560 #define CHECK_IF_IN_TRAP \
561 	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
562 		newflags |= X86_EFLAGS_TF
563 
564 	orig_flags = *(unsigned short *)&regs->pt.flags;
565 
566 	csp = (unsigned char __user *) (regs->pt.cs << 4);
567 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
568 	sp = SP(regs);
569 	ip = IP(regs);
570 
571 	data32 = 0;
572 	pref_done = 0;
573 	do {
574 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
575 		case 0x66:      /* 32-bit data */     data32 = 1; break;
576 		case 0x67:      /* 32-bit address */  break;
577 		case 0x2e:      /* CS */              break;
578 		case 0x3e:      /* DS */              break;
579 		case 0x26:      /* ES */              break;
580 		case 0x36:      /* SS */              break;
581 		case 0x65:      /* GS */              break;
582 		case 0x64:      /* FS */              break;
583 		case 0xf2:      /* repnz */       break;
584 		case 0xf3:      /* rep */             break;
585 		default: pref_done = 1;
586 		}
587 	} while (!pref_done);
588 
589 	switch (opcode) {
590 
591 	/* pushf */
592 	case 0x9c:
593 		if (data32) {
594 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
595 			SP(regs) -= 4;
596 		} else {
597 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
598 			SP(regs) -= 2;
599 		}
600 		IP(regs) = ip;
601 		goto vm86_fault_return;
602 
603 	/* popf */
604 	case 0x9d:
605 		{
606 		unsigned long newflags;
607 		if (data32) {
608 			newflags = popl(ssp, sp, simulate_sigsegv);
609 			SP(regs) += 4;
610 		} else {
611 			newflags = popw(ssp, sp, simulate_sigsegv);
612 			SP(regs) += 2;
613 		}
614 		IP(regs) = ip;
615 		CHECK_IF_IN_TRAP;
616 		if (data32)
617 			set_vflags_long(newflags, regs);
618 		else
619 			set_vflags_short(newflags, regs);
620 
621 		goto check_vip;
622 		}
623 
624 	/* int xx */
625 	case 0xcd: {
626 		int intno = popb(csp, ip, simulate_sigsegv);
627 		IP(regs) = ip;
628 		if (vmpi->vm86dbg_active) {
629 			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
630 				save_v86_state(regs, VM86_INTx + (intno << 8));
631 				return;
632 			}
633 		}
634 		do_int(regs, intno, ssp, sp);
635 		return;
636 	}
637 
638 	/* iret */
639 	case 0xcf:
640 		{
641 		unsigned long newip;
642 		unsigned long newcs;
643 		unsigned long newflags;
644 		if (data32) {
645 			newip = popl(ssp, sp, simulate_sigsegv);
646 			newcs = popl(ssp, sp, simulate_sigsegv);
647 			newflags = popl(ssp, sp, simulate_sigsegv);
648 			SP(regs) += 12;
649 		} else {
650 			newip = popw(ssp, sp, simulate_sigsegv);
651 			newcs = popw(ssp, sp, simulate_sigsegv);
652 			newflags = popw(ssp, sp, simulate_sigsegv);
653 			SP(regs) += 6;
654 		}
655 		IP(regs) = newip;
656 		regs->pt.cs = newcs;
657 		CHECK_IF_IN_TRAP;
658 		if (data32) {
659 			set_vflags_long(newflags, regs);
660 		} else {
661 			set_vflags_short(newflags, regs);
662 		}
663 		goto check_vip;
664 		}
665 
666 	/* cli */
667 	case 0xfa:
668 		IP(regs) = ip;
669 		clear_IF(regs);
670 		goto vm86_fault_return;
671 
672 	/* sti */
673 	/*
674 	 * Damn. This is incorrect: the 'sti' instruction should actually
675 	 * enable interrupts after the /next/ instruction. Not good.
676 	 *
677 	 * Probably needs some horsing around with the TF flag. Aiee..
678 	 */
679 	case 0xfb:
680 		IP(regs) = ip;
681 		set_IF(regs);
682 		goto check_vip;
683 
684 	default:
685 		save_v86_state(regs, VM86_UNKNOWN);
686 	}
687 
688 	return;
689 
690 check_vip:
691 	if (VEFLAGS & X86_EFLAGS_VIP) {
692 		save_v86_state(regs, VM86_STI);
693 		return;
694 	}
695 
696 vm86_fault_return:
697 	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
698 		save_v86_state(regs, VM86_PICRETURN);
699 		return;
700 	}
701 	if (orig_flags & X86_EFLAGS_TF)
702 		handle_vm86_trap(regs, 0, X86_TRAP_DB);
703 	return;
704 
705 simulate_sigsegv:
706 	/* FIXME: After a long discussion with Stas we finally
707 	 *        agreed, that this is wrong. Here we should
708 	 *        really send a SIGSEGV to the user program.
709 	 *        But how do we create the correct context? We
710 	 *        are inside a general protection fault handler
711 	 *        and has just returned from a page fault handler.
712 	 *        The correct context for the signal handler
713 	 *        should be a mixture of the two, but how do we
714 	 *        get the information? [KD]
715 	 */
716 	save_v86_state(regs, VM86_UNKNOWN);
717 }
718 
719 /* ---------------- vm86 special IRQ passing stuff ----------------- */
720 
721 #define VM86_IRQNAME		"vm86irq"
722 
723 static struct vm86_irqs {
724 	struct task_struct *tsk;
725 	int sig;
726 } vm86_irqs[16];
727 
728 static DEFINE_SPINLOCK(irqbits_lock);
729 static int irqbits;
730 
731 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
732 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
733 	| (1 << SIGUNUSED))
734 
735 static irqreturn_t irq_handler(int intno, void *dev_id)
736 {
737 	int irq_bit;
738 	unsigned long flags;
739 
740 	spin_lock_irqsave(&irqbits_lock, flags);
741 	irq_bit = 1 << intno;
742 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
743 		goto out;
744 	irqbits |= irq_bit;
745 	if (vm86_irqs[intno].sig)
746 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
747 	/*
748 	 * IRQ will be re-enabled when user asks for the irq (whether
749 	 * polling or as a result of the signal)
750 	 */
751 	disable_irq_nosync(intno);
752 	spin_unlock_irqrestore(&irqbits_lock, flags);
753 	return IRQ_HANDLED;
754 
755 out:
756 	spin_unlock_irqrestore(&irqbits_lock, flags);
757 	return IRQ_NONE;
758 }
759 
760 static inline void free_vm86_irq(int irqnumber)
761 {
762 	unsigned long flags;
763 
764 	free_irq(irqnumber, NULL);
765 	vm86_irqs[irqnumber].tsk = NULL;
766 
767 	spin_lock_irqsave(&irqbits_lock, flags);
768 	irqbits &= ~(1 << irqnumber);
769 	spin_unlock_irqrestore(&irqbits_lock, flags);
770 }
771 
772 void release_vm86_irqs(struct task_struct *task)
773 {
774 	int i;
775 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
776 	    if (vm86_irqs[i].tsk == task)
777 		free_vm86_irq(i);
778 }
779 
780 static inline int get_and_reset_irq(int irqnumber)
781 {
782 	int bit;
783 	unsigned long flags;
784 	int ret = 0;
785 
786 	if (invalid_vm86_irq(irqnumber)) return 0;
787 	if (vm86_irqs[irqnumber].tsk != current) return 0;
788 	spin_lock_irqsave(&irqbits_lock, flags);
789 	bit = irqbits & (1 << irqnumber);
790 	irqbits &= ~bit;
791 	if (bit) {
792 		enable_irq(irqnumber);
793 		ret = 1;
794 	}
795 
796 	spin_unlock_irqrestore(&irqbits_lock, flags);
797 	return ret;
798 }
799 
800 
801 static int do_vm86_irq_handling(int subfunction, int irqnumber)
802 {
803 	int ret;
804 	switch (subfunction) {
805 		case VM86_GET_AND_RESET_IRQ: {
806 			return get_and_reset_irq(irqnumber);
807 		}
808 		case VM86_GET_IRQ_BITS: {
809 			return irqbits;
810 		}
811 		case VM86_REQUEST_IRQ: {
812 			int sig = irqnumber >> 8;
813 			int irq = irqnumber & 255;
814 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
815 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
816 			if (invalid_vm86_irq(irq)) return -EPERM;
817 			if (vm86_irqs[irq].tsk) return -EPERM;
818 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
819 			if (ret) return ret;
820 			vm86_irqs[irq].sig = sig;
821 			vm86_irqs[irq].tsk = current;
822 			return irq;
823 		}
824 		case  VM86_FREE_IRQ: {
825 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
826 			if (!vm86_irqs[irqnumber].tsk) return 0;
827 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
828 			free_vm86_irq(irqnumber);
829 			return 0;
830 		}
831 	}
832 	return -EINVAL;
833 }
834 
835