1 /* 2 * User-space Probes (UProbes) for x86 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2011 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 */ 23 #include <linux/kernel.h> 24 #include <linux/sched.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/uaccess.h> 28 29 #include <linux/kdebug.h> 30 #include <asm/processor.h> 31 #include <asm/insn.h> 32 33 /* Post-execution fixups. */ 34 35 /* No fixup needed */ 36 #define UPROBE_FIX_NONE 0x0 37 38 /* Adjust IP back to vicinity of actual insn */ 39 #define UPROBE_FIX_IP 0x1 40 41 /* Adjust the return address of a call insn */ 42 #define UPROBE_FIX_CALL 0x2 43 44 #define UPROBE_FIX_RIP_AX 0x8000 45 #define UPROBE_FIX_RIP_CX 0x4000 46 47 #define UPROBE_TRAP_NR UINT_MAX 48 49 /* Adaptations for mhiramat x86 decoder v14. */ 50 #define OPCODE1(insn) ((insn)->opcode.bytes[0]) 51 #define OPCODE2(insn) ((insn)->opcode.bytes[1]) 52 #define OPCODE3(insn) ((insn)->opcode.bytes[2]) 53 #define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value) 54 55 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 56 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 57 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 58 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 59 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 60 << (row % 32)) 61 62 /* 63 * Good-instruction tables for 32-bit apps. This is non-const and volatile 64 * to keep gcc from statically optimizing it out, as variable_test_bit makes 65 * some versions of gcc to think only *(unsigned long*) is used. 66 */ 67 static volatile u32 good_insns_32[256 / 32] = { 68 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 69 /* ---------------------------------------------- */ 70 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */ 71 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ 72 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */ 73 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */ 74 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 75 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ 76 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ 77 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ 78 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ 79 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 80 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ 81 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ 82 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ 83 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ 84 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ 85 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ 86 /* ---------------------------------------------- */ 87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 88 }; 89 90 /* Using this for both 64-bit and 32-bit apps */ 91 static volatile u32 good_2byte_insns[256 / 32] = { 92 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 93 /* ---------------------------------------------- */ 94 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */ 95 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ 96 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ 97 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 98 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 99 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ 100 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ 101 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 102 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ 103 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 104 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ 105 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ 106 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 107 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ 108 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ 109 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */ 110 /* ---------------------------------------------- */ 111 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 112 }; 113 114 #ifdef CONFIG_X86_64 115 /* Good-instruction tables for 64-bit apps */ 116 static volatile u32 good_insns_64[256 / 32] = { 117 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 118 /* ---------------------------------------------- */ 119 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */ 120 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ 121 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */ 122 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */ 123 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */ 124 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ 125 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ 126 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ 127 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ 128 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 129 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ 130 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ 131 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ 132 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ 133 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ 134 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ 135 /* ---------------------------------------------- */ 136 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 137 }; 138 #endif 139 #undef W 140 141 /* 142 * opcodes we'll probably never support: 143 * 144 * 6c-6d, e4-e5, ec-ed - in 145 * 6e-6f, e6-e7, ee-ef - out 146 * cc, cd - int3, int 147 * cf - iret 148 * d6 - illegal instruction 149 * f1 - int1/icebp 150 * f4 - hlt 151 * fa, fb - cli, sti 152 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2 153 * 154 * invalid opcodes in 64-bit mode: 155 * 156 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5 157 * 63 - we support this opcode in x86_64 but not in i386. 158 * 159 * opcodes we may need to refine support for: 160 * 161 * 0f - 2-byte instructions: For many of these instructions, the validity 162 * depends on the prefix and/or the reg field. On such instructions, we 163 * just consider the opcode combination valid if it corresponds to any 164 * valid instruction. 165 * 166 * 8f - Group 1 - only reg = 0 is OK 167 * c6-c7 - Group 11 - only reg = 0 is OK 168 * d9-df - fpu insns with some illegal encodings 169 * f2, f3 - repnz, repz prefixes. These are also the first byte for 170 * certain floating-point instructions, such as addsd. 171 * 172 * fe - Group 4 - only reg = 0 or 1 is OK 173 * ff - Group 5 - only reg = 0-6 is OK 174 * 175 * others -- Do we need to support these? 176 * 177 * 0f - (floating-point?) prefetch instructions 178 * 07, 17, 1f - pop es, pop ss, pop ds 179 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- 180 * but 64 and 65 (fs: and gs:) seem to be used, so we support them 181 * 67 - addr16 prefix 182 * ce - into 183 * f0 - lock prefix 184 */ 185 186 /* 187 * TODO: 188 * - Where necessary, examine the modrm byte and allow only valid instructions 189 * in the different Groups and fpu instructions. 190 */ 191 192 static bool is_prefix_bad(struct insn *insn) 193 { 194 int i; 195 196 for (i = 0; i < insn->prefixes.nbytes; i++) { 197 switch (insn->prefixes.bytes[i]) { 198 case 0x26: /* INAT_PFX_ES */ 199 case 0x2E: /* INAT_PFX_CS */ 200 case 0x36: /* INAT_PFX_DS */ 201 case 0x3E: /* INAT_PFX_SS */ 202 case 0xF0: /* INAT_PFX_LOCK */ 203 return true; 204 } 205 } 206 return false; 207 } 208 209 static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn) 210 { 211 insn_init(insn, auprobe->insn, false); 212 213 /* Skip good instruction prefixes; reject "bad" ones. */ 214 insn_get_opcode(insn); 215 if (is_prefix_bad(insn)) 216 return -ENOTSUPP; 217 218 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32)) 219 return 0; 220 221 if (insn->opcode.nbytes == 2) { 222 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) 223 return 0; 224 } 225 226 return -ENOTSUPP; 227 } 228 229 /* 230 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and 231 * annotate arch_uprobe->fixups accordingly. To start with, 232 * arch_uprobe->fixups is either zero or it reflects rip-related fixups. 233 */ 234 static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn) 235 { 236 bool fix_ip = true, fix_call = false; /* defaults */ 237 int reg; 238 239 insn_get_opcode(insn); /* should be a nop */ 240 241 switch (OPCODE1(insn)) { 242 case 0xc3: /* ret/lret */ 243 case 0xcb: 244 case 0xc2: 245 case 0xca: 246 /* ip is correct */ 247 fix_ip = false; 248 break; 249 case 0xe8: /* call relative - Fix return addr */ 250 fix_call = true; 251 break; 252 case 0x9a: /* call absolute - Fix return addr, not ip */ 253 fix_call = true; 254 fix_ip = false; 255 break; 256 case 0xff: 257 insn_get_modrm(insn); 258 reg = MODRM_REG(insn); 259 if (reg == 2 || reg == 3) { 260 /* call or lcall, indirect */ 261 /* Fix return addr; ip is correct. */ 262 fix_call = true; 263 fix_ip = false; 264 } else if (reg == 4 || reg == 5) { 265 /* jmp or ljmp, indirect */ 266 /* ip is correct. */ 267 fix_ip = false; 268 } 269 break; 270 case 0xea: /* jmp absolute -- ip is correct */ 271 fix_ip = false; 272 break; 273 default: 274 break; 275 } 276 if (fix_ip) 277 auprobe->fixups |= UPROBE_FIX_IP; 278 if (fix_call) 279 auprobe->fixups |= UPROBE_FIX_CALL; 280 } 281 282 #ifdef CONFIG_X86_64 283 /* 284 * If arch_uprobe->insn doesn't use rip-relative addressing, return 285 * immediately. Otherwise, rewrite the instruction so that it accesses 286 * its memory operand indirectly through a scratch register. Set 287 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address 288 * accordingly. (The contents of the scratch register will be saved 289 * before we single-step the modified instruction, and restored 290 * afterward.) 291 * 292 * We do this because a rip-relative instruction can access only a 293 * relatively small area (+/- 2 GB from the instruction), and the XOL 294 * area typically lies beyond that area. At least for instructions 295 * that store to memory, we can't execute the original instruction 296 * and "fix things up" later, because the misdirected store could be 297 * disastrous. 298 * 299 * Some useful facts about rip-relative instructions: 300 * 301 * - There's always a modrm byte. 302 * - There's never a SIB byte. 303 * - The displacement is always 4 bytes. 304 */ 305 static void 306 handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) 307 { 308 u8 *cursor; 309 u8 reg; 310 311 if (mm->context.ia32_compat) 312 return; 313 314 auprobe->rip_rela_target_address = 0x0; 315 if (!insn_rip_relative(insn)) 316 return; 317 318 /* 319 * insn_rip_relative() would have decoded rex_prefix, modrm. 320 * Clear REX.b bit (extension of MODRM.rm field): 321 * we want to encode rax/rcx, not r8/r9. 322 */ 323 if (insn->rex_prefix.nbytes) { 324 cursor = auprobe->insn + insn_offset_rex_prefix(insn); 325 *cursor &= 0xfe; /* Clearing REX.B bit */ 326 } 327 328 /* 329 * Point cursor at the modrm byte. The next 4 bytes are the 330 * displacement. Beyond the displacement, for some instructions, 331 * is the immediate operand. 332 */ 333 cursor = auprobe->insn + insn_offset_modrm(insn); 334 insn_get_length(insn); 335 336 /* 337 * Convert from rip-relative addressing to indirect addressing 338 * via a scratch register. Change the r/m field from 0x5 (%rip) 339 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field. 340 */ 341 reg = MODRM_REG(insn); 342 if (reg == 0) { 343 /* 344 * The register operand (if any) is either the A register 345 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the 346 * REX prefix) %r8. In any case, we know the C register 347 * is NOT the register operand, so we use %rcx (register 348 * #1) for the scratch register. 349 */ 350 auprobe->fixups = UPROBE_FIX_RIP_CX; 351 /* Change modrm from 00 000 101 to 00 000 001. */ 352 *cursor = 0x1; 353 } else { 354 /* Use %rax (register #0) for the scratch register. */ 355 auprobe->fixups = UPROBE_FIX_RIP_AX; 356 /* Change modrm from 00 xxx 101 to 00 xxx 000 */ 357 *cursor = (reg << 3); 358 } 359 360 /* Target address = address of next instruction + (signed) offset */ 361 auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value; 362 363 /* Displacement field is gone; slide immediate field (if any) over. */ 364 if (insn->immediate.nbytes) { 365 cursor++; 366 memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes); 367 } 368 return; 369 } 370 371 static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn) 372 { 373 insn_init(insn, auprobe->insn, true); 374 375 /* Skip good instruction prefixes; reject "bad" ones. */ 376 insn_get_opcode(insn); 377 if (is_prefix_bad(insn)) 378 return -ENOTSUPP; 379 380 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64)) 381 return 0; 382 383 if (insn->opcode.nbytes == 2) { 384 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) 385 return 0; 386 } 387 return -ENOTSUPP; 388 } 389 390 static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) 391 { 392 if (mm->context.ia32_compat) 393 return validate_insn_32bits(auprobe, insn); 394 return validate_insn_64bits(auprobe, insn); 395 } 396 #else /* 32-bit: */ 397 static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) 398 { 399 /* No RIP-relative addressing on 32-bit */ 400 } 401 402 static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) 403 { 404 return validate_insn_32bits(auprobe, insn); 405 } 406 #endif /* CONFIG_X86_64 */ 407 408 /** 409 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. 410 * @mm: the probed address space. 411 * @arch_uprobe: the probepoint information. 412 * Return 0 on success or a -ve number on error. 413 */ 414 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm) 415 { 416 int ret; 417 struct insn insn; 418 419 auprobe->fixups = 0; 420 ret = validate_insn_bits(auprobe, mm, &insn); 421 if (ret != 0) 422 return ret; 423 424 handle_riprel_insn(auprobe, mm, &insn); 425 prepare_fixups(auprobe, &insn); 426 427 return 0; 428 } 429 430 #ifdef CONFIG_X86_64 431 /* 432 * If we're emulating a rip-relative instruction, save the contents 433 * of the scratch register and store the target address in that register. 434 */ 435 static void 436 pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs, 437 struct arch_uprobe_task *autask) 438 { 439 if (auprobe->fixups & UPROBE_FIX_RIP_AX) { 440 autask->saved_scratch_register = regs->ax; 441 regs->ax = current->utask->vaddr; 442 regs->ax += auprobe->rip_rela_target_address; 443 } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) { 444 autask->saved_scratch_register = regs->cx; 445 regs->cx = current->utask->vaddr; 446 regs->cx += auprobe->rip_rela_target_address; 447 } 448 } 449 #else 450 static void 451 pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs, 452 struct arch_uprobe_task *autask) 453 { 454 /* No RIP-relative addressing on 32-bit */ 455 } 456 #endif 457 458 /* 459 * arch_uprobe_pre_xol - prepare to execute out of line. 460 * @auprobe: the probepoint information. 461 * @regs: reflects the saved user state of current task. 462 */ 463 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 464 { 465 struct arch_uprobe_task *autask; 466 467 autask = ¤t->utask->autask; 468 autask->saved_trap_nr = current->thread.trap_nr; 469 current->thread.trap_nr = UPROBE_TRAP_NR; 470 regs->ip = current->utask->xol_vaddr; 471 pre_xol_rip_insn(auprobe, regs, autask); 472 473 return 0; 474 } 475 476 /* 477 * This function is called by arch_uprobe_post_xol() to adjust the return 478 * address pushed by a call instruction executed out of line. 479 */ 480 static int adjust_ret_addr(unsigned long sp, long correction) 481 { 482 int rasize, ncopied; 483 long ra = 0; 484 485 if (is_ia32_task()) 486 rasize = 4; 487 else 488 rasize = 8; 489 490 ncopied = copy_from_user(&ra, (void __user *)sp, rasize); 491 if (unlikely(ncopied)) 492 return -EFAULT; 493 494 ra += correction; 495 ncopied = copy_to_user((void __user *)sp, &ra, rasize); 496 if (unlikely(ncopied)) 497 return -EFAULT; 498 499 return 0; 500 } 501 502 #ifdef CONFIG_X86_64 503 static bool is_riprel_insn(struct arch_uprobe *auprobe) 504 { 505 return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0); 506 } 507 508 static void 509 handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction) 510 { 511 if (is_riprel_insn(auprobe)) { 512 struct arch_uprobe_task *autask; 513 514 autask = ¤t->utask->autask; 515 if (auprobe->fixups & UPROBE_FIX_RIP_AX) 516 regs->ax = autask->saved_scratch_register; 517 else 518 regs->cx = autask->saved_scratch_register; 519 520 /* 521 * The original instruction includes a displacement, and so 522 * is 4 bytes longer than what we've just single-stepped. 523 * Fall through to handle stuff like "jmpq *...(%rip)" and 524 * "callq *...(%rip)". 525 */ 526 if (correction) 527 *correction += 4; 528 } 529 } 530 #else 531 static void 532 handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction) 533 { 534 /* No RIP-relative addressing on 32-bit */ 535 } 536 #endif 537 538 /* 539 * If xol insn itself traps and generates a signal(Say, 540 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped 541 * instruction jumps back to its own address. It is assumed that anything 542 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. 543 * 544 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, 545 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to 546 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). 547 */ 548 bool arch_uprobe_xol_was_trapped(struct task_struct *t) 549 { 550 if (t->thread.trap_nr != UPROBE_TRAP_NR) 551 return true; 552 553 return false; 554 } 555 556 /* 557 * Called after single-stepping. To avoid the SMP problems that can 558 * occur when we temporarily put back the original opcode to 559 * single-step, we single-stepped a copy of the instruction. 560 * 561 * This function prepares to resume execution after the single-step. 562 * We have to fix things up as follows: 563 * 564 * Typically, the new ip is relative to the copied instruction. We need 565 * to make it relative to the original instruction (FIX_IP). Exceptions 566 * are return instructions and absolute or indirect jump or call instructions. 567 * 568 * If the single-stepped instruction was a call, the return address that 569 * is atop the stack is the address following the copied instruction. We 570 * need to make it the address following the original instruction (FIX_CALL). 571 * 572 * If the original instruction was a rip-relative instruction such as 573 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent 574 * instruction using a scratch register -- e.g., "movl %edx,(%rax)". 575 * We need to restore the contents of the scratch register and adjust 576 * the ip, keeping in mind that the instruction we executed is 4 bytes 577 * shorter than the original instruction (since we squeezed out the offset 578 * field). (FIX_RIP_AX or FIX_RIP_CX) 579 */ 580 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 581 { 582 struct uprobe_task *utask; 583 long correction; 584 int result = 0; 585 586 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); 587 588 utask = current->utask; 589 current->thread.trap_nr = utask->autask.saved_trap_nr; 590 correction = (long)(utask->vaddr - utask->xol_vaddr); 591 handle_riprel_post_xol(auprobe, regs, &correction); 592 if (auprobe->fixups & UPROBE_FIX_IP) 593 regs->ip += correction; 594 595 if (auprobe->fixups & UPROBE_FIX_CALL) 596 result = adjust_ret_addr(regs->sp, correction); 597 598 return result; 599 } 600 601 /* callback routine for handling exceptions. */ 602 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) 603 { 604 struct die_args *args = data; 605 struct pt_regs *regs = args->regs; 606 int ret = NOTIFY_DONE; 607 608 /* We are only interested in userspace traps */ 609 if (regs && !user_mode_vm(regs)) 610 return NOTIFY_DONE; 611 612 switch (val) { 613 case DIE_INT3: 614 if (uprobe_pre_sstep_notifier(regs)) 615 ret = NOTIFY_STOP; 616 617 break; 618 619 case DIE_DEBUG: 620 if (uprobe_post_sstep_notifier(regs)) 621 ret = NOTIFY_STOP; 622 623 default: 624 break; 625 } 626 627 return ret; 628 } 629 630 /* 631 * This function gets called when XOL instruction either gets trapped or 632 * the thread has a fatal signal, so reset the instruction pointer to its 633 * probed address. 634 */ 635 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 636 { 637 struct uprobe_task *utask = current->utask; 638 639 current->thread.trap_nr = utask->autask.saved_trap_nr; 640 handle_riprel_post_xol(auprobe, regs, NULL); 641 instruction_pointer_set(regs, utask->vaddr); 642 } 643 644 /* 645 * Skip these instructions as per the currently known x86 ISA. 646 * 0x66* { 0x90 | 0x0f 0x1f | 0x0f 0x19 | 0x87 0xc0 } 647 */ 648 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) 649 { 650 int i; 651 652 for (i = 0; i < MAX_UINSN_BYTES; i++) { 653 if ((auprobe->insn[i] == 0x66)) 654 continue; 655 656 if (auprobe->insn[i] == 0x90) 657 return true; 658 659 if (i == (MAX_UINSN_BYTES - 1)) 660 break; 661 662 if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x1f)) 663 return true; 664 665 if ((auprobe->insn[i] == 0x0f) && (auprobe->insn[i+1] == 0x19)) 666 return true; 667 668 if ((auprobe->insn[i] == 0x87) && (auprobe->insn[i+1] == 0xc0)) 669 return true; 670 671 break; 672 } 673 return false; 674 } 675