xref: /linux/arch/x86/kernel/uprobes.c (revision df561f6688fef775baa341a0f5d960becd248b11)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * User-space Probes (UProbes) for x86
4  *
5  * Copyright (C) IBM Corporation, 2008-2011
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  */
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/uprobes.h>
14 #include <linux/uaccess.h>
15 
16 #include <linux/kdebug.h>
17 #include <asm/processor.h>
18 #include <asm/insn.h>
19 #include <asm/mmu_context.h>
20 
21 /* Post-execution fixups. */
22 
23 /* Adjust IP back to vicinity of actual insn */
24 #define UPROBE_FIX_IP		0x01
25 
26 /* Adjust the return address of a call insn */
27 #define UPROBE_FIX_CALL		0x02
28 
29 /* Instruction will modify TF, don't change it */
30 #define UPROBE_FIX_SETF		0x04
31 
32 #define UPROBE_FIX_RIP_SI	0x08
33 #define UPROBE_FIX_RIP_DI	0x10
34 #define UPROBE_FIX_RIP_BX	0x20
35 #define UPROBE_FIX_RIP_MASK	\
36 	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
37 
38 #define	UPROBE_TRAP_NR		UINT_MAX
39 
40 /* Adaptations for mhiramat x86 decoder v14. */
41 #define OPCODE1(insn)		((insn)->opcode.bytes[0])
42 #define OPCODE2(insn)		((insn)->opcode.bytes[1])
43 #define OPCODE3(insn)		((insn)->opcode.bytes[2])
44 #define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
45 
46 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
48 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
49 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
50 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
51 	 << (row % 32))
52 
53 /*
54  * Good-instruction tables for 32-bit apps.  This is non-const and volatile
55  * to keep gcc from statically optimizing it out, as variable_test_bit makes
56  * some versions of gcc to think only *(unsigned long*) is used.
57  *
58  * Opcodes we'll probably never support:
59  * 6c-6f - ins,outs. SEGVs if used in userspace
60  * e4-e7 - in,out imm. SEGVs if used in userspace
61  * ec-ef - in,out acc. SEGVs if used in userspace
62  * cc - int3. SIGTRAP if used in userspace
63  * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64  *	(why we support bound (62) then? it's similar, and similarly unused...)
65  * f1 - int1. SIGTRAP if used in userspace
66  * f4 - hlt. SEGVs if used in userspace
67  * fa - cli. SEGVs if used in userspace
68  * fb - sti. SEGVs if used in userspace
69  *
70  * Opcodes which need some work to be supported:
71  * 07,17,1f - pop es/ss/ds
72  *	Normally not used in userspace, but would execute if used.
73  *	Can cause GP or stack exception if tries to load wrong segment descriptor.
74  *	We hesitate to run them under single step since kernel's handling
75  *	of userspace single-stepping (TF flag) is fragile.
76  *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77  *	on the same grounds that they are never used.
78  * cd - int N.
79  *	Used by userspace for "int 80" syscall entry. (Other "int N"
80  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81  *	Not supported since kernel's handling of userspace single-stepping
82  *	(TF flag) is fragile.
83  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
84  */
85 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
86 static volatile u32 good_insns_32[256 / 32] = {
87 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
88 	/*      ----------------------------------------------         */
89 	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
90 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
91 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
93 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
95 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
96 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
102 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
103 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
104 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
105 	/*      ----------------------------------------------         */
106 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
107 };
108 #else
109 #define good_insns_32	NULL
110 #endif
111 
112 /* Good-instruction tables for 64-bit apps.
113  *
114  * Genuinely invalid opcodes:
115  * 06,07 - formerly push/pop es
116  * 0e - formerly push cs
117  * 16,17 - formerly push/pop ss
118  * 1e,1f - formerly push/pop ds
119  * 27,2f,37,3f - formerly daa/das/aaa/aas
120  * 60,61 - formerly pusha/popa
121  * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
122  * 82 - formerly redundant encoding of Group1
123  * 9a - formerly call seg:ofs
124  * ce - formerly into
125  * d4,d5 - formerly aam/aad
126  * d6 - formerly undocumented salc
127  * ea - formerly jmp seg:ofs
128  *
129  * Opcodes we'll probably never support:
130  * 6c-6f - ins,outs. SEGVs if used in userspace
131  * e4-e7 - in,out imm. SEGVs if used in userspace
132  * ec-ef - in,out acc. SEGVs if used in userspace
133  * cc - int3. SIGTRAP if used in userspace
134  * f1 - int1. SIGTRAP if used in userspace
135  * f4 - hlt. SEGVs if used in userspace
136  * fa - cli. SEGVs if used in userspace
137  * fb - sti. SEGVs if used in userspace
138  *
139  * Opcodes which need some work to be supported:
140  * cd - int N.
141  *	Used by userspace for "int 80" syscall entry. (Other "int N"
142  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143  *	Not supported since kernel's handling of userspace single-stepping
144  *	(TF flag) is fragile.
145  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
146  */
147 #if defined(CONFIG_X86_64)
148 static volatile u32 good_insns_64[256 / 32] = {
149 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
150 	/*      ----------------------------------------------         */
151 	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
152 	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
153 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
156 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
157 	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
158 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159 	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
160 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
161 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
163 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
164 	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
165 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
167 	/*      ----------------------------------------------         */
168 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
169 };
170 #else
171 #define good_insns_64	NULL
172 #endif
173 
174 /* Using this for both 64-bit and 32-bit apps.
175  * Opcodes we don't support:
176  * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177  * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178  *	Also encodes tons of other system insns if mod=11.
179  *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
180  * 0f 05 - syscall
181  * 0f 06 - clts (CPL0 insn)
182  * 0f 07 - sysret
183  * 0f 08 - invd (CPL0 insn)
184  * 0f 09 - wbinvd (CPL0 insn)
185  * 0f 0b - ud2
186  * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
187  * 0f 34 - sysenter
188  * 0f 35 - sysexit
189  * 0f 37 - getsec
190  * 0f 78 - vmread (Intel VMX. CPL0 insn)
191  * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192  *	Note: with prefixes, these two opcodes are
193  *	extrq/insertq/AVX512 convert vector ops.
194  * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195  *	{rd,wr}{fs,gs}base,{s,l,m}fence.
196  *	Why? They are all user-executable.
197  */
198 static volatile u32 good_2byte_insns[256 / 32] = {
199 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
200 	/*      ----------------------------------------------         */
201 	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204 	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
205 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
208 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
209 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
211 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
213 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
214 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
215 	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
216 	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
217 	/*      ----------------------------------------------         */
218 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
219 };
220 #undef W
221 
222 /*
223  * opcodes we may need to refine support for:
224  *
225  *  0f - 2-byte instructions: For many of these instructions, the validity
226  *  depends on the prefix and/or the reg field.  On such instructions, we
227  *  just consider the opcode combination valid if it corresponds to any
228  *  valid instruction.
229  *
230  *  8f - Group 1 - only reg = 0 is OK
231  *  c6-c7 - Group 11 - only reg = 0 is OK
232  *  d9-df - fpu insns with some illegal encodings
233  *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
234  *  certain floating-point instructions, such as addsd.
235  *
236  *  fe - Group 4 - only reg = 0 or 1 is OK
237  *  ff - Group 5 - only reg = 0-6 is OK
238  *
239  * others -- Do we need to support these?
240  *
241  *  0f - (floating-point?) prefetch instructions
242  *  07, 17, 1f - pop es, pop ss, pop ds
243  *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
244  *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
245  *  67 - addr16 prefix
246  *  ce - into
247  *  f0 - lock prefix
248  */
249 
250 /*
251  * TODO:
252  * - Where necessary, examine the modrm byte and allow only valid instructions
253  * in the different Groups and fpu instructions.
254  */
255 
256 static bool is_prefix_bad(struct insn *insn)
257 {
258 	int i;
259 
260 	for (i = 0; i < insn->prefixes.nbytes; i++) {
261 		insn_attr_t attr;
262 
263 		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
264 		switch (attr) {
265 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
266 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
267 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
268 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
269 		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
270 			return true;
271 		}
272 	}
273 	return false;
274 }
275 
276 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
277 {
278 	u32 volatile *good_insns;
279 
280 	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
281 	/* has the side-effect of processing the entire instruction */
282 	insn_get_length(insn);
283 	if (!insn_complete(insn))
284 		return -ENOEXEC;
285 
286 	if (is_prefix_bad(insn))
287 		return -ENOTSUPP;
288 
289 	/* We should not singlestep on the exception masking instructions */
290 	if (insn_masking_exception(insn))
291 		return -ENOTSUPP;
292 
293 	if (x86_64)
294 		good_insns = good_insns_64;
295 	else
296 		good_insns = good_insns_32;
297 
298 	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
299 		return 0;
300 
301 	if (insn->opcode.nbytes == 2) {
302 		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
303 			return 0;
304 	}
305 
306 	return -ENOTSUPP;
307 }
308 
309 #ifdef CONFIG_X86_64
310 /*
311  * If arch_uprobe->insn doesn't use rip-relative addressing, return
312  * immediately.  Otherwise, rewrite the instruction so that it accesses
313  * its memory operand indirectly through a scratch register.  Set
314  * defparam->fixups accordingly. (The contents of the scratch register
315  * will be saved before we single-step the modified instruction,
316  * and restored afterward).
317  *
318  * We do this because a rip-relative instruction can access only a
319  * relatively small area (+/- 2 GB from the instruction), and the XOL
320  * area typically lies beyond that area.  At least for instructions
321  * that store to memory, we can't execute the original instruction
322  * and "fix things up" later, because the misdirected store could be
323  * disastrous.
324  *
325  * Some useful facts about rip-relative instructions:
326  *
327  *  - There's always a modrm byte with bit layout "00 reg 101".
328  *  - There's never a SIB byte.
329  *  - The displacement is always 4 bytes.
330  *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
331  *    has no effect on rip-relative mode. It doesn't make modrm byte
332  *    with r/m=101 refer to register 1101 = R13.
333  */
334 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
335 {
336 	u8 *cursor;
337 	u8 reg;
338 	u8 reg2;
339 
340 	if (!insn_rip_relative(insn))
341 		return;
342 
343 	/*
344 	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
345 	 * Clear REX.b bit (extension of MODRM.rm field):
346 	 * we want to encode low numbered reg, not r8+.
347 	 */
348 	if (insn->rex_prefix.nbytes) {
349 		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
350 		/* REX byte has 0100wrxb layout, clearing REX.b bit */
351 		*cursor &= 0xfe;
352 	}
353 	/*
354 	 * Similar treatment for VEX3/EVEX prefix.
355 	 * TODO: add XOP treatment when insn decoder supports them
356 	 */
357 	if (insn->vex_prefix.nbytes >= 3) {
358 		/*
359 		 * vex2:     c5    rvvvvLpp   (has no b bit)
360 		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
361 		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
362 		 * Setting VEX3.b (setting because it has inverted meaning).
363 		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
364 		 * is the 4th bit of MODRM.rm, and needs the same treatment.
365 		 * For VEX3-encoded insns, VEX3.x value has no effect in
366 		 * non-SIB encoding, the change is superfluous but harmless.
367 		 */
368 		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
369 		*cursor |= 0x60;
370 	}
371 
372 	/*
373 	 * Convert from rip-relative addressing to register-relative addressing
374 	 * via a scratch register.
375 	 *
376 	 * This is tricky since there are insns with modrm byte
377 	 * which also use registers not encoded in modrm byte:
378 	 * [i]div/[i]mul: implicitly use dx:ax
379 	 * shift ops: implicitly use cx
380 	 * cmpxchg: implicitly uses ax
381 	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
382 	 *   Encoding: 0f c7/1 modrm
383 	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
384 	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
385 	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
386 	 *   Example where none of bx,cx,dx can be used as scratch reg:
387 	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
388 	 * [v]pcmpistri: implicitly uses cx, xmm0
389 	 * [v]pcmpistrm: implicitly uses xmm0
390 	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
391 	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
392 	 *   Evil SSE4.2 string comparison ops from hell.
393 	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
394 	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
395 	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
396 	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
397 	 *   and that it can have only register operands, not mem
398 	 *   (its modrm byte must have mode=11).
399 	 *   If these restrictions will ever be lifted,
400 	 *   we'll need code to prevent selection of di as scratch reg!
401 	 *
402 	 * Summary: I don't know any insns with modrm byte which
403 	 * use SI register implicitly. DI register is used only
404 	 * by one insn (maskmovq) and BX register is used
405 	 * only by one too (cmpxchg8b).
406 	 * BP is stack-segment based (may be a problem?).
407 	 * AX, DX, CX are off-limits (many implicit users).
408 	 * SP is unusable (it's stack pointer - think about "pop mem";
409 	 * also, rsp+disp32 needs sib encoding -> insn length change).
410 	 */
411 
412 	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
413 	reg2 = 0xff;		/* Fetch vex.vvvv */
414 	if (insn->vex_prefix.nbytes)
415 		reg2 = insn->vex_prefix.bytes[2];
416 	/*
417 	 * TODO: add XOP vvvv reading.
418 	 *
419 	 * vex.vvvv field is in bits 6-3, bits are inverted.
420 	 * But in 32-bit mode, high-order bit may be ignored.
421 	 * Therefore, let's consider only 3 low-order bits.
422 	 */
423 	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
424 	/*
425 	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
426 	 *
427 	 * Choose scratch reg. Order is important: must not select bx
428 	 * if we can use si (cmpxchg8b case!)
429 	 */
430 	if (reg != 6 && reg2 != 6) {
431 		reg2 = 6;
432 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
433 	} else if (reg != 7 && reg2 != 7) {
434 		reg2 = 7;
435 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
436 		/* TODO (paranoia): force maskmovq to not use di */
437 	} else {
438 		reg2 = 3;
439 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
440 	}
441 	/*
442 	 * Point cursor at the modrm byte.  The next 4 bytes are the
443 	 * displacement.  Beyond the displacement, for some instructions,
444 	 * is the immediate operand.
445 	 */
446 	cursor = auprobe->insn + insn_offset_modrm(insn);
447 	/*
448 	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
449 	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
450 	 * 89 86 disp32  mov %eax,disp32(%rsi)
451 	 */
452 	*cursor = 0x80 | (reg << 3) | reg2;
453 }
454 
455 static inline unsigned long *
456 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
457 {
458 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
459 		return &regs->si;
460 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
461 		return &regs->di;
462 	return &regs->bx;
463 }
464 
465 /*
466  * If we're emulating a rip-relative instruction, save the contents
467  * of the scratch register and store the target address in that register.
468  */
469 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
470 {
471 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
472 		struct uprobe_task *utask = current->utask;
473 		unsigned long *sr = scratch_reg(auprobe, regs);
474 
475 		utask->autask.saved_scratch_register = *sr;
476 		*sr = utask->vaddr + auprobe->defparam.ilen;
477 	}
478 }
479 
480 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
481 {
482 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
483 		struct uprobe_task *utask = current->utask;
484 		unsigned long *sr = scratch_reg(auprobe, regs);
485 
486 		*sr = utask->autask.saved_scratch_register;
487 	}
488 }
489 #else /* 32-bit: */
490 /*
491  * No RIP-relative addressing on 32-bit
492  */
493 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
494 {
495 }
496 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
497 {
498 }
499 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
500 {
501 }
502 #endif /* CONFIG_X86_64 */
503 
504 struct uprobe_xol_ops {
505 	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
506 	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
507 	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
508 	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
509 };
510 
511 static inline int sizeof_long(struct pt_regs *regs)
512 {
513 	/*
514 	 * Check registers for mode as in_xxx_syscall() does not apply here.
515 	 */
516 	return user_64bit_mode(regs) ? 8 : 4;
517 }
518 
519 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
520 {
521 	riprel_pre_xol(auprobe, regs);
522 	return 0;
523 }
524 
525 static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
526 {
527 	unsigned long new_sp = regs->sp - sizeof_long(regs);
528 
529 	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
530 		return -EFAULT;
531 
532 	regs->sp = new_sp;
533 	return 0;
534 }
535 
536 /*
537  * We have to fix things up as follows:
538  *
539  * Typically, the new ip is relative to the copied instruction.  We need
540  * to make it relative to the original instruction (FIX_IP).  Exceptions
541  * are return instructions and absolute or indirect jump or call instructions.
542  *
543  * If the single-stepped instruction was a call, the return address that
544  * is atop the stack is the address following the copied instruction.  We
545  * need to make it the address following the original instruction (FIX_CALL).
546  *
547  * If the original instruction was a rip-relative instruction such as
548  * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
549  * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
550  * We need to restore the contents of the scratch register
551  * (FIX_RIP_reg).
552  */
553 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
554 {
555 	struct uprobe_task *utask = current->utask;
556 
557 	riprel_post_xol(auprobe, regs);
558 	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
559 		long correction = utask->vaddr - utask->xol_vaddr;
560 		regs->ip += correction;
561 	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
562 		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
563 		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
564 			return -ERESTART;
565 	}
566 	/* popf; tell the caller to not touch TF */
567 	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
568 		utask->autask.saved_tf = true;
569 
570 	return 0;
571 }
572 
573 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
574 {
575 	riprel_post_xol(auprobe, regs);
576 }
577 
578 static const struct uprobe_xol_ops default_xol_ops = {
579 	.pre_xol  = default_pre_xol_op,
580 	.post_xol = default_post_xol_op,
581 	.abort	  = default_abort_op,
582 };
583 
584 static bool branch_is_call(struct arch_uprobe *auprobe)
585 {
586 	return auprobe->branch.opc1 == 0xe8;
587 }
588 
589 #define CASE_COND					\
590 	COND(70, 71, XF(OF))				\
591 	COND(72, 73, XF(CF))				\
592 	COND(74, 75, XF(ZF))				\
593 	COND(78, 79, XF(SF))				\
594 	COND(7a, 7b, XF(PF))				\
595 	COND(76, 77, XF(CF) || XF(ZF))			\
596 	COND(7c, 7d, XF(SF) != XF(OF))			\
597 	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
598 
599 #define COND(op_y, op_n, expr)				\
600 	case 0x ## op_y: DO((expr) != 0)		\
601 	case 0x ## op_n: DO((expr) == 0)
602 
603 #define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
604 
605 static bool is_cond_jmp_opcode(u8 opcode)
606 {
607 	switch (opcode) {
608 	#define DO(expr)	\
609 		return true;
610 	CASE_COND
611 	#undef	DO
612 
613 	default:
614 		return false;
615 	}
616 }
617 
618 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
619 {
620 	unsigned long flags = regs->flags;
621 
622 	switch (auprobe->branch.opc1) {
623 	#define DO(expr)	\
624 		return expr;
625 	CASE_COND
626 	#undef	DO
627 
628 	default:	/* not a conditional jmp */
629 		return true;
630 	}
631 }
632 
633 #undef	XF
634 #undef	COND
635 #undef	CASE_COND
636 
637 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
638 {
639 	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
640 	unsigned long offs = (long)auprobe->branch.offs;
641 
642 	if (branch_is_call(auprobe)) {
643 		/*
644 		 * If it fails we execute this (mangled, see the comment in
645 		 * branch_clear_offset) insn out-of-line. In the likely case
646 		 * this should trigger the trap, and the probed application
647 		 * should die or restart the same insn after it handles the
648 		 * signal, arch_uprobe_post_xol() won't be even called.
649 		 *
650 		 * But there is corner case, see the comment in ->post_xol().
651 		 */
652 		if (emulate_push_stack(regs, new_ip))
653 			return false;
654 	} else if (!check_jmp_cond(auprobe, regs)) {
655 		offs = 0;
656 	}
657 
658 	regs->ip = new_ip + offs;
659 	return true;
660 }
661 
662 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
663 {
664 	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
665 
666 	if (emulate_push_stack(regs, *src_ptr))
667 		return false;
668 	regs->ip += auprobe->push.ilen;
669 	return true;
670 }
671 
672 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
673 {
674 	BUG_ON(!branch_is_call(auprobe));
675 	/*
676 	 * We can only get here if branch_emulate_op() failed to push the ret
677 	 * address _and_ another thread expanded our stack before the (mangled)
678 	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
679 	 * We could also restore ->ip and try to call branch_emulate_op() again.
680 	 */
681 	regs->sp += sizeof_long(regs);
682 	return -ERESTART;
683 }
684 
685 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
686 {
687 	/*
688 	 * Turn this insn into "call 1f; 1:", this is what we will execute
689 	 * out-of-line if ->emulate() fails. We only need this to generate
690 	 * a trap, so that the probed task receives the correct signal with
691 	 * the properly filled siginfo.
692 	 *
693 	 * But see the comment in ->post_xol(), in the unlikely case it can
694 	 * succeed. So we need to ensure that the new ->ip can not fall into
695 	 * the non-canonical area and trigger #GP.
696 	 *
697 	 * We could turn it into (say) "pushf", but then we would need to
698 	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
699 	 * of ->insn[] for set_orig_insn().
700 	 */
701 	memset(auprobe->insn + insn_offset_immediate(insn),
702 		0, insn->immediate.nbytes);
703 }
704 
705 static const struct uprobe_xol_ops branch_xol_ops = {
706 	.emulate  = branch_emulate_op,
707 	.post_xol = branch_post_xol_op,
708 };
709 
710 static const struct uprobe_xol_ops push_xol_ops = {
711 	.emulate  = push_emulate_op,
712 };
713 
714 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
715 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
716 {
717 	u8 opc1 = OPCODE1(insn);
718 	int i;
719 
720 	switch (opc1) {
721 	case 0xeb:	/* jmp 8 */
722 	case 0xe9:	/* jmp 32 */
723 	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
724 		break;
725 
726 	case 0xe8:	/* call relative */
727 		branch_clear_offset(auprobe, insn);
728 		break;
729 
730 	case 0x0f:
731 		if (insn->opcode.nbytes != 2)
732 			return -ENOSYS;
733 		/*
734 		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
735 		 * OPCODE1() of the "short" jmp which checks the same condition.
736 		 */
737 		opc1 = OPCODE2(insn) - 0x10;
738 		fallthrough;
739 	default:
740 		if (!is_cond_jmp_opcode(opc1))
741 			return -ENOSYS;
742 	}
743 
744 	/*
745 	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
746 	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
747 	 * No one uses these insns, reject any branch insns with such prefix.
748 	 */
749 	for (i = 0; i < insn->prefixes.nbytes; i++) {
750 		if (insn->prefixes.bytes[i] == 0x66)
751 			return -ENOTSUPP;
752 	}
753 
754 	auprobe->branch.opc1 = opc1;
755 	auprobe->branch.ilen = insn->length;
756 	auprobe->branch.offs = insn->immediate.value;
757 
758 	auprobe->ops = &branch_xol_ops;
759 	return 0;
760 }
761 
762 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
763 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
764 {
765 	u8 opc1 = OPCODE1(insn), reg_offset = 0;
766 
767 	if (opc1 < 0x50 || opc1 > 0x57)
768 		return -ENOSYS;
769 
770 	if (insn->length > 2)
771 		return -ENOSYS;
772 	if (insn->length == 2) {
773 		/* only support rex_prefix 0x41 (x64 only) */
774 #ifdef CONFIG_X86_64
775 		if (insn->rex_prefix.nbytes != 1 ||
776 		    insn->rex_prefix.bytes[0] != 0x41)
777 			return -ENOSYS;
778 
779 		switch (opc1) {
780 		case 0x50:
781 			reg_offset = offsetof(struct pt_regs, r8);
782 			break;
783 		case 0x51:
784 			reg_offset = offsetof(struct pt_regs, r9);
785 			break;
786 		case 0x52:
787 			reg_offset = offsetof(struct pt_regs, r10);
788 			break;
789 		case 0x53:
790 			reg_offset = offsetof(struct pt_regs, r11);
791 			break;
792 		case 0x54:
793 			reg_offset = offsetof(struct pt_regs, r12);
794 			break;
795 		case 0x55:
796 			reg_offset = offsetof(struct pt_regs, r13);
797 			break;
798 		case 0x56:
799 			reg_offset = offsetof(struct pt_regs, r14);
800 			break;
801 		case 0x57:
802 			reg_offset = offsetof(struct pt_regs, r15);
803 			break;
804 		}
805 #else
806 		return -ENOSYS;
807 #endif
808 	} else {
809 		switch (opc1) {
810 		case 0x50:
811 			reg_offset = offsetof(struct pt_regs, ax);
812 			break;
813 		case 0x51:
814 			reg_offset = offsetof(struct pt_regs, cx);
815 			break;
816 		case 0x52:
817 			reg_offset = offsetof(struct pt_regs, dx);
818 			break;
819 		case 0x53:
820 			reg_offset = offsetof(struct pt_regs, bx);
821 			break;
822 		case 0x54:
823 			reg_offset = offsetof(struct pt_regs, sp);
824 			break;
825 		case 0x55:
826 			reg_offset = offsetof(struct pt_regs, bp);
827 			break;
828 		case 0x56:
829 			reg_offset = offsetof(struct pt_regs, si);
830 			break;
831 		case 0x57:
832 			reg_offset = offsetof(struct pt_regs, di);
833 			break;
834 		}
835 	}
836 
837 	auprobe->push.reg_offset = reg_offset;
838 	auprobe->push.ilen = insn->length;
839 	auprobe->ops = &push_xol_ops;
840 	return 0;
841 }
842 
843 /**
844  * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
845  * @auprobe: the probepoint information.
846  * @mm: the probed address space.
847  * @addr: virtual address at which to install the probepoint
848  * Return 0 on success or a -ve number on error.
849  */
850 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
851 {
852 	struct insn insn;
853 	u8 fix_ip_or_call = UPROBE_FIX_IP;
854 	int ret;
855 
856 	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
857 	if (ret)
858 		return ret;
859 
860 	ret = branch_setup_xol_ops(auprobe, &insn);
861 	if (ret != -ENOSYS)
862 		return ret;
863 
864 	ret = push_setup_xol_ops(auprobe, &insn);
865 	if (ret != -ENOSYS)
866 		return ret;
867 
868 	/*
869 	 * Figure out which fixups default_post_xol_op() will need to perform,
870 	 * and annotate defparam->fixups accordingly.
871 	 */
872 	switch (OPCODE1(&insn)) {
873 	case 0x9d:		/* popf */
874 		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
875 		break;
876 	case 0xc3:		/* ret or lret -- ip is correct */
877 	case 0xcb:
878 	case 0xc2:
879 	case 0xca:
880 	case 0xea:		/* jmp absolute -- ip is correct */
881 		fix_ip_or_call = 0;
882 		break;
883 	case 0x9a:		/* call absolute - Fix return addr, not ip */
884 		fix_ip_or_call = UPROBE_FIX_CALL;
885 		break;
886 	case 0xff:
887 		switch (MODRM_REG(&insn)) {
888 		case 2: case 3:			/* call or lcall, indirect */
889 			fix_ip_or_call = UPROBE_FIX_CALL;
890 			break;
891 		case 4: case 5:			/* jmp or ljmp, indirect */
892 			fix_ip_or_call = 0;
893 			break;
894 		}
895 		fallthrough;
896 	default:
897 		riprel_analyze(auprobe, &insn);
898 	}
899 
900 	auprobe->defparam.ilen = insn.length;
901 	auprobe->defparam.fixups |= fix_ip_or_call;
902 
903 	auprobe->ops = &default_xol_ops;
904 	return 0;
905 }
906 
907 /*
908  * arch_uprobe_pre_xol - prepare to execute out of line.
909  * @auprobe: the probepoint information.
910  * @regs: reflects the saved user state of current task.
911  */
912 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
913 {
914 	struct uprobe_task *utask = current->utask;
915 
916 	if (auprobe->ops->pre_xol) {
917 		int err = auprobe->ops->pre_xol(auprobe, regs);
918 		if (err)
919 			return err;
920 	}
921 
922 	regs->ip = utask->xol_vaddr;
923 	utask->autask.saved_trap_nr = current->thread.trap_nr;
924 	current->thread.trap_nr = UPROBE_TRAP_NR;
925 
926 	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
927 	regs->flags |= X86_EFLAGS_TF;
928 	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
929 		set_task_blockstep(current, false);
930 
931 	return 0;
932 }
933 
934 /*
935  * If xol insn itself traps and generates a signal(Say,
936  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
937  * instruction jumps back to its own address. It is assumed that anything
938  * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
939  *
940  * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
941  * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
942  * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
943  */
944 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
945 {
946 	if (t->thread.trap_nr != UPROBE_TRAP_NR)
947 		return true;
948 
949 	return false;
950 }
951 
952 /*
953  * Called after single-stepping. To avoid the SMP problems that can
954  * occur when we temporarily put back the original opcode to
955  * single-step, we single-stepped a copy of the instruction.
956  *
957  * This function prepares to resume execution after the single-step.
958  */
959 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
960 {
961 	struct uprobe_task *utask = current->utask;
962 	bool send_sigtrap = utask->autask.saved_tf;
963 	int err = 0;
964 
965 	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
966 	current->thread.trap_nr = utask->autask.saved_trap_nr;
967 
968 	if (auprobe->ops->post_xol) {
969 		err = auprobe->ops->post_xol(auprobe, regs);
970 		if (err) {
971 			/*
972 			 * Restore ->ip for restart or post mortem analysis.
973 			 * ->post_xol() must not return -ERESTART unless this
974 			 * is really possible.
975 			 */
976 			regs->ip = utask->vaddr;
977 			if (err == -ERESTART)
978 				err = 0;
979 			send_sigtrap = false;
980 		}
981 	}
982 	/*
983 	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
984 	 * so we can get an extra SIGTRAP if we do not clear TF. We need
985 	 * to examine the opcode to make it right.
986 	 */
987 	if (send_sigtrap)
988 		send_sig(SIGTRAP, current, 0);
989 
990 	if (!utask->autask.saved_tf)
991 		regs->flags &= ~X86_EFLAGS_TF;
992 
993 	return err;
994 }
995 
996 /* callback routine for handling exceptions. */
997 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
998 {
999 	struct die_args *args = data;
1000 	struct pt_regs *regs = args->regs;
1001 	int ret = NOTIFY_DONE;
1002 
1003 	/* We are only interested in userspace traps */
1004 	if (regs && !user_mode(regs))
1005 		return NOTIFY_DONE;
1006 
1007 	switch (val) {
1008 	case DIE_INT3:
1009 		if (uprobe_pre_sstep_notifier(regs))
1010 			ret = NOTIFY_STOP;
1011 
1012 		break;
1013 
1014 	case DIE_DEBUG:
1015 		if (uprobe_post_sstep_notifier(regs))
1016 			ret = NOTIFY_STOP;
1017 
1018 	default:
1019 		break;
1020 	}
1021 
1022 	return ret;
1023 }
1024 
1025 /*
1026  * This function gets called when XOL instruction either gets trapped or
1027  * the thread has a fatal signal. Reset the instruction pointer to its
1028  * probed address for the potential restart or for post mortem analysis.
1029  */
1030 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1031 {
1032 	struct uprobe_task *utask = current->utask;
1033 
1034 	if (auprobe->ops->abort)
1035 		auprobe->ops->abort(auprobe, regs);
1036 
1037 	current->thread.trap_nr = utask->autask.saved_trap_nr;
1038 	regs->ip = utask->vaddr;
1039 	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1040 	if (!utask->autask.saved_tf)
1041 		regs->flags &= ~X86_EFLAGS_TF;
1042 }
1043 
1044 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1045 {
1046 	if (auprobe->ops->emulate)
1047 		return auprobe->ops->emulate(auprobe, regs);
1048 	return false;
1049 }
1050 
1051 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1052 {
1053 	bool ret = __skip_sstep(auprobe, regs);
1054 	if (ret && (regs->flags & X86_EFLAGS_TF))
1055 		send_sig(SIGTRAP, current, 0);
1056 	return ret;
1057 }
1058 
1059 unsigned long
1060 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1061 {
1062 	int rasize = sizeof_long(regs), nleft;
1063 	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1064 
1065 	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1066 		return -1;
1067 
1068 	/* check whether address has been already hijacked */
1069 	if (orig_ret_vaddr == trampoline_vaddr)
1070 		return orig_ret_vaddr;
1071 
1072 	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1073 	if (likely(!nleft))
1074 		return orig_ret_vaddr;
1075 
1076 	if (nleft != rasize) {
1077 		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1078 		       current->pid, regs->sp, regs->ip);
1079 
1080 		force_sig(SIGSEGV);
1081 	}
1082 
1083 	return -1;
1084 }
1085 
1086 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1087 				struct pt_regs *regs)
1088 {
1089 	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1090 		return regs->sp < ret->stack;
1091 	else
1092 		return regs->sp <= ret->stack;
1093 }
1094