1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * User-space Probes (UProbes) for x86 4 * 5 * Copyright (C) IBM Corporation, 2008-2011 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 */ 10 #include <linux/kernel.h> 11 #include <linux/sched.h> 12 #include <linux/ptrace.h> 13 #include <linux/uprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/syscalls.h> 16 17 #include <linux/kdebug.h> 18 #include <asm/processor.h> 19 #include <asm/insn.h> 20 #include <asm/mmu_context.h> 21 #include <asm/nops.h> 22 23 /* Post-execution fixups. */ 24 25 /* Adjust IP back to vicinity of actual insn */ 26 #define UPROBE_FIX_IP 0x01 27 28 /* Adjust the return address of a call insn */ 29 #define UPROBE_FIX_CALL 0x02 30 31 /* Instruction will modify TF, don't change it */ 32 #define UPROBE_FIX_SETF 0x04 33 34 #define UPROBE_FIX_RIP_SI 0x08 35 #define UPROBE_FIX_RIP_DI 0x10 36 #define UPROBE_FIX_RIP_BX 0x20 37 #define UPROBE_FIX_RIP_MASK \ 38 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX) 39 40 #define UPROBE_TRAP_NR UINT_MAX 41 42 /* Adaptations for mhiramat x86 decoder v14. */ 43 #define OPCODE1(insn) ((insn)->opcode.bytes[0]) 44 #define OPCODE2(insn) ((insn)->opcode.bytes[1]) 45 #define OPCODE3(insn) ((insn)->opcode.bytes[2]) 46 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value) 47 48 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 49 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 50 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 51 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 52 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 53 << (row % 32)) 54 55 /* 56 * Good-instruction tables for 32-bit apps. This is non-const and volatile 57 * to keep gcc from statically optimizing it out, as variable_test_bit makes 58 * some versions of gcc to think only *(unsigned long*) is used. 59 * 60 * Opcodes we'll probably never support: 61 * 6c-6f - ins,outs. SEGVs if used in userspace 62 * e4-e7 - in,out imm. SEGVs if used in userspace 63 * ec-ef - in,out acc. SEGVs if used in userspace 64 * cc - int3. SIGTRAP if used in userspace 65 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs 66 * (why we support bound (62) then? it's similar, and similarly unused...) 67 * f1 - int1. SIGTRAP if used in userspace 68 * f4 - hlt. SEGVs if used in userspace 69 * fa - cli. SEGVs if used in userspace 70 * fb - sti. SEGVs if used in userspace 71 * 72 * Opcodes which need some work to be supported: 73 * 07,17,1f - pop es/ss/ds 74 * Normally not used in userspace, but would execute if used. 75 * Can cause GP or stack exception if tries to load wrong segment descriptor. 76 * We hesitate to run them under single step since kernel's handling 77 * of userspace single-stepping (TF flag) is fragile. 78 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e) 79 * on the same grounds that they are never used. 80 * cd - int N. 81 * Used by userspace for "int 80" syscall entry. (Other "int N" 82 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). 83 * Not supported since kernel's handling of userspace single-stepping 84 * (TF flag) is fragile. 85 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad 86 */ 87 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) 88 static volatile u32 good_insns_32[256 / 32] = { 89 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 90 /* ---------------------------------------------- */ 91 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */ 92 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ 93 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ 94 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ 95 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 96 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ 97 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ 98 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ 99 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ 100 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 101 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ 102 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ 103 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ 104 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ 105 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ 106 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ 107 /* ---------------------------------------------- */ 108 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 109 }; 110 #else 111 #define good_insns_32 NULL 112 #endif 113 114 /* Good-instruction tables for 64-bit apps. 115 * 116 * Genuinely invalid opcodes: 117 * 06,07 - formerly push/pop es 118 * 0e - formerly push cs 119 * 16,17 - formerly push/pop ss 120 * 1e,1f - formerly push/pop ds 121 * 27,2f,37,3f - formerly daa/das/aaa/aas 122 * 60,61 - formerly pusha/popa 123 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported) 124 * 82 - formerly redundant encoding of Group1 125 * 9a - formerly call seg:ofs 126 * ce - formerly into 127 * d4,d5 - formerly aam/aad 128 * d6 - formerly undocumented salc 129 * ea - formerly jmp seg:ofs 130 * 131 * Opcodes we'll probably never support: 132 * 6c-6f - ins,outs. SEGVs if used in userspace 133 * e4-e7 - in,out imm. SEGVs if used in userspace 134 * ec-ef - in,out acc. SEGVs if used in userspace 135 * cc - int3. SIGTRAP if used in userspace 136 * f1 - int1. SIGTRAP if used in userspace 137 * f4 - hlt. SEGVs if used in userspace 138 * fa - cli. SEGVs if used in userspace 139 * fb - sti. SEGVs if used in userspace 140 * 141 * Opcodes which need some work to be supported: 142 * cd - int N. 143 * Used by userspace for "int 80" syscall entry. (Other "int N" 144 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). 145 * Not supported since kernel's handling of userspace single-stepping 146 * (TF flag) is fragile. 147 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad 148 */ 149 #if defined(CONFIG_X86_64) 150 static volatile u32 good_insns_64[256 / 32] = { 151 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 152 /* ---------------------------------------------- */ 153 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */ 154 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ 155 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */ 156 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */ 157 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 158 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ 159 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ 160 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ 161 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ 162 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */ 163 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ 164 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ 165 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ 166 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ 167 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */ 168 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ 169 /* ---------------------------------------------- */ 170 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 171 }; 172 #else 173 #define good_insns_64 NULL 174 #endif 175 176 /* Using this for both 64-bit and 32-bit apps. 177 * Opcodes we don't support: 178 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns 179 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group. 180 * Also encodes tons of other system insns if mod=11. 181 * Some are in fact non-system: xend, xtest, rdtscp, maybe more 182 * 0f 05 - syscall 183 * 0f 06 - clts (CPL0 insn) 184 * 0f 07 - sysret 185 * 0f 08 - invd (CPL0 insn) 186 * 0f 09 - wbinvd (CPL0 insn) 187 * 0f 0b - ud2 188 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?) 189 * 0f 34 - sysenter 190 * 0f 35 - sysexit 191 * 0f 37 - getsec 192 * 0f 78 - vmread (Intel VMX. CPL0 insn) 193 * 0f 79 - vmwrite (Intel VMX. CPL0 insn) 194 * Note: with prefixes, these two opcodes are 195 * extrq/insertq/AVX512 convert vector ops. 196 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt], 197 * {rd,wr}{fs,gs}base,{s,l,m}fence. 198 * Why? They are all user-executable. 199 */ 200 static volatile u32 good_2byte_insns[256 / 32] = { 201 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 202 /* ---------------------------------------------- */ 203 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */ 204 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ 205 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ 206 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ 207 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 208 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ 209 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ 210 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */ 211 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ 212 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 213 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ 214 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ 215 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 216 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ 217 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ 218 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */ 219 /* ---------------------------------------------- */ 220 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 221 }; 222 #undef W 223 224 /* 225 * opcodes we may need to refine support for: 226 * 227 * 0f - 2-byte instructions: For many of these instructions, the validity 228 * depends on the prefix and/or the reg field. On such instructions, we 229 * just consider the opcode combination valid if it corresponds to any 230 * valid instruction. 231 * 232 * 8f - Group 1 - only reg = 0 is OK 233 * c6-c7 - Group 11 - only reg = 0 is OK 234 * d9-df - fpu insns with some illegal encodings 235 * f2, f3 - repnz, repz prefixes. These are also the first byte for 236 * certain floating-point instructions, such as addsd. 237 * 238 * fe - Group 4 - only reg = 0 or 1 is OK 239 * ff - Group 5 - only reg = 0-6 is OK 240 * 241 * others -- Do we need to support these? 242 * 243 * 0f - (floating-point?) prefetch instructions 244 * 07, 17, 1f - pop es, pop ss, pop ds 245 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- 246 * but 64 and 65 (fs: and gs:) seem to be used, so we support them 247 * 67 - addr16 prefix 248 * ce - into 249 * f0 - lock prefix 250 */ 251 252 /* 253 * TODO: 254 * - Where necessary, examine the modrm byte and allow only valid instructions 255 * in the different Groups and fpu instructions. 256 */ 257 258 static bool is_prefix_bad(struct insn *insn) 259 { 260 insn_byte_t p; 261 int i; 262 263 for_each_insn_prefix(insn, i, p) { 264 insn_attr_t attr; 265 266 attr = inat_get_opcode_attribute(p); 267 switch (attr) { 268 case INAT_MAKE_PREFIX(INAT_PFX_ES): 269 case INAT_MAKE_PREFIX(INAT_PFX_CS): 270 case INAT_MAKE_PREFIX(INAT_PFX_DS): 271 case INAT_MAKE_PREFIX(INAT_PFX_SS): 272 case INAT_MAKE_PREFIX(INAT_PFX_LOCK): 273 return true; 274 } 275 } 276 return false; 277 } 278 279 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64) 280 { 281 enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32; 282 u32 volatile *good_insns; 283 int ret; 284 285 ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m); 286 if (ret < 0) 287 return -ENOEXEC; 288 289 if (is_prefix_bad(insn)) 290 return -ENOTSUPP; 291 292 /* We should not singlestep on the exception masking instructions */ 293 if (insn_masking_exception(insn)) 294 return -ENOTSUPP; 295 296 if (x86_64) 297 good_insns = good_insns_64; 298 else 299 good_insns = good_insns_32; 300 301 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns)) 302 return 0; 303 304 if (insn->opcode.nbytes == 2) { 305 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) 306 return 0; 307 } 308 309 return -ENOTSUPP; 310 } 311 312 #ifdef CONFIG_X86_64 313 314 struct uretprobe_syscall_args { 315 unsigned long r11; 316 unsigned long cx; 317 unsigned long ax; 318 }; 319 320 asm ( 321 ".pushsection .rodata\n" 322 ".global uretprobe_trampoline_entry\n" 323 "uretprobe_trampoline_entry:\n" 324 "push %rax\n" 325 "push %rcx\n" 326 "push %r11\n" 327 "mov $" __stringify(__NR_uretprobe) ", %rax\n" 328 "syscall\n" 329 ".global uretprobe_syscall_check\n" 330 "uretprobe_syscall_check:\n" 331 "pop %r11\n" 332 "pop %rcx\n" 333 /* 334 * The uretprobe syscall replaces stored %rax value with final 335 * return address, so we don't restore %rax in here and just 336 * call ret. 337 */ 338 "ret\n" 339 "int3\n" 340 ".global uretprobe_trampoline_end\n" 341 "uretprobe_trampoline_end:\n" 342 ".popsection\n" 343 ); 344 345 extern u8 uretprobe_trampoline_entry[]; 346 extern u8 uretprobe_trampoline_end[]; 347 extern u8 uretprobe_syscall_check[]; 348 349 void *arch_uretprobe_trampoline(unsigned long *psize) 350 { 351 static uprobe_opcode_t insn = UPROBE_SWBP_INSN; 352 struct pt_regs *regs = task_pt_regs(current); 353 354 /* 355 * At the moment the uretprobe syscall trampoline is supported 356 * only for native 64-bit process, the compat process still uses 357 * standard breakpoint. 358 */ 359 if (user_64bit_mode(regs)) { 360 *psize = uretprobe_trampoline_end - uretprobe_trampoline_entry; 361 return uretprobe_trampoline_entry; 362 } 363 364 *psize = UPROBE_SWBP_INSN_SIZE; 365 return &insn; 366 } 367 368 static unsigned long trampoline_check_ip(unsigned long tramp) 369 { 370 return tramp + (uretprobe_syscall_check - uretprobe_trampoline_entry); 371 } 372 373 SYSCALL_DEFINE0(uretprobe) 374 { 375 struct pt_regs *regs = task_pt_regs(current); 376 struct uretprobe_syscall_args args; 377 unsigned long err, ip, sp, tramp; 378 379 /* If there's no trampoline, we are called from wrong place. */ 380 tramp = uprobe_get_trampoline_vaddr(); 381 if (unlikely(tramp == UPROBE_NO_TRAMPOLINE_VADDR)) 382 goto sigill; 383 384 /* Make sure the ip matches the only allowed sys_uretprobe caller. */ 385 if (unlikely(regs->ip != trampoline_check_ip(tramp))) 386 goto sigill; 387 388 err = copy_from_user(&args, (void __user *)regs->sp, sizeof(args)); 389 if (err) 390 goto sigill; 391 392 /* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */ 393 regs->r11 = args.r11; 394 regs->cx = args.cx; 395 regs->ax = args.ax; 396 regs->sp += sizeof(args); 397 regs->orig_ax = -1; 398 399 ip = regs->ip; 400 sp = regs->sp; 401 402 uprobe_handle_trampoline(regs); 403 404 /* 405 * Some of the uprobe consumers has changed sp, we can do nothing, 406 * just return via iret. 407 * .. or shadow stack is enabled, in which case we need to skip 408 * return through the user space stack address. 409 */ 410 if (regs->sp != sp || shstk_is_enabled()) 411 return regs->ax; 412 regs->sp -= sizeof(args); 413 414 /* for the case uprobe_consumer has changed r11/cx */ 415 args.r11 = regs->r11; 416 args.cx = regs->cx; 417 418 /* 419 * ax register is passed through as return value, so we can use 420 * its space on stack for ip value and jump to it through the 421 * trampoline's ret instruction 422 */ 423 args.ax = regs->ip; 424 regs->ip = ip; 425 426 err = copy_to_user((void __user *)regs->sp, &args, sizeof(args)); 427 if (err) 428 goto sigill; 429 430 /* ensure sysret, see do_syscall_64() */ 431 regs->r11 = regs->flags; 432 regs->cx = regs->ip; 433 434 return regs->ax; 435 436 sigill: 437 force_sig(SIGILL); 438 return -1; 439 } 440 441 /* 442 * If arch_uprobe->insn doesn't use rip-relative addressing, return 443 * immediately. Otherwise, rewrite the instruction so that it accesses 444 * its memory operand indirectly through a scratch register. Set 445 * defparam->fixups accordingly. (The contents of the scratch register 446 * will be saved before we single-step the modified instruction, 447 * and restored afterward). 448 * 449 * We do this because a rip-relative instruction can access only a 450 * relatively small area (+/- 2 GB from the instruction), and the XOL 451 * area typically lies beyond that area. At least for instructions 452 * that store to memory, we can't execute the original instruction 453 * and "fix things up" later, because the misdirected store could be 454 * disastrous. 455 * 456 * Some useful facts about rip-relative instructions: 457 * 458 * - There's always a modrm byte with bit layout "00 reg 101". 459 * - There's never a SIB byte. 460 * - The displacement is always 4 bytes. 461 * - REX.B=1 bit in REX prefix, which normally extends r/m field, 462 * has no effect on rip-relative mode. It doesn't make modrm byte 463 * with r/m=101 refer to register 1101 = R13. 464 */ 465 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) 466 { 467 u8 *cursor; 468 u8 reg; 469 u8 reg2; 470 471 if (!insn_rip_relative(insn)) 472 return; 473 474 /* 475 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm. 476 * Clear REX.b bit (extension of MODRM.rm field): 477 * we want to encode low numbered reg, not r8+. 478 */ 479 if (insn->rex_prefix.nbytes) { 480 cursor = auprobe->insn + insn_offset_rex_prefix(insn); 481 /* REX byte has 0100wrxb layout, clearing REX.b bit */ 482 *cursor &= 0xfe; 483 } 484 /* 485 * Similar treatment for VEX3/EVEX prefix. 486 * TODO: add XOP treatment when insn decoder supports them 487 */ 488 if (insn->vex_prefix.nbytes >= 3) { 489 /* 490 * vex2: c5 rvvvvLpp (has no b bit) 491 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp 492 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa 493 * Setting VEX3.b (setting because it has inverted meaning). 494 * Setting EVEX.x since (in non-SIB encoding) EVEX.x 495 * is the 4th bit of MODRM.rm, and needs the same treatment. 496 * For VEX3-encoded insns, VEX3.x value has no effect in 497 * non-SIB encoding, the change is superfluous but harmless. 498 */ 499 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1; 500 *cursor |= 0x60; 501 } 502 503 /* 504 * Convert from rip-relative addressing to register-relative addressing 505 * via a scratch register. 506 * 507 * This is tricky since there are insns with modrm byte 508 * which also use registers not encoded in modrm byte: 509 * [i]div/[i]mul: implicitly use dx:ax 510 * shift ops: implicitly use cx 511 * cmpxchg: implicitly uses ax 512 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx 513 * Encoding: 0f c7/1 modrm 514 * The code below thinks that reg=1 (cx), chooses si as scratch. 515 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m. 516 * First appeared in Haswell (BMI2 insn). It is vex-encoded. 517 * Example where none of bx,cx,dx can be used as scratch reg: 518 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx 519 * [v]pcmpistri: implicitly uses cx, xmm0 520 * [v]pcmpistrm: implicitly uses xmm0 521 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0 522 * [v]pcmpestrm: implicitly uses ax, dx, xmm0 523 * Evil SSE4.2 string comparison ops from hell. 524 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination. 525 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm. 526 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi). 527 * AMD says it has no 3-operand form (vex.vvvv must be 1111) 528 * and that it can have only register operands, not mem 529 * (its modrm byte must have mode=11). 530 * If these restrictions will ever be lifted, 531 * we'll need code to prevent selection of di as scratch reg! 532 * 533 * Summary: I don't know any insns with modrm byte which 534 * use SI register implicitly. DI register is used only 535 * by one insn (maskmovq) and BX register is used 536 * only by one too (cmpxchg8b). 537 * BP is stack-segment based (may be a problem?). 538 * AX, DX, CX are off-limits (many implicit users). 539 * SP is unusable (it's stack pointer - think about "pop mem"; 540 * also, rsp+disp32 needs sib encoding -> insn length change). 541 */ 542 543 reg = MODRM_REG(insn); /* Fetch modrm.reg */ 544 reg2 = 0xff; /* Fetch vex.vvvv */ 545 if (insn->vex_prefix.nbytes) 546 reg2 = insn->vex_prefix.bytes[2]; 547 /* 548 * TODO: add XOP vvvv reading. 549 * 550 * vex.vvvv field is in bits 6-3, bits are inverted. 551 * But in 32-bit mode, high-order bit may be ignored. 552 * Therefore, let's consider only 3 low-order bits. 553 */ 554 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7; 555 /* 556 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15. 557 * 558 * Choose scratch reg. Order is important: must not select bx 559 * if we can use si (cmpxchg8b case!) 560 */ 561 if (reg != 6 && reg2 != 6) { 562 reg2 = 6; 563 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI; 564 } else if (reg != 7 && reg2 != 7) { 565 reg2 = 7; 566 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI; 567 /* TODO (paranoia): force maskmovq to not use di */ 568 } else { 569 reg2 = 3; 570 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX; 571 } 572 /* 573 * Point cursor at the modrm byte. The next 4 bytes are the 574 * displacement. Beyond the displacement, for some instructions, 575 * is the immediate operand. 576 */ 577 cursor = auprobe->insn + insn_offset_modrm(insn); 578 /* 579 * Change modrm from "00 reg 101" to "10 reg reg2". Example: 580 * 89 05 disp32 mov %eax,disp32(%rip) becomes 581 * 89 86 disp32 mov %eax,disp32(%rsi) 582 */ 583 *cursor = 0x80 | (reg << 3) | reg2; 584 } 585 586 static inline unsigned long * 587 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs) 588 { 589 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI) 590 return ®s->si; 591 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI) 592 return ®s->di; 593 return ®s->bx; 594 } 595 596 /* 597 * If we're emulating a rip-relative instruction, save the contents 598 * of the scratch register and store the target address in that register. 599 */ 600 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 601 { 602 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { 603 struct uprobe_task *utask = current->utask; 604 unsigned long *sr = scratch_reg(auprobe, regs); 605 606 utask->autask.saved_scratch_register = *sr; 607 *sr = utask->vaddr + auprobe->defparam.ilen; 608 } 609 } 610 611 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 612 { 613 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { 614 struct uprobe_task *utask = current->utask; 615 unsigned long *sr = scratch_reg(auprobe, regs); 616 617 *sr = utask->autask.saved_scratch_register; 618 } 619 } 620 621 static int tramp_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) 622 { 623 return -EPERM; 624 } 625 626 static struct page *tramp_mapping_pages[2] __ro_after_init; 627 628 static struct vm_special_mapping tramp_mapping = { 629 .name = "[uprobes-trampoline]", 630 .mremap = tramp_mremap, 631 .pages = tramp_mapping_pages, 632 }; 633 634 struct uprobe_trampoline { 635 struct hlist_node node; 636 unsigned long vaddr; 637 }; 638 639 static bool is_reachable_by_call(unsigned long vtramp, unsigned long vaddr) 640 { 641 long delta = (long)(vaddr + 5 - vtramp); 642 643 return delta >= INT_MIN && delta <= INT_MAX; 644 } 645 646 static unsigned long find_nearest_trampoline(unsigned long vaddr) 647 { 648 struct vm_unmapped_area_info info = { 649 .length = PAGE_SIZE, 650 .align_mask = ~PAGE_MASK, 651 }; 652 unsigned long low_limit, high_limit; 653 unsigned long low_tramp, high_tramp; 654 unsigned long call_end = vaddr + 5; 655 656 if (check_add_overflow(call_end, INT_MIN, &low_limit)) 657 low_limit = PAGE_SIZE; 658 659 high_limit = call_end + INT_MAX; 660 661 /* Search up from the caller address. */ 662 info.low_limit = call_end; 663 info.high_limit = min(high_limit, TASK_SIZE); 664 high_tramp = vm_unmapped_area(&info); 665 666 /* Search down from the caller address. */ 667 info.low_limit = max(low_limit, PAGE_SIZE); 668 info.high_limit = call_end; 669 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 670 low_tramp = vm_unmapped_area(&info); 671 672 if (IS_ERR_VALUE(high_tramp) && IS_ERR_VALUE(low_tramp)) 673 return -ENOMEM; 674 if (IS_ERR_VALUE(high_tramp)) 675 return low_tramp; 676 if (IS_ERR_VALUE(low_tramp)) 677 return high_tramp; 678 679 /* Return address that's closest to the caller address. */ 680 if (call_end - low_tramp < high_tramp - call_end) 681 return low_tramp; 682 return high_tramp; 683 } 684 685 static struct uprobe_trampoline *create_uprobe_trampoline(unsigned long vaddr) 686 { 687 struct pt_regs *regs = task_pt_regs(current); 688 struct mm_struct *mm = current->mm; 689 struct uprobe_trampoline *tramp; 690 struct vm_area_struct *vma; 691 692 if (!user_64bit_mode(regs)) 693 return NULL; 694 695 vaddr = find_nearest_trampoline(vaddr); 696 if (IS_ERR_VALUE(vaddr)) 697 return NULL; 698 699 tramp = kzalloc(sizeof(*tramp), GFP_KERNEL); 700 if (unlikely(!tramp)) 701 return NULL; 702 703 tramp->vaddr = vaddr; 704 vma = _install_special_mapping(mm, tramp->vaddr, PAGE_SIZE, 705 VM_READ|VM_EXEC|VM_MAYEXEC|VM_MAYREAD|VM_DONTCOPY|VM_IO, 706 &tramp_mapping); 707 if (IS_ERR(vma)) { 708 kfree(tramp); 709 return NULL; 710 } 711 return tramp; 712 } 713 714 static struct uprobe_trampoline *get_uprobe_trampoline(unsigned long vaddr, bool *new) 715 { 716 struct uprobes_state *state = ¤t->mm->uprobes_state; 717 struct uprobe_trampoline *tramp = NULL; 718 719 if (vaddr > TASK_SIZE || vaddr < PAGE_SIZE) 720 return NULL; 721 722 hlist_for_each_entry(tramp, &state->head_tramps, node) { 723 if (is_reachable_by_call(tramp->vaddr, vaddr)) { 724 *new = false; 725 return tramp; 726 } 727 } 728 729 tramp = create_uprobe_trampoline(vaddr); 730 if (!tramp) 731 return NULL; 732 733 *new = true; 734 hlist_add_head(&tramp->node, &state->head_tramps); 735 return tramp; 736 } 737 738 static void destroy_uprobe_trampoline(struct uprobe_trampoline *tramp) 739 { 740 /* 741 * We do not unmap and release uprobe trampoline page itself, 742 * because there's no easy way to make sure none of the threads 743 * is still inside the trampoline. 744 */ 745 hlist_del(&tramp->node); 746 kfree(tramp); 747 } 748 749 void arch_uprobe_init_state(struct mm_struct *mm) 750 { 751 INIT_HLIST_HEAD(&mm->uprobes_state.head_tramps); 752 } 753 754 void arch_uprobe_clear_state(struct mm_struct *mm) 755 { 756 struct uprobes_state *state = &mm->uprobes_state; 757 struct uprobe_trampoline *tramp; 758 struct hlist_node *n; 759 760 hlist_for_each_entry_safe(tramp, n, &state->head_tramps, node) 761 destroy_uprobe_trampoline(tramp); 762 } 763 764 static bool __in_uprobe_trampoline(unsigned long ip) 765 { 766 struct vm_area_struct *vma = vma_lookup(current->mm, ip); 767 768 return vma && vma_is_special_mapping(vma, &tramp_mapping); 769 } 770 771 static bool in_uprobe_trampoline(unsigned long ip) 772 { 773 struct mm_struct *mm = current->mm; 774 bool found, retry = true; 775 unsigned int seq; 776 777 rcu_read_lock(); 778 if (mmap_lock_speculate_try_begin(mm, &seq)) { 779 found = __in_uprobe_trampoline(ip); 780 retry = mmap_lock_speculate_retry(mm, seq); 781 } 782 rcu_read_unlock(); 783 784 if (retry) { 785 mmap_read_lock(mm); 786 found = __in_uprobe_trampoline(ip); 787 mmap_read_unlock(mm); 788 } 789 return found; 790 } 791 792 /* 793 * See uprobe syscall trampoline; the call to the trampoline will push 794 * the return address on the stack, the trampoline itself then pushes 795 * cx, r11 and ax. 796 */ 797 struct uprobe_syscall_args { 798 unsigned long ax; 799 unsigned long r11; 800 unsigned long cx; 801 unsigned long retaddr; 802 }; 803 804 SYSCALL_DEFINE0(uprobe) 805 { 806 struct pt_regs *regs = task_pt_regs(current); 807 struct uprobe_syscall_args args; 808 unsigned long ip, sp, sret; 809 int err; 810 811 /* Allow execution only from uprobe trampolines. */ 812 if (!in_uprobe_trampoline(regs->ip)) 813 return -ENXIO; 814 815 err = copy_from_user(&args, (void __user *)regs->sp, sizeof(args)); 816 if (err) 817 goto sigill; 818 819 ip = regs->ip; 820 821 /* 822 * expose the "right" values of ax/r11/cx/ip/sp to uprobe_consumer/s, plus: 823 * - adjust ip to the probe address, call saved next instruction address 824 * - adjust sp to the probe's stack frame (check trampoline code) 825 */ 826 regs->ax = args.ax; 827 regs->r11 = args.r11; 828 regs->cx = args.cx; 829 regs->ip = args.retaddr - 5; 830 regs->sp += sizeof(args); 831 regs->orig_ax = -1; 832 833 sp = regs->sp; 834 835 err = shstk_pop((u64 *)&sret); 836 if (err == -EFAULT || (!err && sret != args.retaddr)) 837 goto sigill; 838 839 handle_syscall_uprobe(regs, regs->ip); 840 841 /* 842 * Some of the uprobe consumers has changed sp, we can do nothing, 843 * just return via iret. 844 */ 845 if (regs->sp != sp) { 846 /* skip the trampoline call */ 847 if (args.retaddr - 5 == regs->ip) 848 regs->ip += 5; 849 return regs->ax; 850 } 851 852 regs->sp -= sizeof(args); 853 854 /* for the case uprobe_consumer has changed ax/r11/cx */ 855 args.ax = regs->ax; 856 args.r11 = regs->r11; 857 args.cx = regs->cx; 858 859 /* keep return address unless we are instructed otherwise */ 860 if (args.retaddr - 5 != regs->ip) 861 args.retaddr = regs->ip; 862 863 if (shstk_push(args.retaddr) == -EFAULT) 864 goto sigill; 865 866 regs->ip = ip; 867 868 err = copy_to_user((void __user *)regs->sp, &args, sizeof(args)); 869 if (err) 870 goto sigill; 871 872 /* ensure sysret, see do_syscall_64() */ 873 regs->r11 = regs->flags; 874 regs->cx = regs->ip; 875 return 0; 876 877 sigill: 878 force_sig(SIGILL); 879 return -1; 880 } 881 882 asm ( 883 ".pushsection .rodata\n" 884 ".balign " __stringify(PAGE_SIZE) "\n" 885 "uprobe_trampoline_entry:\n" 886 "push %rcx\n" 887 "push %r11\n" 888 "push %rax\n" 889 "mov $" __stringify(__NR_uprobe) ", %rax\n" 890 "syscall\n" 891 "pop %rax\n" 892 "pop %r11\n" 893 "pop %rcx\n" 894 "ret\n" 895 "int3\n" 896 ".balign " __stringify(PAGE_SIZE) "\n" 897 ".popsection\n" 898 ); 899 900 extern u8 uprobe_trampoline_entry[]; 901 902 static int __init arch_uprobes_init(void) 903 { 904 tramp_mapping_pages[0] = virt_to_page(uprobe_trampoline_entry); 905 return 0; 906 } 907 908 late_initcall(arch_uprobes_init); 909 910 enum { 911 EXPECT_SWBP, 912 EXPECT_CALL, 913 }; 914 915 struct write_opcode_ctx { 916 unsigned long base; 917 int expect; 918 }; 919 920 static int is_call_insn(uprobe_opcode_t *insn) 921 { 922 return *insn == CALL_INSN_OPCODE; 923 } 924 925 /* 926 * Verification callback used by int3_update uprobe_write calls to make sure 927 * the underlying instruction is as expected - either int3 or call. 928 */ 929 static int verify_insn(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode, 930 int nbytes, void *data) 931 { 932 struct write_opcode_ctx *ctx = data; 933 uprobe_opcode_t old_opcode[5]; 934 935 uprobe_copy_from_page(page, ctx->base, (uprobe_opcode_t *) &old_opcode, 5); 936 937 switch (ctx->expect) { 938 case EXPECT_SWBP: 939 if (is_swbp_insn(&old_opcode[0])) 940 return 1; 941 break; 942 case EXPECT_CALL: 943 if (is_call_insn(&old_opcode[0])) 944 return 1; 945 break; 946 } 947 948 return -1; 949 } 950 951 /* 952 * Modify multi-byte instructions by using INT3 breakpoints on SMP. 953 * We completely avoid using stop_machine() here, and achieve the 954 * synchronization using INT3 breakpoints and SMP cross-calls. 955 * (borrowed comment from smp_text_poke_batch_finish) 956 * 957 * The way it is done: 958 * - Add an INT3 trap to the address that will be patched 959 * - SMP sync all CPUs 960 * - Update all but the first byte of the patched range 961 * - SMP sync all CPUs 962 * - Replace the first byte (INT3) by the first byte of the replacing opcode 963 * - SMP sync all CPUs 964 */ 965 static int int3_update(struct arch_uprobe *auprobe, struct vm_area_struct *vma, 966 unsigned long vaddr, char *insn, bool optimize) 967 { 968 uprobe_opcode_t int3 = UPROBE_SWBP_INSN; 969 struct write_opcode_ctx ctx = { 970 .base = vaddr, 971 }; 972 int err; 973 974 /* 975 * Write int3 trap. 976 * 977 * The swbp_optimize path comes with breakpoint already installed, 978 * so we can skip this step for optimize == true. 979 */ 980 if (!optimize) { 981 ctx.expect = EXPECT_CALL; 982 err = uprobe_write(auprobe, vma, vaddr, &int3, 1, verify_insn, 983 true /* is_register */, false /* do_update_ref_ctr */, 984 &ctx); 985 if (err) 986 return err; 987 } 988 989 smp_text_poke_sync_each_cpu(); 990 991 /* Write all but the first byte of the patched range. */ 992 ctx.expect = EXPECT_SWBP; 993 err = uprobe_write(auprobe, vma, vaddr + 1, insn + 1, 4, verify_insn, 994 true /* is_register */, false /* do_update_ref_ctr */, 995 &ctx); 996 if (err) 997 return err; 998 999 smp_text_poke_sync_each_cpu(); 1000 1001 /* 1002 * Write first byte. 1003 * 1004 * The swbp_unoptimize needs to finish uprobe removal together 1005 * with ref_ctr update, using uprobe_write with proper flags. 1006 */ 1007 err = uprobe_write(auprobe, vma, vaddr, insn, 1, verify_insn, 1008 optimize /* is_register */, !optimize /* do_update_ref_ctr */, 1009 &ctx); 1010 if (err) 1011 return err; 1012 1013 smp_text_poke_sync_each_cpu(); 1014 return 0; 1015 } 1016 1017 static int swbp_optimize(struct arch_uprobe *auprobe, struct vm_area_struct *vma, 1018 unsigned long vaddr, unsigned long tramp) 1019 { 1020 u8 call[5]; 1021 1022 __text_gen_insn(call, CALL_INSN_OPCODE, (const void *) vaddr, 1023 (const void *) tramp, CALL_INSN_SIZE); 1024 return int3_update(auprobe, vma, vaddr, call, true /* optimize */); 1025 } 1026 1027 static int swbp_unoptimize(struct arch_uprobe *auprobe, struct vm_area_struct *vma, 1028 unsigned long vaddr) 1029 { 1030 return int3_update(auprobe, vma, vaddr, auprobe->insn, false /* optimize */); 1031 } 1032 1033 static int copy_from_vaddr(struct mm_struct *mm, unsigned long vaddr, void *dst, int len) 1034 { 1035 unsigned int gup_flags = FOLL_FORCE|FOLL_SPLIT_PMD; 1036 struct vm_area_struct *vma; 1037 struct page *page; 1038 1039 page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma); 1040 if (IS_ERR(page)) 1041 return PTR_ERR(page); 1042 uprobe_copy_from_page(page, vaddr, dst, len); 1043 put_page(page); 1044 return 0; 1045 } 1046 1047 static bool __is_optimized(uprobe_opcode_t *insn, unsigned long vaddr) 1048 { 1049 struct __packed __arch_relative_insn { 1050 u8 op; 1051 s32 raddr; 1052 } *call = (struct __arch_relative_insn *) insn; 1053 1054 if (!is_call_insn(insn)) 1055 return false; 1056 return __in_uprobe_trampoline(vaddr + 5 + call->raddr); 1057 } 1058 1059 static int is_optimized(struct mm_struct *mm, unsigned long vaddr) 1060 { 1061 uprobe_opcode_t insn[5]; 1062 int err; 1063 1064 err = copy_from_vaddr(mm, vaddr, &insn, 5); 1065 if (err) 1066 return err; 1067 return __is_optimized((uprobe_opcode_t *)&insn, vaddr); 1068 } 1069 1070 static bool should_optimize(struct arch_uprobe *auprobe) 1071 { 1072 return !test_bit(ARCH_UPROBE_FLAG_OPTIMIZE_FAIL, &auprobe->flags) && 1073 test_bit(ARCH_UPROBE_FLAG_CAN_OPTIMIZE, &auprobe->flags); 1074 } 1075 1076 int set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma, 1077 unsigned long vaddr) 1078 { 1079 if (should_optimize(auprobe)) { 1080 /* 1081 * We could race with another thread that already optimized the probe, 1082 * so let's not overwrite it with int3 again in this case. 1083 */ 1084 int ret = is_optimized(vma->vm_mm, vaddr); 1085 if (ret < 0) 1086 return ret; 1087 if (ret) 1088 return 0; 1089 } 1090 return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN, 1091 true /* is_register */); 1092 } 1093 1094 int set_orig_insn(struct arch_uprobe *auprobe, struct vm_area_struct *vma, 1095 unsigned long vaddr) 1096 { 1097 if (test_bit(ARCH_UPROBE_FLAG_CAN_OPTIMIZE, &auprobe->flags)) { 1098 int ret = is_optimized(vma->vm_mm, vaddr); 1099 if (ret < 0) 1100 return ret; 1101 if (ret) { 1102 ret = swbp_unoptimize(auprobe, vma, vaddr); 1103 WARN_ON_ONCE(ret); 1104 return ret; 1105 } 1106 } 1107 return uprobe_write_opcode(auprobe, vma, vaddr, *(uprobe_opcode_t *)&auprobe->insn, 1108 false /* is_register */); 1109 } 1110 1111 static int __arch_uprobe_optimize(struct arch_uprobe *auprobe, struct mm_struct *mm, 1112 unsigned long vaddr) 1113 { 1114 struct uprobe_trampoline *tramp; 1115 struct vm_area_struct *vma; 1116 bool new = false; 1117 int err = 0; 1118 1119 vma = find_vma(mm, vaddr); 1120 if (!vma) 1121 return -EINVAL; 1122 tramp = get_uprobe_trampoline(vaddr, &new); 1123 if (!tramp) 1124 return -EINVAL; 1125 err = swbp_optimize(auprobe, vma, vaddr, tramp->vaddr); 1126 if (WARN_ON_ONCE(err) && new) 1127 destroy_uprobe_trampoline(tramp); 1128 return err; 1129 } 1130 1131 void arch_uprobe_optimize(struct arch_uprobe *auprobe, unsigned long vaddr) 1132 { 1133 struct mm_struct *mm = current->mm; 1134 uprobe_opcode_t insn[5]; 1135 1136 if (!should_optimize(auprobe)) 1137 return; 1138 1139 mmap_write_lock(mm); 1140 1141 /* 1142 * Check if some other thread already optimized the uprobe for us, 1143 * if it's the case just go away silently. 1144 */ 1145 if (copy_from_vaddr(mm, vaddr, &insn, 5)) 1146 goto unlock; 1147 if (!is_swbp_insn((uprobe_opcode_t*) &insn)) 1148 goto unlock; 1149 1150 /* 1151 * If we fail to optimize the uprobe we set the fail bit so the 1152 * above should_optimize will fail from now on. 1153 */ 1154 if (__arch_uprobe_optimize(auprobe, mm, vaddr)) 1155 set_bit(ARCH_UPROBE_FLAG_OPTIMIZE_FAIL, &auprobe->flags); 1156 1157 unlock: 1158 mmap_write_unlock(mm); 1159 } 1160 1161 static bool insn_is_nop(struct insn *insn) 1162 { 1163 return insn->opcode.nbytes == 1 && insn->opcode.bytes[0] == 0x90; 1164 } 1165 1166 static bool insn_is_nopl(struct insn *insn) 1167 { 1168 if (insn->opcode.nbytes != 2) 1169 return false; 1170 1171 if (insn->opcode.bytes[0] != 0x0f || insn->opcode.bytes[1] != 0x1f) 1172 return false; 1173 1174 if (!insn->modrm.nbytes) 1175 return false; 1176 1177 if (X86_MODRM_REG(insn->modrm.bytes[0]) != 0) 1178 return false; 1179 1180 /* 0f 1f /0 - NOPL */ 1181 return true; 1182 } 1183 1184 static bool can_optimize(struct insn *insn, unsigned long vaddr) 1185 { 1186 if (!insn->x86_64 || insn->length != 5) 1187 return false; 1188 1189 if (!insn_is_nop(insn) && !insn_is_nopl(insn)) 1190 return false; 1191 1192 /* We can't do cross page atomic writes yet. */ 1193 return PAGE_SIZE - (vaddr & ~PAGE_MASK) >= 5; 1194 } 1195 #else /* 32-bit: */ 1196 /* 1197 * No RIP-relative addressing on 32-bit 1198 */ 1199 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) 1200 { 1201 } 1202 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 1203 { 1204 } 1205 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 1206 { 1207 } 1208 static bool can_optimize(struct insn *insn, unsigned long vaddr) 1209 { 1210 return false; 1211 } 1212 #endif /* CONFIG_X86_64 */ 1213 1214 struct uprobe_xol_ops { 1215 bool (*emulate)(struct arch_uprobe *, struct pt_regs *); 1216 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *); 1217 int (*post_xol)(struct arch_uprobe *, struct pt_regs *); 1218 void (*abort)(struct arch_uprobe *, struct pt_regs *); 1219 }; 1220 1221 static inline int sizeof_long(struct pt_regs *regs) 1222 { 1223 /* 1224 * Check registers for mode as in_xxx_syscall() does not apply here. 1225 */ 1226 return user_64bit_mode(regs) ? 8 : 4; 1227 } 1228 1229 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 1230 { 1231 riprel_pre_xol(auprobe, regs); 1232 return 0; 1233 } 1234 1235 static int emulate_push_stack(struct pt_regs *regs, unsigned long val) 1236 { 1237 unsigned long new_sp = regs->sp - sizeof_long(regs); 1238 1239 if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs))) 1240 return -EFAULT; 1241 1242 regs->sp = new_sp; 1243 return 0; 1244 } 1245 1246 /* 1247 * We have to fix things up as follows: 1248 * 1249 * Typically, the new ip is relative to the copied instruction. We need 1250 * to make it relative to the original instruction (FIX_IP). Exceptions 1251 * are return instructions and absolute or indirect jump or call instructions. 1252 * 1253 * If the single-stepped instruction was a call, the return address that 1254 * is atop the stack is the address following the copied instruction. We 1255 * need to make it the address following the original instruction (FIX_CALL). 1256 * 1257 * If the original instruction was a rip-relative instruction such as 1258 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent 1259 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)". 1260 * We need to restore the contents of the scratch register 1261 * (FIX_RIP_reg). 1262 */ 1263 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 1264 { 1265 struct uprobe_task *utask = current->utask; 1266 1267 riprel_post_xol(auprobe, regs); 1268 if (auprobe->defparam.fixups & UPROBE_FIX_IP) { 1269 long correction = utask->vaddr - utask->xol_vaddr; 1270 regs->ip += correction; 1271 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) { 1272 regs->sp += sizeof_long(regs); /* Pop incorrect return address */ 1273 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen)) 1274 return -ERESTART; 1275 } 1276 /* popf; tell the caller to not touch TF */ 1277 if (auprobe->defparam.fixups & UPROBE_FIX_SETF) 1278 utask->autask.saved_tf = true; 1279 1280 return 0; 1281 } 1282 1283 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 1284 { 1285 riprel_post_xol(auprobe, regs); 1286 } 1287 1288 static const struct uprobe_xol_ops default_xol_ops = { 1289 .pre_xol = default_pre_xol_op, 1290 .post_xol = default_post_xol_op, 1291 .abort = default_abort_op, 1292 }; 1293 1294 static bool branch_is_call(struct arch_uprobe *auprobe) 1295 { 1296 return auprobe->branch.opc1 == 0xe8; 1297 } 1298 1299 #define CASE_COND \ 1300 COND(70, 71, XF(OF)) \ 1301 COND(72, 73, XF(CF)) \ 1302 COND(74, 75, XF(ZF)) \ 1303 COND(78, 79, XF(SF)) \ 1304 COND(7a, 7b, XF(PF)) \ 1305 COND(76, 77, XF(CF) || XF(ZF)) \ 1306 COND(7c, 7d, XF(SF) != XF(OF)) \ 1307 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF)) 1308 1309 #define COND(op_y, op_n, expr) \ 1310 case 0x ## op_y: DO((expr) != 0) \ 1311 case 0x ## op_n: DO((expr) == 0) 1312 1313 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf)) 1314 1315 static bool is_cond_jmp_opcode(u8 opcode) 1316 { 1317 switch (opcode) { 1318 #define DO(expr) \ 1319 return true; 1320 CASE_COND 1321 #undef DO 1322 1323 default: 1324 return false; 1325 } 1326 } 1327 1328 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs) 1329 { 1330 unsigned long flags = regs->flags; 1331 1332 switch (auprobe->branch.opc1) { 1333 #define DO(expr) \ 1334 return expr; 1335 CASE_COND 1336 #undef DO 1337 1338 default: /* not a conditional jmp */ 1339 return true; 1340 } 1341 } 1342 1343 #undef XF 1344 #undef COND 1345 #undef CASE_COND 1346 1347 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 1348 { 1349 unsigned long new_ip = regs->ip += auprobe->branch.ilen; 1350 unsigned long offs = (long)auprobe->branch.offs; 1351 1352 if (branch_is_call(auprobe)) { 1353 /* 1354 * If it fails we execute this (mangled, see the comment in 1355 * branch_clear_offset) insn out-of-line. In the likely case 1356 * this should trigger the trap, and the probed application 1357 * should die or restart the same insn after it handles the 1358 * signal, arch_uprobe_post_xol() won't be even called. 1359 * 1360 * But there is corner case, see the comment in ->post_xol(). 1361 */ 1362 if (emulate_push_stack(regs, new_ip)) 1363 return false; 1364 } else if (!check_jmp_cond(auprobe, regs)) { 1365 offs = 0; 1366 } 1367 1368 regs->ip = new_ip + offs; 1369 return true; 1370 } 1371 1372 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 1373 { 1374 unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset; 1375 1376 if (emulate_push_stack(regs, *src_ptr)) 1377 return false; 1378 regs->ip += auprobe->push.ilen; 1379 return true; 1380 } 1381 1382 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 1383 { 1384 BUG_ON(!branch_is_call(auprobe)); 1385 /* 1386 * We can only get here if branch_emulate_op() failed to push the ret 1387 * address _and_ another thread expanded our stack before the (mangled) 1388 * "call" insn was executed out-of-line. Just restore ->sp and restart. 1389 * We could also restore ->ip and try to call branch_emulate_op() again. 1390 */ 1391 regs->sp += sizeof_long(regs); 1392 return -ERESTART; 1393 } 1394 1395 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn) 1396 { 1397 /* 1398 * Turn this insn into "call 1f; 1:", this is what we will execute 1399 * out-of-line if ->emulate() fails. We only need this to generate 1400 * a trap, so that the probed task receives the correct signal with 1401 * the properly filled siginfo. 1402 * 1403 * But see the comment in ->post_xol(), in the unlikely case it can 1404 * succeed. So we need to ensure that the new ->ip can not fall into 1405 * the non-canonical area and trigger #GP. 1406 * 1407 * We could turn it into (say) "pushf", but then we would need to 1408 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte 1409 * of ->insn[] for set_orig_insn(). 1410 */ 1411 memset(auprobe->insn + insn_offset_immediate(insn), 1412 0, insn->immediate.nbytes); 1413 } 1414 1415 static const struct uprobe_xol_ops branch_xol_ops = { 1416 .emulate = branch_emulate_op, 1417 .post_xol = branch_post_xol_op, 1418 }; 1419 1420 static const struct uprobe_xol_ops push_xol_ops = { 1421 .emulate = push_emulate_op, 1422 }; 1423 1424 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */ 1425 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) 1426 { 1427 u8 opc1 = OPCODE1(insn); 1428 insn_byte_t p; 1429 int i; 1430 1431 /* x86_nops[insn->length]; same as jmp with .offs = 0 */ 1432 if (insn->length <= ASM_NOP_MAX && 1433 !memcmp(insn->kaddr, x86_nops[insn->length], insn->length)) 1434 goto setup; 1435 1436 switch (opc1) { 1437 case 0xeb: /* jmp 8 */ 1438 case 0xe9: /* jmp 32 */ 1439 break; 1440 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */ 1441 goto setup; 1442 1443 case 0xe8: /* call relative */ 1444 branch_clear_offset(auprobe, insn); 1445 break; 1446 1447 case 0x0f: 1448 if (insn->opcode.nbytes != 2) 1449 return -ENOSYS; 1450 /* 1451 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches 1452 * OPCODE1() of the "short" jmp which checks the same condition. 1453 */ 1454 opc1 = OPCODE2(insn) - 0x10; 1455 fallthrough; 1456 default: 1457 if (!is_cond_jmp_opcode(opc1)) 1458 return -ENOSYS; 1459 } 1460 1461 /* 1462 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported. 1463 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix. 1464 * No one uses these insns, reject any branch insns with such prefix. 1465 */ 1466 for_each_insn_prefix(insn, i, p) { 1467 if (p == 0x66) 1468 return -ENOTSUPP; 1469 } 1470 1471 setup: 1472 auprobe->branch.opc1 = opc1; 1473 auprobe->branch.ilen = insn->length; 1474 auprobe->branch.offs = insn->immediate.value; 1475 1476 auprobe->ops = &branch_xol_ops; 1477 return 0; 1478 } 1479 1480 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */ 1481 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) 1482 { 1483 u8 opc1 = OPCODE1(insn), reg_offset = 0; 1484 1485 if (opc1 < 0x50 || opc1 > 0x57) 1486 return -ENOSYS; 1487 1488 if (insn->length > 2) 1489 return -ENOSYS; 1490 if (insn->length == 2) { 1491 /* only support rex_prefix 0x41 (x64 only) */ 1492 #ifdef CONFIG_X86_64 1493 if (insn->rex_prefix.nbytes != 1 || 1494 insn->rex_prefix.bytes[0] != 0x41) 1495 return -ENOSYS; 1496 1497 switch (opc1) { 1498 case 0x50: 1499 reg_offset = offsetof(struct pt_regs, r8); 1500 break; 1501 case 0x51: 1502 reg_offset = offsetof(struct pt_regs, r9); 1503 break; 1504 case 0x52: 1505 reg_offset = offsetof(struct pt_regs, r10); 1506 break; 1507 case 0x53: 1508 reg_offset = offsetof(struct pt_regs, r11); 1509 break; 1510 case 0x54: 1511 reg_offset = offsetof(struct pt_regs, r12); 1512 break; 1513 case 0x55: 1514 reg_offset = offsetof(struct pt_regs, r13); 1515 break; 1516 case 0x56: 1517 reg_offset = offsetof(struct pt_regs, r14); 1518 break; 1519 case 0x57: 1520 reg_offset = offsetof(struct pt_regs, r15); 1521 break; 1522 } 1523 #else 1524 return -ENOSYS; 1525 #endif 1526 } else { 1527 switch (opc1) { 1528 case 0x50: 1529 reg_offset = offsetof(struct pt_regs, ax); 1530 break; 1531 case 0x51: 1532 reg_offset = offsetof(struct pt_regs, cx); 1533 break; 1534 case 0x52: 1535 reg_offset = offsetof(struct pt_regs, dx); 1536 break; 1537 case 0x53: 1538 reg_offset = offsetof(struct pt_regs, bx); 1539 break; 1540 case 0x54: 1541 reg_offset = offsetof(struct pt_regs, sp); 1542 break; 1543 case 0x55: 1544 reg_offset = offsetof(struct pt_regs, bp); 1545 break; 1546 case 0x56: 1547 reg_offset = offsetof(struct pt_regs, si); 1548 break; 1549 case 0x57: 1550 reg_offset = offsetof(struct pt_regs, di); 1551 break; 1552 } 1553 } 1554 1555 auprobe->push.reg_offset = reg_offset; 1556 auprobe->push.ilen = insn->length; 1557 auprobe->ops = &push_xol_ops; 1558 return 0; 1559 } 1560 1561 /** 1562 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. 1563 * @auprobe: the probepoint information. 1564 * @mm: the probed address space. 1565 * @addr: virtual address at which to install the probepoint 1566 * Return 0 on success or a -ve number on error. 1567 */ 1568 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr) 1569 { 1570 u8 fix_ip_or_call = UPROBE_FIX_IP; 1571 struct insn insn; 1572 int ret; 1573 1574 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm)); 1575 if (ret) 1576 return ret; 1577 1578 if (can_optimize(&insn, addr)) 1579 set_bit(ARCH_UPROBE_FLAG_CAN_OPTIMIZE, &auprobe->flags); 1580 1581 ret = branch_setup_xol_ops(auprobe, &insn); 1582 if (ret != -ENOSYS) 1583 return ret; 1584 1585 ret = push_setup_xol_ops(auprobe, &insn); 1586 if (ret != -ENOSYS) 1587 return ret; 1588 1589 /* 1590 * Figure out which fixups default_post_xol_op() will need to perform, 1591 * and annotate defparam->fixups accordingly. 1592 */ 1593 switch (OPCODE1(&insn)) { 1594 case 0x9d: /* popf */ 1595 auprobe->defparam.fixups |= UPROBE_FIX_SETF; 1596 break; 1597 case 0xc3: /* ret or lret -- ip is correct */ 1598 case 0xcb: 1599 case 0xc2: 1600 case 0xca: 1601 case 0xea: /* jmp absolute -- ip is correct */ 1602 fix_ip_or_call = 0; 1603 break; 1604 case 0x9a: /* call absolute - Fix return addr, not ip */ 1605 fix_ip_or_call = UPROBE_FIX_CALL; 1606 break; 1607 case 0xff: 1608 switch (MODRM_REG(&insn)) { 1609 case 2: case 3: /* call or lcall, indirect */ 1610 fix_ip_or_call = UPROBE_FIX_CALL; 1611 break; 1612 case 4: case 5: /* jmp or ljmp, indirect */ 1613 fix_ip_or_call = 0; 1614 break; 1615 } 1616 fallthrough; 1617 default: 1618 riprel_analyze(auprobe, &insn); 1619 } 1620 1621 auprobe->defparam.ilen = insn.length; 1622 auprobe->defparam.fixups |= fix_ip_or_call; 1623 1624 auprobe->ops = &default_xol_ops; 1625 return 0; 1626 } 1627 1628 /* 1629 * arch_uprobe_pre_xol - prepare to execute out of line. 1630 * @auprobe: the probepoint information. 1631 * @regs: reflects the saved user state of current task. 1632 */ 1633 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 1634 { 1635 struct uprobe_task *utask = current->utask; 1636 1637 if (auprobe->ops->pre_xol) { 1638 int err = auprobe->ops->pre_xol(auprobe, regs); 1639 if (err) 1640 return err; 1641 } 1642 1643 regs->ip = utask->xol_vaddr; 1644 utask->autask.saved_trap_nr = current->thread.trap_nr; 1645 current->thread.trap_nr = UPROBE_TRAP_NR; 1646 1647 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF); 1648 regs->flags |= X86_EFLAGS_TF; 1649 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP)) 1650 set_task_blockstep(current, false); 1651 1652 return 0; 1653 } 1654 1655 /* 1656 * If xol insn itself traps and generates a signal(Say, 1657 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped 1658 * instruction jumps back to its own address. It is assumed that anything 1659 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. 1660 * 1661 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, 1662 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to 1663 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). 1664 */ 1665 bool arch_uprobe_xol_was_trapped(struct task_struct *t) 1666 { 1667 if (t->thread.trap_nr != UPROBE_TRAP_NR) 1668 return true; 1669 1670 return false; 1671 } 1672 1673 /* 1674 * Called after single-stepping. To avoid the SMP problems that can 1675 * occur when we temporarily put back the original opcode to 1676 * single-step, we single-stepped a copy of the instruction. 1677 * 1678 * This function prepares to resume execution after the single-step. 1679 */ 1680 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 1681 { 1682 struct uprobe_task *utask = current->utask; 1683 bool send_sigtrap = utask->autask.saved_tf; 1684 int err = 0; 1685 1686 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); 1687 current->thread.trap_nr = utask->autask.saved_trap_nr; 1688 1689 if (auprobe->ops->post_xol) { 1690 err = auprobe->ops->post_xol(auprobe, regs); 1691 if (err) { 1692 /* 1693 * Restore ->ip for restart or post mortem analysis. 1694 * ->post_xol() must not return -ERESTART unless this 1695 * is really possible. 1696 */ 1697 regs->ip = utask->vaddr; 1698 if (err == -ERESTART) 1699 err = 0; 1700 send_sigtrap = false; 1701 } 1702 } 1703 /* 1704 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP 1705 * so we can get an extra SIGTRAP if we do not clear TF. We need 1706 * to examine the opcode to make it right. 1707 */ 1708 if (send_sigtrap) 1709 send_sig(SIGTRAP, current, 0); 1710 1711 if (!utask->autask.saved_tf) 1712 regs->flags &= ~X86_EFLAGS_TF; 1713 1714 return err; 1715 } 1716 1717 /* callback routine for handling exceptions. */ 1718 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) 1719 { 1720 struct die_args *args = data; 1721 struct pt_regs *regs = args->regs; 1722 int ret = NOTIFY_DONE; 1723 1724 /* We are only interested in userspace traps */ 1725 if (regs && !user_mode(regs)) 1726 return NOTIFY_DONE; 1727 1728 switch (val) { 1729 case DIE_INT3: 1730 if (uprobe_pre_sstep_notifier(regs)) 1731 ret = NOTIFY_STOP; 1732 1733 break; 1734 1735 case DIE_DEBUG: 1736 if (uprobe_post_sstep_notifier(regs)) 1737 ret = NOTIFY_STOP; 1738 1739 break; 1740 1741 default: 1742 break; 1743 } 1744 1745 return ret; 1746 } 1747 1748 /* 1749 * This function gets called when XOL instruction either gets trapped or 1750 * the thread has a fatal signal. Reset the instruction pointer to its 1751 * probed address for the potential restart or for post mortem analysis. 1752 */ 1753 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 1754 { 1755 struct uprobe_task *utask = current->utask; 1756 1757 if (auprobe->ops->abort) 1758 auprobe->ops->abort(auprobe, regs); 1759 1760 current->thread.trap_nr = utask->autask.saved_trap_nr; 1761 regs->ip = utask->vaddr; 1762 /* clear TF if it was set by us in arch_uprobe_pre_xol() */ 1763 if (!utask->autask.saved_tf) 1764 regs->flags &= ~X86_EFLAGS_TF; 1765 } 1766 1767 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) 1768 { 1769 if (auprobe->ops->emulate) 1770 return auprobe->ops->emulate(auprobe, regs); 1771 return false; 1772 } 1773 1774 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) 1775 { 1776 bool ret = __skip_sstep(auprobe, regs); 1777 if (ret && (regs->flags & X86_EFLAGS_TF)) 1778 send_sig(SIGTRAP, current, 0); 1779 return ret; 1780 } 1781 1782 unsigned long 1783 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs) 1784 { 1785 int rasize = sizeof_long(regs), nleft; 1786 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */ 1787 1788 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize)) 1789 return -1; 1790 1791 /* check whether address has been already hijacked */ 1792 if (orig_ret_vaddr == trampoline_vaddr) 1793 return orig_ret_vaddr; 1794 1795 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize); 1796 if (likely(!nleft)) { 1797 if (shstk_update_last_frame(trampoline_vaddr)) { 1798 force_sig(SIGSEGV); 1799 return -1; 1800 } 1801 return orig_ret_vaddr; 1802 } 1803 1804 if (nleft != rasize) { 1805 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n", 1806 current->pid, regs->sp, regs->ip); 1807 1808 force_sig(SIGSEGV); 1809 } 1810 1811 return -1; 1812 } 1813 1814 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 1815 struct pt_regs *regs) 1816 { 1817 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */ 1818 return regs->sp < ret->stack; 1819 else 1820 return regs->sp <= ret->stack; 1821 } 1822