xref: /linux/arch/x86/kernel/uprobes.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * User-space Probes (UProbes) for x86
4  *
5  * Copyright (C) IBM Corporation, 2008-2011
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  */
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/uprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/syscalls.h>
16 
17 #include <linux/kdebug.h>
18 #include <asm/processor.h>
19 #include <asm/insn.h>
20 #include <asm/insn-eval.h>
21 #include <asm/mmu_context.h>
22 #include <asm/nops.h>
23 
24 /* Post-execution fixups. */
25 
26 /* Adjust IP back to vicinity of actual insn */
27 #define UPROBE_FIX_IP		0x01
28 
29 /* Adjust the return address of a call insn */
30 #define UPROBE_FIX_CALL		0x02
31 
32 /* Instruction will modify TF, don't change it */
33 #define UPROBE_FIX_SETF		0x04
34 
35 #define UPROBE_FIX_RIP_SI	0x08
36 #define UPROBE_FIX_RIP_DI	0x10
37 #define UPROBE_FIX_RIP_BX	0x20
38 #define UPROBE_FIX_RIP_MASK	\
39 	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
40 
41 #define	UPROBE_TRAP_NR		UINT_MAX
42 
43 /* Adaptations for mhiramat x86 decoder v14. */
44 #define OPCODE1(insn)		((insn)->opcode.bytes[0])
45 #define OPCODE2(insn)		((insn)->opcode.bytes[1])
46 #define OPCODE3(insn)		((insn)->opcode.bytes[2])
47 #define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
48 
49 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
50 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
51 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
52 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
53 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
54 	 << (row % 32))
55 
56 /*
57  * Good-instruction tables for 32-bit apps.  This is non-const and volatile
58  * to keep gcc from statically optimizing it out, as variable_test_bit makes
59  * some versions of gcc to think only *(unsigned long*) is used.
60  *
61  * Opcodes we'll probably never support:
62  * 6c-6f - ins,outs. SEGVs if used in userspace
63  * e4-e7 - in,out imm. SEGVs if used in userspace
64  * ec-ef - in,out acc. SEGVs if used in userspace
65  * cc - int3. SIGTRAP if used in userspace
66  * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
67  *	(why we support bound (62) then? it's similar, and similarly unused...)
68  * f1 - int1. SIGTRAP if used in userspace
69  * f4 - hlt. SEGVs if used in userspace
70  * fa - cli. SEGVs if used in userspace
71  * fb - sti. SEGVs if used in userspace
72  *
73  * Opcodes which need some work to be supported:
74  * 07,17,1f - pop es/ss/ds
75  *	Normally not used in userspace, but would execute if used.
76  *	Can cause GP or stack exception if tries to load wrong segment descriptor.
77  *	We hesitate to run them under single step since kernel's handling
78  *	of userspace single-stepping (TF flag) is fragile.
79  *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
80  *	on the same grounds that they are never used.
81  * cd - int N.
82  *	Used by userspace for "int 80" syscall entry. (Other "int N"
83  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
84  *	Not supported since kernel's handling of userspace single-stepping
85  *	(TF flag) is fragile.
86  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
87  */
88 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
89 static volatile u32 good_insns_32[256 / 32] = {
90 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
91 	/*      ----------------------------------------------         */
92 	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
93 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
94 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
95 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
96 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
97 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
98 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
99 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
100 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
101 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
102 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
103 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
104 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
105 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
106 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
107 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
108 	/*      ----------------------------------------------         */
109 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
110 };
111 #else
112 #define good_insns_32	NULL
113 #endif
114 
115 /* Good-instruction tables for 64-bit apps.
116  *
117  * Genuinely invalid opcodes:
118  * 06,07 - formerly push/pop es
119  * 0e - formerly push cs
120  * 16,17 - formerly push/pop ss
121  * 1e,1f - formerly push/pop ds
122  * 27,2f,37,3f - formerly daa/das/aaa/aas
123  * 60,61 - formerly pusha/popa
124  * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
125  * 82 - formerly redundant encoding of Group1
126  * 9a - formerly call seg:ofs
127  * ce - formerly into
128  * d4,d5 - formerly aam/aad
129  * d6 - formerly undocumented salc
130  * ea - formerly jmp seg:ofs
131  *
132  * Opcodes we'll probably never support:
133  * 6c-6f - ins,outs. SEGVs if used in userspace
134  * e4-e7 - in,out imm. SEGVs if used in userspace
135  * ec-ef - in,out acc. SEGVs if used in userspace
136  * cc - int3. SIGTRAP if used in userspace
137  * f1 - int1. SIGTRAP if used in userspace
138  * f4 - hlt. SEGVs if used in userspace
139  * fa - cli. SEGVs if used in userspace
140  * fb - sti. SEGVs if used in userspace
141  *
142  * Opcodes which need some work to be supported:
143  * cd - int N.
144  *	Used by userspace for "int 80" syscall entry. (Other "int N"
145  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
146  *	Not supported since kernel's handling of userspace single-stepping
147  *	(TF flag) is fragile.
148  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
149  */
150 #if defined(CONFIG_X86_64)
151 static volatile u32 good_insns_64[256 / 32] = {
152 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
153 	/*      ----------------------------------------------         */
154 	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
155 	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
156 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
157 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
158 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
159 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
160 	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
161 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
162 	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
163 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
164 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
165 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
166 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
167 	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
168 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
169 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
170 	/*      ----------------------------------------------         */
171 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
172 };
173 #else
174 #define good_insns_64	NULL
175 #endif
176 
177 /* Using this for both 64-bit and 32-bit apps.
178  * Opcodes we don't support:
179  * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
180  * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
181  *	Also encodes tons of other system insns if mod=11.
182  *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
183  * 0f 05 - syscall
184  * 0f 06 - clts (CPL0 insn)
185  * 0f 07 - sysret
186  * 0f 08 - invd (CPL0 insn)
187  * 0f 09 - wbinvd (CPL0 insn)
188  * 0f 0b - ud2
189  * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
190  * 0f 34 - sysenter
191  * 0f 35 - sysexit
192  * 0f 37 - getsec
193  * 0f 78 - vmread (Intel VMX. CPL0 insn)
194  * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
195  *	Note: with prefixes, these two opcodes are
196  *	extrq/insertq/AVX512 convert vector ops.
197  * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
198  *	{rd,wr}{fs,gs}base,{s,l,m}fence.
199  *	Why? They are all user-executable.
200  */
201 static volatile u32 good_2byte_insns[256 / 32] = {
202 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
203 	/*      ----------------------------------------------         */
204 	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
205 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
206 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
207 	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
208 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
209 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
210 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
211 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
212 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
213 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
214 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
215 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
216 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
217 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
218 	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
219 	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
220 	/*      ----------------------------------------------         */
221 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
222 };
223 #undef W
224 
225 /*
226  * opcodes we may need to refine support for:
227  *
228  *  0f - 2-byte instructions: For many of these instructions, the validity
229  *  depends on the prefix and/or the reg field.  On such instructions, we
230  *  just consider the opcode combination valid if it corresponds to any
231  *  valid instruction.
232  *
233  *  8f - Group 1 - only reg = 0 is OK
234  *  c6-c7 - Group 11 - only reg = 0 is OK
235  *  d9-df - fpu insns with some illegal encodings
236  *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
237  *  certain floating-point instructions, such as addsd.
238  *
239  *  fe - Group 4 - only reg = 0 or 1 is OK
240  *  ff - Group 5 - only reg = 0-6 is OK
241  *
242  * others -- Do we need to support these?
243  *
244  *  0f - (floating-point?) prefetch instructions
245  *  07, 17, 1f - pop es, pop ss, pop ds
246  *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
247  *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
248  *  67 - addr16 prefix
249  *  ce - into
250  *  f0 - lock prefix
251  */
252 
253 /*
254  * TODO:
255  * - Where necessary, examine the modrm byte and allow only valid instructions
256  * in the different Groups and fpu instructions.
257  */
258 
259 static bool is_prefix_bad(struct insn *insn)
260 {
261 	insn_byte_t p;
262 
263 	for_each_insn_prefix(insn, p) {
264 		insn_attr_t attr;
265 
266 		attr = inat_get_opcode_attribute(p);
267 		switch (attr) {
268 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
269 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
270 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
271 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
272 		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
273 			return true;
274 		}
275 	}
276 	return false;
277 }
278 
279 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
280 {
281 	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
282 	u32 volatile *good_insns;
283 	int ret;
284 
285 	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
286 	if (ret < 0)
287 		return -ENOEXEC;
288 
289 	if (is_prefix_bad(insn))
290 		return -ENOTSUPP;
291 
292 	/* We should not singlestep on the exception masking instructions */
293 	if (insn_masking_exception(insn))
294 		return -ENOTSUPP;
295 
296 	if (x86_64)
297 		good_insns = good_insns_64;
298 	else
299 		good_insns = good_insns_32;
300 
301 	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
302 		return 0;
303 
304 	if (insn->opcode.nbytes == 2) {
305 		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
306 			return 0;
307 	}
308 
309 	return -ENOTSUPP;
310 }
311 
312 #ifdef CONFIG_X86_64
313 
314 struct uretprobe_syscall_args {
315 	unsigned long r11;
316 	unsigned long cx;
317 	unsigned long ax;
318 };
319 
320 asm (
321 	".pushsection .rodata\n"
322 	".global uretprobe_trampoline_entry\n"
323 	"uretprobe_trampoline_entry:\n"
324 	"push %rax\n"
325 	"push %rcx\n"
326 	"push %r11\n"
327 	"mov $" __stringify(__NR_uretprobe) ", %rax\n"
328 	"syscall\n"
329 	".global uretprobe_syscall_check\n"
330 	"uretprobe_syscall_check:\n"
331 	"pop %r11\n"
332 	"pop %rcx\n"
333 	/*
334 	 * The uretprobe syscall replaces stored %rax value with final
335 	 * return address, so we don't restore %rax in here and just
336 	 * call ret.
337 	 */
338 	"ret\n"
339 	"int3\n"
340 	".global uretprobe_trampoline_end\n"
341 	"uretprobe_trampoline_end:\n"
342 	".popsection\n"
343 );
344 
345 extern u8 uretprobe_trampoline_entry[];
346 extern u8 uretprobe_trampoline_end[];
347 extern u8 uretprobe_syscall_check[];
348 
349 void *arch_uretprobe_trampoline(unsigned long *psize)
350 {
351 	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
352 	struct pt_regs *regs = task_pt_regs(current);
353 
354 	/*
355 	 * At the moment the uretprobe syscall trampoline is supported
356 	 * only for native 64-bit process, the compat process still uses
357 	 * standard breakpoint.
358 	 */
359 	if (user_64bit_mode(regs)) {
360 		*psize = uretprobe_trampoline_end - uretprobe_trampoline_entry;
361 		return uretprobe_trampoline_entry;
362 	}
363 
364 	*psize = UPROBE_SWBP_INSN_SIZE;
365 	return &insn;
366 }
367 
368 static unsigned long trampoline_check_ip(unsigned long tramp)
369 {
370 	return tramp + (uretprobe_syscall_check - uretprobe_trampoline_entry);
371 }
372 
373 SYSCALL_DEFINE0(uretprobe)
374 {
375 	struct pt_regs *regs = task_pt_regs(current);
376 	struct uretprobe_syscall_args args;
377 	unsigned long err, ip, sp, tramp;
378 
379 	/* If there's no trampoline, we are called from wrong place. */
380 	tramp = uprobe_get_trampoline_vaddr();
381 	if (unlikely(tramp == UPROBE_NO_TRAMPOLINE_VADDR))
382 		goto sigill;
383 
384 	/* Make sure the ip matches the only allowed sys_uretprobe caller. */
385 	if (unlikely(regs->ip != trampoline_check_ip(tramp)))
386 		goto sigill;
387 
388 	err = copy_from_user(&args, (void __user *)regs->sp, sizeof(args));
389 	if (err)
390 		goto sigill;
391 
392 	/* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */
393 	regs->r11 = args.r11;
394 	regs->cx  = args.cx;
395 	regs->ax  = args.ax;
396 	regs->sp += sizeof(args);
397 	regs->orig_ax = -1;
398 
399 	ip = regs->ip;
400 	sp = regs->sp;
401 
402 	uprobe_handle_trampoline(regs);
403 
404 	/*
405 	 * Some of the uprobe consumers has changed sp, we can do nothing,
406 	 * just return via iret.
407 	 * .. or shadow stack is enabled, in which case we need to skip
408 	 * return through the user space stack address.
409 	 */
410 	if (regs->sp != sp || shstk_is_enabled())
411 		return regs->ax;
412 	regs->sp -= sizeof(args);
413 
414 	/* for the case uprobe_consumer has changed r11/cx */
415 	args.r11 = regs->r11;
416 	args.cx  = regs->cx;
417 
418 	/*
419 	 * ax register is passed through as return value, so we can use
420 	 * its space on stack for ip value and jump to it through the
421 	 * trampoline's ret instruction
422 	 */
423 	args.ax  = regs->ip;
424 	regs->ip = ip;
425 
426 	err = copy_to_user((void __user *)regs->sp, &args, sizeof(args));
427 	if (err)
428 		goto sigill;
429 
430 	/* ensure sysret, see do_syscall_64() */
431 	regs->r11 = regs->flags;
432 	regs->cx  = regs->ip;
433 
434 	return regs->ax;
435 
436 sigill:
437 	force_sig(SIGILL);
438 	return -1;
439 }
440 
441 /*
442  * If arch_uprobe->insn doesn't use rip-relative addressing, return
443  * immediately.  Otherwise, rewrite the instruction so that it accesses
444  * its memory operand indirectly through a scratch register.  Set
445  * defparam->fixups accordingly. (The contents of the scratch register
446  * will be saved before we single-step the modified instruction,
447  * and restored afterward).
448  *
449  * We do this because a rip-relative instruction can access only a
450  * relatively small area (+/- 2 GB from the instruction), and the XOL
451  * area typically lies beyond that area.  At least for instructions
452  * that store to memory, we can't execute the original instruction
453  * and "fix things up" later, because the misdirected store could be
454  * disastrous.
455  *
456  * Some useful facts about rip-relative instructions:
457  *
458  *  - There's always a modrm byte with bit layout "00 reg 101".
459  *  - There's never a SIB byte.
460  *  - The displacement is always 4 bytes.
461  *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
462  *    has no effect on rip-relative mode. It doesn't make modrm byte
463  *    with r/m=101 refer to register 1101 = R13.
464  */
465 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
466 {
467 	u8 *cursor;
468 	u8 reg;
469 	u8 reg2;
470 
471 	if (!insn_rip_relative(insn))
472 		return;
473 
474 	/*
475 	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
476 	 * Clear REX.b bit (extension of MODRM.rm field):
477 	 * we want to encode low numbered reg, not r8+.
478 	 */
479 	if (insn->rex_prefix.nbytes) {
480 		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
481 		/* REX byte has 0100wrxb layout, clearing REX.b bit */
482 		*cursor &= 0xfe;
483 	}
484 	/*
485 	 * Similar treatment for VEX3/EVEX prefix.
486 	 * TODO: add XOP treatment when insn decoder supports them
487 	 */
488 	if (insn->vex_prefix.nbytes >= 3) {
489 		/*
490 		 * vex2:     c5    rvvvvLpp   (has no b bit)
491 		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
492 		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
493 		 * Setting VEX3.b (setting because it has inverted meaning).
494 		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
495 		 * is the 4th bit of MODRM.rm, and needs the same treatment.
496 		 * For VEX3-encoded insns, VEX3.x value has no effect in
497 		 * non-SIB encoding, the change is superfluous but harmless.
498 		 */
499 		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
500 		*cursor |= 0x60;
501 	}
502 
503 	/*
504 	 * Convert from rip-relative addressing to register-relative addressing
505 	 * via a scratch register.
506 	 *
507 	 * This is tricky since there are insns with modrm byte
508 	 * which also use registers not encoded in modrm byte:
509 	 * [i]div/[i]mul: implicitly use dx:ax
510 	 * shift ops: implicitly use cx
511 	 * cmpxchg: implicitly uses ax
512 	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
513 	 *   Encoding: 0f c7/1 modrm
514 	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
515 	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
516 	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
517 	 *   Example where none of bx,cx,dx can be used as scratch reg:
518 	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
519 	 * [v]pcmpistri: implicitly uses cx, xmm0
520 	 * [v]pcmpistrm: implicitly uses xmm0
521 	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
522 	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
523 	 *   Evil SSE4.2 string comparison ops from hell.
524 	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
525 	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
526 	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
527 	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
528 	 *   and that it can have only register operands, not mem
529 	 *   (its modrm byte must have mode=11).
530 	 *   If these restrictions will ever be lifted,
531 	 *   we'll need code to prevent selection of di as scratch reg!
532 	 *
533 	 * Summary: I don't know any insns with modrm byte which
534 	 * use SI register implicitly. DI register is used only
535 	 * by one insn (maskmovq) and BX register is used
536 	 * only by one too (cmpxchg8b).
537 	 * BP is stack-segment based (may be a problem?).
538 	 * AX, DX, CX are off-limits (many implicit users).
539 	 * SP is unusable (it's stack pointer - think about "pop mem";
540 	 * also, rsp+disp32 needs sib encoding -> insn length change).
541 	 */
542 
543 	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
544 	reg2 = 0xff;		/* Fetch vex.vvvv */
545 	if (insn->vex_prefix.nbytes)
546 		reg2 = insn->vex_prefix.bytes[2];
547 	/*
548 	 * TODO: add XOP vvvv reading.
549 	 *
550 	 * vex.vvvv field is in bits 6-3, bits are inverted.
551 	 * But in 32-bit mode, high-order bit may be ignored.
552 	 * Therefore, let's consider only 3 low-order bits.
553 	 */
554 	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
555 	/*
556 	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
557 	 *
558 	 * Choose scratch reg. Order is important: must not select bx
559 	 * if we can use si (cmpxchg8b case!)
560 	 */
561 	if (reg != 6 && reg2 != 6) {
562 		reg2 = 6;
563 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
564 	} else if (reg != 7 && reg2 != 7) {
565 		reg2 = 7;
566 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
567 		/* TODO (paranoia): force maskmovq to not use di */
568 	} else {
569 		reg2 = 3;
570 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
571 	}
572 	/*
573 	 * Point cursor at the modrm byte.  The next 4 bytes are the
574 	 * displacement.  Beyond the displacement, for some instructions,
575 	 * is the immediate operand.
576 	 */
577 	cursor = auprobe->insn + insn_offset_modrm(insn);
578 	/*
579 	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
580 	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
581 	 * 89 86 disp32  mov %eax,disp32(%rsi)
582 	 */
583 	*cursor = 0x80 | (reg << 3) | reg2;
584 }
585 
586 static inline unsigned long *
587 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
588 {
589 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
590 		return &regs->si;
591 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
592 		return &regs->di;
593 	return &regs->bx;
594 }
595 
596 /*
597  * If we're emulating a rip-relative instruction, save the contents
598  * of the scratch register and store the target address in that register.
599  */
600 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
601 {
602 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
603 		struct uprobe_task *utask = current->utask;
604 		unsigned long *sr = scratch_reg(auprobe, regs);
605 
606 		utask->autask.saved_scratch_register = *sr;
607 		*sr = utask->vaddr + auprobe->defparam.ilen;
608 	}
609 }
610 
611 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
612 {
613 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
614 		struct uprobe_task *utask = current->utask;
615 		unsigned long *sr = scratch_reg(auprobe, regs);
616 
617 		*sr = utask->autask.saved_scratch_register;
618 	}
619 }
620 
621 static int tramp_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
622 {
623 	return -EPERM;
624 }
625 
626 static struct page *tramp_mapping_pages[2] __ro_after_init;
627 
628 static struct vm_special_mapping tramp_mapping = {
629 	.name   = "[uprobes-trampoline]",
630 	.mremap = tramp_mremap,
631 	.pages  = tramp_mapping_pages,
632 };
633 
634 struct uprobe_trampoline {
635 	struct hlist_node	node;
636 	unsigned long		vaddr;
637 };
638 
639 static bool is_reachable_by_call(unsigned long vtramp, unsigned long vaddr)
640 {
641 	long delta = (long)(vaddr + 5 - vtramp);
642 
643 	return delta >= INT_MIN && delta <= INT_MAX;
644 }
645 
646 static unsigned long find_nearest_trampoline(unsigned long vaddr)
647 {
648 	struct vm_unmapped_area_info info = {
649 		.length     = PAGE_SIZE,
650 		.align_mask = ~PAGE_MASK,
651 	};
652 	unsigned long low_limit, high_limit;
653 	unsigned long low_tramp, high_tramp;
654 	unsigned long call_end = vaddr + 5;
655 
656 	if (check_add_overflow(call_end, INT_MIN, &low_limit))
657 		low_limit = PAGE_SIZE;
658 
659 	high_limit = call_end + INT_MAX;
660 
661 	/* Search up from the caller address. */
662 	info.low_limit = call_end;
663 	info.high_limit = min(high_limit, TASK_SIZE);
664 	high_tramp = vm_unmapped_area(&info);
665 
666 	/* Search down from the caller address. */
667 	info.low_limit = max(low_limit, PAGE_SIZE);
668 	info.high_limit = call_end;
669 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
670 	low_tramp = vm_unmapped_area(&info);
671 
672 	if (IS_ERR_VALUE(high_tramp) && IS_ERR_VALUE(low_tramp))
673 		return -ENOMEM;
674 	if (IS_ERR_VALUE(high_tramp))
675 		return low_tramp;
676 	if (IS_ERR_VALUE(low_tramp))
677 		return high_tramp;
678 
679 	/* Return address that's closest to the caller address. */
680 	if (call_end - low_tramp < high_tramp - call_end)
681 		return low_tramp;
682 	return high_tramp;
683 }
684 
685 static struct uprobe_trampoline *create_uprobe_trampoline(unsigned long vaddr)
686 {
687 	struct pt_regs *regs = task_pt_regs(current);
688 	struct mm_struct *mm = current->mm;
689 	struct uprobe_trampoline *tramp;
690 	struct vm_area_struct *vma;
691 
692 	if (!user_64bit_mode(regs))
693 		return NULL;
694 
695 	vaddr = find_nearest_trampoline(vaddr);
696 	if (IS_ERR_VALUE(vaddr))
697 		return NULL;
698 
699 	tramp = kzalloc(sizeof(*tramp), GFP_KERNEL);
700 	if (unlikely(!tramp))
701 		return NULL;
702 
703 	tramp->vaddr = vaddr;
704 	vma = _install_special_mapping(mm, tramp->vaddr, PAGE_SIZE,
705 				VM_READ|VM_EXEC|VM_MAYEXEC|VM_MAYREAD|VM_DONTCOPY|VM_IO,
706 				&tramp_mapping);
707 	if (IS_ERR(vma)) {
708 		kfree(tramp);
709 		return NULL;
710 	}
711 	return tramp;
712 }
713 
714 static struct uprobe_trampoline *get_uprobe_trampoline(unsigned long vaddr, bool *new)
715 {
716 	struct uprobes_state *state = &current->mm->uprobes_state;
717 	struct uprobe_trampoline *tramp = NULL;
718 
719 	if (vaddr > TASK_SIZE || vaddr < PAGE_SIZE)
720 		return NULL;
721 
722 	hlist_for_each_entry(tramp, &state->head_tramps, node) {
723 		if (is_reachable_by_call(tramp->vaddr, vaddr)) {
724 			*new = false;
725 			return tramp;
726 		}
727 	}
728 
729 	tramp = create_uprobe_trampoline(vaddr);
730 	if (!tramp)
731 		return NULL;
732 
733 	*new = true;
734 	hlist_add_head(&tramp->node, &state->head_tramps);
735 	return tramp;
736 }
737 
738 static void destroy_uprobe_trampoline(struct uprobe_trampoline *tramp)
739 {
740 	/*
741 	 * We do not unmap and release uprobe trampoline page itself,
742 	 * because there's no easy way to make sure none of the threads
743 	 * is still inside the trampoline.
744 	 */
745 	hlist_del(&tramp->node);
746 	kfree(tramp);
747 }
748 
749 void arch_uprobe_init_state(struct mm_struct *mm)
750 {
751 	INIT_HLIST_HEAD(&mm->uprobes_state.head_tramps);
752 }
753 
754 void arch_uprobe_clear_state(struct mm_struct *mm)
755 {
756 	struct uprobes_state *state = &mm->uprobes_state;
757 	struct uprobe_trampoline *tramp;
758 	struct hlist_node *n;
759 
760 	hlist_for_each_entry_safe(tramp, n, &state->head_tramps, node)
761 		destroy_uprobe_trampoline(tramp);
762 }
763 
764 static bool __in_uprobe_trampoline(unsigned long ip)
765 {
766 	struct vm_area_struct *vma = vma_lookup(current->mm, ip);
767 
768 	return vma && vma_is_special_mapping(vma, &tramp_mapping);
769 }
770 
771 static bool in_uprobe_trampoline(unsigned long ip)
772 {
773 	struct mm_struct *mm = current->mm;
774 	bool found, retry = true;
775 	unsigned int seq;
776 
777 	rcu_read_lock();
778 	if (mmap_lock_speculate_try_begin(mm, &seq)) {
779 		found = __in_uprobe_trampoline(ip);
780 		retry = mmap_lock_speculate_retry(mm, seq);
781 	}
782 	rcu_read_unlock();
783 
784 	if (retry) {
785 		mmap_read_lock(mm);
786 		found = __in_uprobe_trampoline(ip);
787 		mmap_read_unlock(mm);
788 	}
789 	return found;
790 }
791 
792 /*
793  * See uprobe syscall trampoline; the call to the trampoline will push
794  * the return address on the stack, the trampoline itself then pushes
795  * cx, r11 and ax.
796  */
797 struct uprobe_syscall_args {
798 	unsigned long ax;
799 	unsigned long r11;
800 	unsigned long cx;
801 	unsigned long retaddr;
802 };
803 
804 SYSCALL_DEFINE0(uprobe)
805 {
806 	struct pt_regs *regs = task_pt_regs(current);
807 	struct uprobe_syscall_args args;
808 	unsigned long ip, sp, sret;
809 	int err;
810 
811 	/* Allow execution only from uprobe trampolines. */
812 	if (!in_uprobe_trampoline(regs->ip))
813 		return -ENXIO;
814 
815 	err = copy_from_user(&args, (void __user *)regs->sp, sizeof(args));
816 	if (err)
817 		goto sigill;
818 
819 	ip = regs->ip;
820 
821 	/*
822 	 * expose the "right" values of ax/r11/cx/ip/sp to uprobe_consumer/s, plus:
823 	 * - adjust ip to the probe address, call saved next instruction address
824 	 * - adjust sp to the probe's stack frame (check trampoline code)
825 	 */
826 	regs->ax  = args.ax;
827 	regs->r11 = args.r11;
828 	regs->cx  = args.cx;
829 	regs->ip  = args.retaddr - 5;
830 	regs->sp += sizeof(args);
831 	regs->orig_ax = -1;
832 
833 	sp = regs->sp;
834 
835 	err = shstk_pop((u64 *)&sret);
836 	if (err == -EFAULT || (!err && sret != args.retaddr))
837 		goto sigill;
838 
839 	handle_syscall_uprobe(regs, regs->ip);
840 
841 	/*
842 	 * Some of the uprobe consumers has changed sp, we can do nothing,
843 	 * just return via iret.
844 	 */
845 	if (regs->sp != sp) {
846 		/* skip the trampoline call */
847 		if (args.retaddr - 5 == regs->ip)
848 			regs->ip += 5;
849 		return regs->ax;
850 	}
851 
852 	regs->sp -= sizeof(args);
853 
854 	/* for the case uprobe_consumer has changed ax/r11/cx */
855 	args.ax  = regs->ax;
856 	args.r11 = regs->r11;
857 	args.cx  = regs->cx;
858 
859 	/* keep return address unless we are instructed otherwise */
860 	if (args.retaddr - 5 != regs->ip)
861 		args.retaddr = regs->ip;
862 
863 	if (shstk_push(args.retaddr) == -EFAULT)
864 		goto sigill;
865 
866 	regs->ip = ip;
867 
868 	err = copy_to_user((void __user *)regs->sp, &args, sizeof(args));
869 	if (err)
870 		goto sigill;
871 
872 	/* ensure sysret, see do_syscall_64() */
873 	regs->r11 = regs->flags;
874 	regs->cx  = regs->ip;
875 	return 0;
876 
877 sigill:
878 	force_sig(SIGILL);
879 	return -1;
880 }
881 
882 asm (
883 	".pushsection .rodata\n"
884 	".balign " __stringify(PAGE_SIZE) "\n"
885 	"uprobe_trampoline_entry:\n"
886 	"push %rcx\n"
887 	"push %r11\n"
888 	"push %rax\n"
889 	"mov $" __stringify(__NR_uprobe) ", %rax\n"
890 	"syscall\n"
891 	"pop %rax\n"
892 	"pop %r11\n"
893 	"pop %rcx\n"
894 	"ret\n"
895 	"int3\n"
896 	".balign " __stringify(PAGE_SIZE) "\n"
897 	".popsection\n"
898 );
899 
900 extern u8 uprobe_trampoline_entry[];
901 
902 static int __init arch_uprobes_init(void)
903 {
904 	tramp_mapping_pages[0] = virt_to_page(uprobe_trampoline_entry);
905 	return 0;
906 }
907 
908 late_initcall(arch_uprobes_init);
909 
910 enum {
911 	EXPECT_SWBP,
912 	EXPECT_CALL,
913 };
914 
915 struct write_opcode_ctx {
916 	unsigned long base;
917 	int expect;
918 };
919 
920 static int is_call_insn(uprobe_opcode_t *insn)
921 {
922 	return *insn == CALL_INSN_OPCODE;
923 }
924 
925 /*
926  * Verification callback used by int3_update uprobe_write calls to make sure
927  * the underlying instruction is as expected - either int3 or call.
928  */
929 static int verify_insn(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode,
930 		       int nbytes, void *data)
931 {
932 	struct write_opcode_ctx *ctx = data;
933 	uprobe_opcode_t old_opcode[5];
934 
935 	uprobe_copy_from_page(page, ctx->base, (uprobe_opcode_t *) &old_opcode, 5);
936 
937 	switch (ctx->expect) {
938 	case EXPECT_SWBP:
939 		if (is_swbp_insn(&old_opcode[0]))
940 			return 1;
941 		break;
942 	case EXPECT_CALL:
943 		if (is_call_insn(&old_opcode[0]))
944 			return 1;
945 		break;
946 	}
947 
948 	return -1;
949 }
950 
951 /*
952  * Modify multi-byte instructions by using INT3 breakpoints on SMP.
953  * We completely avoid using stop_machine() here, and achieve the
954  * synchronization using INT3 breakpoints and SMP cross-calls.
955  * (borrowed comment from smp_text_poke_batch_finish)
956  *
957  * The way it is done:
958  *   - Add an INT3 trap to the address that will be patched
959  *   - SMP sync all CPUs
960  *   - Update all but the first byte of the patched range
961  *   - SMP sync all CPUs
962  *   - Replace the first byte (INT3) by the first byte of the replacing opcode
963  *   - SMP sync all CPUs
964  */
965 static int int3_update(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
966 		       unsigned long vaddr, char *insn, bool optimize)
967 {
968 	uprobe_opcode_t int3 = UPROBE_SWBP_INSN;
969 	struct write_opcode_ctx ctx = {
970 		.base = vaddr,
971 	};
972 	int err;
973 
974 	/*
975 	 * Write int3 trap.
976 	 *
977 	 * The swbp_optimize path comes with breakpoint already installed,
978 	 * so we can skip this step for optimize == true.
979 	 */
980 	if (!optimize) {
981 		ctx.expect = EXPECT_CALL;
982 		err = uprobe_write(auprobe, vma, vaddr, &int3, 1, verify_insn,
983 				   true /* is_register */, false /* do_update_ref_ctr */,
984 				   &ctx);
985 		if (err)
986 			return err;
987 	}
988 
989 	smp_text_poke_sync_each_cpu();
990 
991 	/* Write all but the first byte of the patched range. */
992 	ctx.expect = EXPECT_SWBP;
993 	err = uprobe_write(auprobe, vma, vaddr + 1, insn + 1, 4, verify_insn,
994 			   true /* is_register */, false /* do_update_ref_ctr */,
995 			   &ctx);
996 	if (err)
997 		return err;
998 
999 	smp_text_poke_sync_each_cpu();
1000 
1001 	/*
1002 	 * Write first byte.
1003 	 *
1004 	 * The swbp_unoptimize needs to finish uprobe removal together
1005 	 * with ref_ctr update, using uprobe_write with proper flags.
1006 	 */
1007 	err = uprobe_write(auprobe, vma, vaddr, insn, 1, verify_insn,
1008 			   optimize /* is_register */, !optimize /* do_update_ref_ctr */,
1009 			   &ctx);
1010 	if (err)
1011 		return err;
1012 
1013 	smp_text_poke_sync_each_cpu();
1014 	return 0;
1015 }
1016 
1017 static int swbp_optimize(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
1018 			 unsigned long vaddr, unsigned long tramp)
1019 {
1020 	u8 call[5];
1021 
1022 	__text_gen_insn(call, CALL_INSN_OPCODE, (const void *) vaddr,
1023 			(const void *) tramp, CALL_INSN_SIZE);
1024 	return int3_update(auprobe, vma, vaddr, call, true /* optimize */);
1025 }
1026 
1027 static int swbp_unoptimize(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
1028 			   unsigned long vaddr)
1029 {
1030 	return int3_update(auprobe, vma, vaddr, auprobe->insn, false /* optimize */);
1031 }
1032 
1033 static int copy_from_vaddr(struct mm_struct *mm, unsigned long vaddr, void *dst, int len)
1034 {
1035 	unsigned int gup_flags = FOLL_FORCE|FOLL_SPLIT_PMD;
1036 	struct vm_area_struct *vma;
1037 	struct page *page;
1038 
1039 	page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
1040 	if (IS_ERR(page))
1041 		return PTR_ERR(page);
1042 	uprobe_copy_from_page(page, vaddr, dst, len);
1043 	put_page(page);
1044 	return 0;
1045 }
1046 
1047 static bool __is_optimized(uprobe_opcode_t *insn, unsigned long vaddr)
1048 {
1049 	struct __packed __arch_relative_insn {
1050 		u8 op;
1051 		s32 raddr;
1052 	} *call = (struct __arch_relative_insn *) insn;
1053 
1054 	if (!is_call_insn(insn))
1055 		return false;
1056 	return __in_uprobe_trampoline(vaddr + 5 + call->raddr);
1057 }
1058 
1059 static int is_optimized(struct mm_struct *mm, unsigned long vaddr)
1060 {
1061 	uprobe_opcode_t insn[5];
1062 	int err;
1063 
1064 	err = copy_from_vaddr(mm, vaddr, &insn, 5);
1065 	if (err)
1066 		return err;
1067 	return __is_optimized((uprobe_opcode_t *)&insn, vaddr);
1068 }
1069 
1070 static bool should_optimize(struct arch_uprobe *auprobe)
1071 {
1072 	return !test_bit(ARCH_UPROBE_FLAG_OPTIMIZE_FAIL, &auprobe->flags) &&
1073 		test_bit(ARCH_UPROBE_FLAG_CAN_OPTIMIZE, &auprobe->flags);
1074 }
1075 
1076 int set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
1077 	     unsigned long vaddr)
1078 {
1079 	if (should_optimize(auprobe)) {
1080 		/*
1081 		 * We could race with another thread that already optimized the probe,
1082 		 * so let's not overwrite it with int3 again in this case.
1083 		 */
1084 		int ret = is_optimized(vma->vm_mm, vaddr);
1085 		if (ret < 0)
1086 			return ret;
1087 		if (ret)
1088 			return 0;
1089 	}
1090 	return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN,
1091 				   true /* is_register */);
1092 }
1093 
1094 int set_orig_insn(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
1095 		  unsigned long vaddr)
1096 {
1097 	if (test_bit(ARCH_UPROBE_FLAG_CAN_OPTIMIZE, &auprobe->flags)) {
1098 		int ret = is_optimized(vma->vm_mm, vaddr);
1099 		if (ret < 0)
1100 			return ret;
1101 		if (ret) {
1102 			ret = swbp_unoptimize(auprobe, vma, vaddr);
1103 			WARN_ON_ONCE(ret);
1104 			return ret;
1105 		}
1106 	}
1107 	return uprobe_write_opcode(auprobe, vma, vaddr, *(uprobe_opcode_t *)&auprobe->insn,
1108 				   false /* is_register */);
1109 }
1110 
1111 static int __arch_uprobe_optimize(struct arch_uprobe *auprobe, struct mm_struct *mm,
1112 				  unsigned long vaddr)
1113 {
1114 	struct uprobe_trampoline *tramp;
1115 	struct vm_area_struct *vma;
1116 	bool new = false;
1117 	int err = 0;
1118 
1119 	vma = find_vma(mm, vaddr);
1120 	if (!vma)
1121 		return -EINVAL;
1122 	tramp = get_uprobe_trampoline(vaddr, &new);
1123 	if (!tramp)
1124 		return -EINVAL;
1125 	err = swbp_optimize(auprobe, vma, vaddr, tramp->vaddr);
1126 	if (WARN_ON_ONCE(err) && new)
1127 		destroy_uprobe_trampoline(tramp);
1128 	return err;
1129 }
1130 
1131 void arch_uprobe_optimize(struct arch_uprobe *auprobe, unsigned long vaddr)
1132 {
1133 	struct mm_struct *mm = current->mm;
1134 	uprobe_opcode_t insn[5];
1135 
1136 	if (!should_optimize(auprobe))
1137 		return;
1138 
1139 	mmap_write_lock(mm);
1140 
1141 	/*
1142 	 * Check if some other thread already optimized the uprobe for us,
1143 	 * if it's the case just go away silently.
1144 	 */
1145 	if (copy_from_vaddr(mm, vaddr, &insn, 5))
1146 		goto unlock;
1147 	if (!is_swbp_insn((uprobe_opcode_t*) &insn))
1148 		goto unlock;
1149 
1150 	/*
1151 	 * If we fail to optimize the uprobe we set the fail bit so the
1152 	 * above should_optimize will fail from now on.
1153 	 */
1154 	if (__arch_uprobe_optimize(auprobe, mm, vaddr))
1155 		set_bit(ARCH_UPROBE_FLAG_OPTIMIZE_FAIL, &auprobe->flags);
1156 
1157 unlock:
1158 	mmap_write_unlock(mm);
1159 }
1160 
1161 static bool can_optimize(struct insn *insn, unsigned long vaddr)
1162 {
1163 	if (!insn->x86_64 || insn->length != 5)
1164 		return false;
1165 
1166 	if (!insn_is_nop(insn))
1167 		return false;
1168 
1169 	/* We can't do cross page atomic writes yet. */
1170 	return PAGE_SIZE - (vaddr & ~PAGE_MASK) >= 5;
1171 }
1172 #else /* 32-bit: */
1173 /*
1174  * No RIP-relative addressing on 32-bit
1175  */
1176 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
1177 {
1178 }
1179 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1180 {
1181 }
1182 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1183 {
1184 }
1185 static bool can_optimize(struct insn *insn, unsigned long vaddr)
1186 {
1187 	return false;
1188 }
1189 #endif /* CONFIG_X86_64 */
1190 
1191 struct uprobe_xol_ops {
1192 	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
1193 	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
1194 	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
1195 	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
1196 };
1197 
1198 static inline int sizeof_long(struct pt_regs *regs)
1199 {
1200 	/*
1201 	 * Check registers for mode as in_xxx_syscall() does not apply here.
1202 	 */
1203 	return user_64bit_mode(regs) ? 8 : 4;
1204 }
1205 
1206 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
1207 {
1208 	riprel_pre_xol(auprobe, regs);
1209 	return 0;
1210 }
1211 
1212 static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
1213 {
1214 	unsigned long new_sp = regs->sp - sizeof_long(regs);
1215 
1216 	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
1217 		return -EFAULT;
1218 
1219 	regs->sp = new_sp;
1220 	return 0;
1221 }
1222 
1223 /*
1224  * We have to fix things up as follows:
1225  *
1226  * Typically, the new ip is relative to the copied instruction.  We need
1227  * to make it relative to the original instruction (FIX_IP).  Exceptions
1228  * are return instructions and absolute or indirect jump or call instructions.
1229  *
1230  * If the single-stepped instruction was a call, the return address that
1231  * is atop the stack is the address following the copied instruction.  We
1232  * need to make it the address following the original instruction (FIX_CALL).
1233  *
1234  * If the original instruction was a rip-relative instruction such as
1235  * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
1236  * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
1237  * We need to restore the contents of the scratch register
1238  * (FIX_RIP_reg).
1239  */
1240 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
1241 {
1242 	struct uprobe_task *utask = current->utask;
1243 
1244 	riprel_post_xol(auprobe, regs);
1245 	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
1246 		long correction = utask->vaddr - utask->xol_vaddr;
1247 		regs->ip += correction;
1248 	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
1249 		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
1250 		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
1251 			return -ERESTART;
1252 	}
1253 	/* popf; tell the caller to not touch TF */
1254 	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
1255 		utask->autask.saved_tf = true;
1256 
1257 	return 0;
1258 }
1259 
1260 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
1261 {
1262 	riprel_post_xol(auprobe, regs);
1263 }
1264 
1265 static const struct uprobe_xol_ops default_xol_ops = {
1266 	.pre_xol  = default_pre_xol_op,
1267 	.post_xol = default_post_xol_op,
1268 	.abort	  = default_abort_op,
1269 };
1270 
1271 static bool branch_is_call(struct arch_uprobe *auprobe)
1272 {
1273 	return auprobe->branch.opc1 == 0xe8;
1274 }
1275 
1276 #define CASE_COND					\
1277 	COND(70, 71, XF(OF))				\
1278 	COND(72, 73, XF(CF))				\
1279 	COND(74, 75, XF(ZF))				\
1280 	COND(78, 79, XF(SF))				\
1281 	COND(7a, 7b, XF(PF))				\
1282 	COND(76, 77, XF(CF) || XF(ZF))			\
1283 	COND(7c, 7d, XF(SF) != XF(OF))			\
1284 	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
1285 
1286 #define COND(op_y, op_n, expr)				\
1287 	case 0x ## op_y: DO((expr) != 0)		\
1288 	case 0x ## op_n: DO((expr) == 0)
1289 
1290 #define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
1291 
1292 static bool is_cond_jmp_opcode(u8 opcode)
1293 {
1294 	switch (opcode) {
1295 	#define DO(expr)	\
1296 		return true;
1297 	CASE_COND
1298 	#undef	DO
1299 
1300 	default:
1301 		return false;
1302 	}
1303 }
1304 
1305 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
1306 {
1307 	unsigned long flags = regs->flags;
1308 
1309 	switch (auprobe->branch.opc1) {
1310 	#define DO(expr)	\
1311 		return expr;
1312 	CASE_COND
1313 	#undef	DO
1314 
1315 	default:	/* not a conditional jmp */
1316 		return true;
1317 	}
1318 }
1319 
1320 #undef	XF
1321 #undef	COND
1322 #undef	CASE_COND
1323 
1324 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
1325 {
1326 	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
1327 	unsigned long offs = (long)auprobe->branch.offs;
1328 
1329 	if (branch_is_call(auprobe)) {
1330 		/*
1331 		 * If it fails we execute this (mangled, see the comment in
1332 		 * branch_clear_offset) insn out-of-line. In the likely case
1333 		 * this should trigger the trap, and the probed application
1334 		 * should die or restart the same insn after it handles the
1335 		 * signal, arch_uprobe_post_xol() won't be even called.
1336 		 *
1337 		 * But there is corner case, see the comment in ->post_xol().
1338 		 */
1339 		if (emulate_push_stack(regs, new_ip))
1340 			return false;
1341 	} else if (!check_jmp_cond(auprobe, regs)) {
1342 		offs = 0;
1343 	}
1344 
1345 	regs->ip = new_ip + offs;
1346 	return true;
1347 }
1348 
1349 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
1350 {
1351 	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
1352 
1353 	if (emulate_push_stack(regs, *src_ptr))
1354 		return false;
1355 	regs->ip += auprobe->push.ilen;
1356 	return true;
1357 }
1358 
1359 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
1360 {
1361 	BUG_ON(!branch_is_call(auprobe));
1362 	/*
1363 	 * We can only get here if branch_emulate_op() failed to push the ret
1364 	 * address _and_ another thread expanded our stack before the (mangled)
1365 	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
1366 	 * We could also restore ->ip and try to call branch_emulate_op() again.
1367 	 */
1368 	regs->sp += sizeof_long(regs);
1369 	return -ERESTART;
1370 }
1371 
1372 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
1373 {
1374 	/*
1375 	 * Turn this insn into "call 1f; 1:", this is what we will execute
1376 	 * out-of-line if ->emulate() fails. We only need this to generate
1377 	 * a trap, so that the probed task receives the correct signal with
1378 	 * the properly filled siginfo.
1379 	 *
1380 	 * But see the comment in ->post_xol(), in the unlikely case it can
1381 	 * succeed. So we need to ensure that the new ->ip can not fall into
1382 	 * the non-canonical area and trigger #GP.
1383 	 *
1384 	 * We could turn it into (say) "pushf", but then we would need to
1385 	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
1386 	 * of ->insn[] for set_orig_insn().
1387 	 */
1388 	memset(auprobe->insn + insn_offset_immediate(insn),
1389 		0, insn->immediate.nbytes);
1390 }
1391 
1392 static const struct uprobe_xol_ops branch_xol_ops = {
1393 	.emulate  = branch_emulate_op,
1394 	.post_xol = branch_post_xol_op,
1395 };
1396 
1397 static const struct uprobe_xol_ops push_xol_ops = {
1398 	.emulate  = push_emulate_op,
1399 };
1400 
1401 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
1402 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
1403 {
1404 	u8 opc1 = OPCODE1(insn);
1405 	insn_byte_t p;
1406 
1407 	if (insn_is_nop(insn))
1408 		goto setup;
1409 
1410 	switch (opc1) {
1411 	case 0xeb:	/* jmp 8 */
1412 	case 0xe9:	/* jmp 32 */
1413 		break;
1414 
1415 	case 0xe8:	/* call relative */
1416 		branch_clear_offset(auprobe, insn);
1417 		break;
1418 
1419 	case 0x0f:
1420 		if (insn->opcode.nbytes != 2)
1421 			return -ENOSYS;
1422 		/*
1423 		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
1424 		 * OPCODE1() of the "short" jmp which checks the same condition.
1425 		 */
1426 		opc1 = OPCODE2(insn) - 0x10;
1427 		fallthrough;
1428 	default:
1429 		if (!is_cond_jmp_opcode(opc1))
1430 			return -ENOSYS;
1431 	}
1432 
1433 	/*
1434 	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
1435 	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
1436 	 * No one uses these insns, reject any branch insns with such prefix.
1437 	 */
1438 	for_each_insn_prefix(insn, p) {
1439 		if (p == 0x66)
1440 			return -ENOTSUPP;
1441 	}
1442 
1443 setup:
1444 	auprobe->branch.opc1 = opc1;
1445 	auprobe->branch.ilen = insn->length;
1446 	auprobe->branch.offs = insn->immediate.value;
1447 
1448 	auprobe->ops = &branch_xol_ops;
1449 	return 0;
1450 }
1451 
1452 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
1453 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
1454 {
1455 	u8 opc1 = OPCODE1(insn), reg_offset = 0;
1456 
1457 	if (opc1 < 0x50 || opc1 > 0x57)
1458 		return -ENOSYS;
1459 
1460 	if (insn->length > 2)
1461 		return -ENOSYS;
1462 	if (insn->length == 2) {
1463 		/* only support rex_prefix 0x41 (x64 only) */
1464 #ifdef CONFIG_X86_64
1465 		if (insn->rex_prefix.nbytes != 1 ||
1466 		    insn->rex_prefix.bytes[0] != 0x41)
1467 			return -ENOSYS;
1468 
1469 		switch (opc1) {
1470 		case 0x50:
1471 			reg_offset = offsetof(struct pt_regs, r8);
1472 			break;
1473 		case 0x51:
1474 			reg_offset = offsetof(struct pt_regs, r9);
1475 			break;
1476 		case 0x52:
1477 			reg_offset = offsetof(struct pt_regs, r10);
1478 			break;
1479 		case 0x53:
1480 			reg_offset = offsetof(struct pt_regs, r11);
1481 			break;
1482 		case 0x54:
1483 			reg_offset = offsetof(struct pt_regs, r12);
1484 			break;
1485 		case 0x55:
1486 			reg_offset = offsetof(struct pt_regs, r13);
1487 			break;
1488 		case 0x56:
1489 			reg_offset = offsetof(struct pt_regs, r14);
1490 			break;
1491 		case 0x57:
1492 			reg_offset = offsetof(struct pt_regs, r15);
1493 			break;
1494 		}
1495 #else
1496 		return -ENOSYS;
1497 #endif
1498 	} else {
1499 		switch (opc1) {
1500 		case 0x50:
1501 			reg_offset = offsetof(struct pt_regs, ax);
1502 			break;
1503 		case 0x51:
1504 			reg_offset = offsetof(struct pt_regs, cx);
1505 			break;
1506 		case 0x52:
1507 			reg_offset = offsetof(struct pt_regs, dx);
1508 			break;
1509 		case 0x53:
1510 			reg_offset = offsetof(struct pt_regs, bx);
1511 			break;
1512 		case 0x54:
1513 			reg_offset = offsetof(struct pt_regs, sp);
1514 			break;
1515 		case 0x55:
1516 			reg_offset = offsetof(struct pt_regs, bp);
1517 			break;
1518 		case 0x56:
1519 			reg_offset = offsetof(struct pt_regs, si);
1520 			break;
1521 		case 0x57:
1522 			reg_offset = offsetof(struct pt_regs, di);
1523 			break;
1524 		}
1525 	}
1526 
1527 	auprobe->push.reg_offset = reg_offset;
1528 	auprobe->push.ilen = insn->length;
1529 	auprobe->ops = &push_xol_ops;
1530 	return 0;
1531 }
1532 
1533 /**
1534  * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
1535  * @auprobe: the probepoint information.
1536  * @mm: the probed address space.
1537  * @addr: virtual address at which to install the probepoint
1538  * Return 0 on success or a -ve number on error.
1539  */
1540 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
1541 {
1542 	u8 fix_ip_or_call = UPROBE_FIX_IP;
1543 	struct insn insn;
1544 	int ret;
1545 
1546 	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
1547 	if (ret)
1548 		return ret;
1549 
1550 	if (can_optimize(&insn, addr))
1551 		set_bit(ARCH_UPROBE_FLAG_CAN_OPTIMIZE, &auprobe->flags);
1552 
1553 	ret = branch_setup_xol_ops(auprobe, &insn);
1554 	if (ret != -ENOSYS)
1555 		return ret;
1556 
1557 	ret = push_setup_xol_ops(auprobe, &insn);
1558 	if (ret != -ENOSYS)
1559 		return ret;
1560 
1561 	/*
1562 	 * Figure out which fixups default_post_xol_op() will need to perform,
1563 	 * and annotate defparam->fixups accordingly.
1564 	 */
1565 	switch (OPCODE1(&insn)) {
1566 	case 0x9d:		/* popf */
1567 		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
1568 		break;
1569 	case 0xc3:		/* ret or lret -- ip is correct */
1570 	case 0xcb:
1571 	case 0xc2:
1572 	case 0xca:
1573 	case 0xea:		/* jmp absolute -- ip is correct */
1574 		fix_ip_or_call = 0;
1575 		break;
1576 	case 0x9a:		/* call absolute - Fix return addr, not ip */
1577 		fix_ip_or_call = UPROBE_FIX_CALL;
1578 		break;
1579 	case 0xff:
1580 		switch (MODRM_REG(&insn)) {
1581 		case 2: case 3:			/* call or lcall, indirect */
1582 			fix_ip_or_call = UPROBE_FIX_CALL;
1583 			break;
1584 		case 4: case 5:			/* jmp or ljmp, indirect */
1585 			fix_ip_or_call = 0;
1586 			break;
1587 		}
1588 		fallthrough;
1589 	default:
1590 		riprel_analyze(auprobe, &insn);
1591 	}
1592 
1593 	auprobe->defparam.ilen = insn.length;
1594 	auprobe->defparam.fixups |= fix_ip_or_call;
1595 
1596 	auprobe->ops = &default_xol_ops;
1597 	return 0;
1598 }
1599 
1600 /*
1601  * arch_uprobe_pre_xol - prepare to execute out of line.
1602  * @auprobe: the probepoint information.
1603  * @regs: reflects the saved user state of current task.
1604  */
1605 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1606 {
1607 	struct uprobe_task *utask = current->utask;
1608 
1609 	if (auprobe->ops->pre_xol) {
1610 		int err = auprobe->ops->pre_xol(auprobe, regs);
1611 		if (err)
1612 			return err;
1613 	}
1614 
1615 	regs->ip = utask->xol_vaddr;
1616 	utask->autask.saved_trap_nr = current->thread.trap_nr;
1617 	current->thread.trap_nr = UPROBE_TRAP_NR;
1618 
1619 	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
1620 	regs->flags |= X86_EFLAGS_TF;
1621 	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
1622 		set_task_blockstep(current, false);
1623 
1624 	return 0;
1625 }
1626 
1627 /*
1628  * If xol insn itself traps and generates a signal(Say,
1629  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
1630  * instruction jumps back to its own address. It is assumed that anything
1631  * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
1632  *
1633  * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
1634  * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
1635  * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
1636  */
1637 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
1638 {
1639 	if (t->thread.trap_nr != UPROBE_TRAP_NR)
1640 		return true;
1641 
1642 	return false;
1643 }
1644 
1645 /*
1646  * Called after single-stepping. To avoid the SMP problems that can
1647  * occur when we temporarily put back the original opcode to
1648  * single-step, we single-stepped a copy of the instruction.
1649  *
1650  * This function prepares to resume execution after the single-step.
1651  */
1652 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1653 {
1654 	struct uprobe_task *utask = current->utask;
1655 	bool send_sigtrap = utask->autask.saved_tf;
1656 	int err = 0;
1657 
1658 	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
1659 	current->thread.trap_nr = utask->autask.saved_trap_nr;
1660 
1661 	if (auprobe->ops->post_xol) {
1662 		err = auprobe->ops->post_xol(auprobe, regs);
1663 		if (err) {
1664 			/*
1665 			 * Restore ->ip for restart or post mortem analysis.
1666 			 * ->post_xol() must not return -ERESTART unless this
1667 			 * is really possible.
1668 			 */
1669 			regs->ip = utask->vaddr;
1670 			if (err == -ERESTART)
1671 				err = 0;
1672 			send_sigtrap = false;
1673 		}
1674 	}
1675 	/*
1676 	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
1677 	 * so we can get an extra SIGTRAP if we do not clear TF. We need
1678 	 * to examine the opcode to make it right.
1679 	 */
1680 	if (send_sigtrap)
1681 		send_sig(SIGTRAP, current, 0);
1682 
1683 	if (!utask->autask.saved_tf)
1684 		regs->flags &= ~X86_EFLAGS_TF;
1685 
1686 	return err;
1687 }
1688 
1689 /* callback routine for handling exceptions. */
1690 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1691 {
1692 	struct die_args *args = data;
1693 	struct pt_regs *regs = args->regs;
1694 	int ret = NOTIFY_DONE;
1695 
1696 	/* We are only interested in userspace traps */
1697 	if (regs && !user_mode(regs))
1698 		return NOTIFY_DONE;
1699 
1700 	switch (val) {
1701 	case DIE_INT3:
1702 		if (uprobe_pre_sstep_notifier(regs))
1703 			ret = NOTIFY_STOP;
1704 
1705 		break;
1706 
1707 	case DIE_DEBUG:
1708 		if (uprobe_post_sstep_notifier(regs))
1709 			ret = NOTIFY_STOP;
1710 
1711 		break;
1712 
1713 	default:
1714 		break;
1715 	}
1716 
1717 	return ret;
1718 }
1719 
1720 /*
1721  * This function gets called when XOL instruction either gets trapped or
1722  * the thread has a fatal signal. Reset the instruction pointer to its
1723  * probed address for the potential restart or for post mortem analysis.
1724  */
1725 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1726 {
1727 	struct uprobe_task *utask = current->utask;
1728 
1729 	if (auprobe->ops->abort)
1730 		auprobe->ops->abort(auprobe, regs);
1731 
1732 	current->thread.trap_nr = utask->autask.saved_trap_nr;
1733 	regs->ip = utask->vaddr;
1734 	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1735 	if (!utask->autask.saved_tf)
1736 		regs->flags &= ~X86_EFLAGS_TF;
1737 }
1738 
1739 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1740 {
1741 	if (auprobe->ops->emulate)
1742 		return auprobe->ops->emulate(auprobe, regs);
1743 	return false;
1744 }
1745 
1746 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1747 {
1748 	bool ret = __skip_sstep(auprobe, regs);
1749 	if (ret && (regs->flags & X86_EFLAGS_TF))
1750 		send_sig(SIGTRAP, current, 0);
1751 	return ret;
1752 }
1753 
1754 unsigned long
1755 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1756 {
1757 	int rasize = sizeof_long(regs), nleft;
1758 	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1759 
1760 	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1761 		return -1;
1762 
1763 	/* check whether address has been already hijacked */
1764 	if (orig_ret_vaddr == trampoline_vaddr)
1765 		return orig_ret_vaddr;
1766 
1767 	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1768 	if (likely(!nleft)) {
1769 		if (shstk_update_last_frame(trampoline_vaddr)) {
1770 			force_sig(SIGSEGV);
1771 			return -1;
1772 		}
1773 		return orig_ret_vaddr;
1774 	}
1775 
1776 	if (nleft != rasize) {
1777 		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1778 		       current->pid, regs->sp, regs->ip);
1779 
1780 		force_sig(SIGSEGV);
1781 	}
1782 
1783 	return -1;
1784 }
1785 
1786 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1787 				struct pt_regs *regs)
1788 {
1789 	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1790 		return regs->sp < ret->stack;
1791 	else
1792 		return regs->sp <= ret->stack;
1793 }
1794 
1795 /*
1796  * Heuristic-based check if uprobe is installed at the function entry.
1797  *
1798  * Under assumption of user code being compiled with frame pointers,
1799  * `push %rbp/%ebp` is a good indicator that we indeed are.
1800  *
1801  * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern.
1802  * If we get this wrong, captured stack trace might have one extra bogus
1803  * entry, but the rest of stack trace will still be meaningful.
1804  */
1805 bool is_uprobe_at_func_entry(struct pt_regs *regs)
1806 {
1807 	struct arch_uprobe *auprobe;
1808 
1809 	if (!current->utask)
1810 		return false;
1811 
1812 	auprobe = current->utask->auprobe;
1813 	if (!auprobe)
1814 		return false;
1815 
1816 	/* push %rbp/%ebp */
1817 	if (auprobe->insn[0] == 0x55)
1818 		return true;
1819 
1820 	/* endbr64 (64-bit only) */
1821 	if (user_64bit_mode(regs) && is_endbr((u32 *)auprobe->insn))
1822 		return true;
1823 
1824 	return false;
1825 }
1826