xref: /linux/arch/x86/kernel/unwind_frame.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 #include <linux/sched.h>
2 #include <linux/sched/task.h>
3 #include <linux/sched/task_stack.h>
4 #include <asm/ptrace.h>
5 #include <asm/bitops.h>
6 #include <asm/stacktrace.h>
7 #include <asm/unwind.h>
8 
9 #define FRAME_HEADER_SIZE (sizeof(long) * 2)
10 
11 /*
12  * This disables KASAN checking when reading a value from another task's stack,
13  * since the other task could be running on another CPU and could have poisoned
14  * the stack in the meantime.
15  */
16 #define READ_ONCE_TASK_STACK(task, x)			\
17 ({							\
18 	unsigned long val;				\
19 	if (task == current)				\
20 		val = READ_ONCE(x);			\
21 	else						\
22 		val = READ_ONCE_NOCHECK(x);		\
23 	val;						\
24 })
25 
26 static void unwind_dump(struct unwind_state *state, unsigned long *sp)
27 {
28 	static bool dumped_before = false;
29 	bool prev_zero, zero = false;
30 	unsigned long word;
31 
32 	if (dumped_before)
33 		return;
34 
35 	dumped_before = true;
36 
37 	printk_deferred("unwind stack type:%d next_sp:%p mask:%lx graph_idx:%d\n",
38 			state->stack_info.type, state->stack_info.next_sp,
39 			state->stack_mask, state->graph_idx);
40 
41 	for (sp = state->orig_sp; sp < state->stack_info.end; sp++) {
42 		word = READ_ONCE_NOCHECK(*sp);
43 
44 		prev_zero = zero;
45 		zero = word == 0;
46 
47 		if (zero) {
48 			if (!prev_zero)
49 				printk_deferred("%p: %016x ...\n", sp, 0);
50 			continue;
51 		}
52 
53 		printk_deferred("%p: %016lx (%pB)\n", sp, word, (void *)word);
54 	}
55 }
56 
57 unsigned long unwind_get_return_address(struct unwind_state *state)
58 {
59 	unsigned long addr;
60 	unsigned long *addr_p = unwind_get_return_address_ptr(state);
61 
62 	if (unwind_done(state))
63 		return 0;
64 
65 	if (state->regs && user_mode(state->regs))
66 		return 0;
67 
68 	addr = READ_ONCE_TASK_STACK(state->task, *addr_p);
69 	addr = ftrace_graph_ret_addr(state->task, &state->graph_idx, addr,
70 				     addr_p);
71 
72 	return __kernel_text_address(addr) ? addr : 0;
73 }
74 EXPORT_SYMBOL_GPL(unwind_get_return_address);
75 
76 static size_t regs_size(struct pt_regs *regs)
77 {
78 	/* x86_32 regs from kernel mode are two words shorter: */
79 	if (IS_ENABLED(CONFIG_X86_32) && !user_mode(regs))
80 		return sizeof(*regs) - 2*sizeof(long);
81 
82 	return sizeof(*regs);
83 }
84 
85 #ifdef CONFIG_X86_32
86 #define GCC_REALIGN_WORDS 3
87 #else
88 #define GCC_REALIGN_WORDS 1
89 #endif
90 
91 static bool is_last_task_frame(struct unwind_state *state)
92 {
93 	unsigned long *last_bp = (unsigned long *)task_pt_regs(state->task) - 2;
94 	unsigned long *aligned_bp = last_bp - GCC_REALIGN_WORDS;
95 
96 	/*
97 	 * We have to check for the last task frame at two different locations
98 	 * because gcc can occasionally decide to realign the stack pointer and
99 	 * change the offset of the stack frame in the prologue of a function
100 	 * called by head/entry code.  Examples:
101 	 *
102 	 * <start_secondary>:
103 	 *      push   %edi
104 	 *      lea    0x8(%esp),%edi
105 	 *      and    $0xfffffff8,%esp
106 	 *      pushl  -0x4(%edi)
107 	 *      push   %ebp
108 	 *      mov    %esp,%ebp
109 	 *
110 	 * <x86_64_start_kernel>:
111 	 *      lea    0x8(%rsp),%r10
112 	 *      and    $0xfffffffffffffff0,%rsp
113 	 *      pushq  -0x8(%r10)
114 	 *      push   %rbp
115 	 *      mov    %rsp,%rbp
116 	 *
117 	 * Note that after aligning the stack, it pushes a duplicate copy of
118 	 * the return address before pushing the frame pointer.
119 	 */
120 	return (state->bp == last_bp ||
121 		(state->bp == aligned_bp && *(aligned_bp+1) == *(last_bp+1)));
122 }
123 
124 /*
125  * This determines if the frame pointer actually contains an encoded pointer to
126  * pt_regs on the stack.  See ENCODE_FRAME_POINTER.
127  */
128 static struct pt_regs *decode_frame_pointer(unsigned long *bp)
129 {
130 	unsigned long regs = (unsigned long)bp;
131 
132 	if (!(regs & 0x1))
133 		return NULL;
134 
135 	return (struct pt_regs *)(regs & ~0x1);
136 }
137 
138 static bool update_stack_state(struct unwind_state *state, void *addr,
139 			       size_t len)
140 {
141 	struct stack_info *info = &state->stack_info;
142 	enum stack_type orig_type = info->type;
143 
144 	/*
145 	 * If addr isn't on the current stack, switch to the next one.
146 	 *
147 	 * We may have to traverse multiple stacks to deal with the possibility
148 	 * that 'info->next_sp' could point to an empty stack and 'addr' could
149 	 * be on a subsequent stack.
150 	 */
151 	while (!on_stack(info, addr, len))
152 		if (get_stack_info(info->next_sp, state->task, info,
153 				   &state->stack_mask))
154 			return false;
155 
156 	if (!state->orig_sp || info->type != orig_type)
157 		state->orig_sp = addr;
158 
159 	return true;
160 }
161 
162 bool unwind_next_frame(struct unwind_state *state)
163 {
164 	struct pt_regs *regs;
165 	unsigned long *next_bp, *next_frame;
166 	size_t next_len;
167 	enum stack_type prev_type = state->stack_info.type;
168 
169 	if (unwind_done(state))
170 		return false;
171 
172 	/* have we reached the end? */
173 	if (state->regs && user_mode(state->regs))
174 		goto the_end;
175 
176 	if (is_last_task_frame(state)) {
177 		regs = task_pt_regs(state->task);
178 
179 		/*
180 		 * kthreads (other than the boot CPU's idle thread) have some
181 		 * partial regs at the end of their stack which were placed
182 		 * there by copy_thread_tls().  But the regs don't have any
183 		 * useful information, so we can skip them.
184 		 *
185 		 * This user_mode() check is slightly broader than a PF_KTHREAD
186 		 * check because it also catches the awkward situation where a
187 		 * newly forked kthread transitions into a user task by calling
188 		 * do_execve(), which eventually clears PF_KTHREAD.
189 		 */
190 		if (!user_mode(regs))
191 			goto the_end;
192 
193 		/*
194 		 * We're almost at the end, but not quite: there's still the
195 		 * syscall regs frame.  Entry code doesn't encode the regs
196 		 * pointer for syscalls, so we have to set it manually.
197 		 */
198 		state->regs = regs;
199 		state->bp = NULL;
200 		return true;
201 	}
202 
203 	/* get the next frame pointer */
204 	if (state->regs)
205 		next_bp = (unsigned long *)state->regs->bp;
206 	else
207 		next_bp = (unsigned long *)READ_ONCE_TASK_STACK(state->task,*state->bp);
208 
209 	/* is the next frame pointer an encoded pointer to pt_regs? */
210 	regs = decode_frame_pointer(next_bp);
211 	if (regs) {
212 		next_frame = (unsigned long *)regs;
213 		next_len = sizeof(*regs);
214 	} else {
215 		next_frame = next_bp;
216 		next_len = FRAME_HEADER_SIZE;
217 	}
218 
219 	/* make sure the next frame's data is accessible */
220 	if (!update_stack_state(state, next_frame, next_len)) {
221 		/*
222 		 * Don't warn on bad regs->bp.  An interrupt in entry code
223 		 * might cause a false positive warning.
224 		 */
225 		if (state->regs)
226 			goto the_end;
227 
228 		goto bad_address;
229 	}
230 
231 	/* Make sure it only unwinds up and doesn't overlap the last frame: */
232 	if (state->stack_info.type == prev_type) {
233 		if (state->regs && (void *)next_frame < (void *)state->regs + regs_size(state->regs))
234 			goto bad_address;
235 
236 		if (state->bp && (void *)next_frame < (void *)state->bp + FRAME_HEADER_SIZE)
237 			goto bad_address;
238 	}
239 
240 	/* move to the next frame */
241 	if (regs) {
242 		state->regs = regs;
243 		state->bp = NULL;
244 	} else {
245 		state->bp = next_bp;
246 		state->regs = NULL;
247 	}
248 
249 	return true;
250 
251 bad_address:
252 	/*
253 	 * When unwinding a non-current task, the task might actually be
254 	 * running on another CPU, in which case it could be modifying its
255 	 * stack while we're reading it.  This is generally not a problem and
256 	 * can be ignored as long as the caller understands that unwinding
257 	 * another task will not always succeed.
258 	 */
259 	if (state->task != current)
260 		goto the_end;
261 
262 	if (state->regs) {
263 		printk_deferred_once(KERN_WARNING
264 			"WARNING: kernel stack regs at %p in %s:%d has bad 'bp' value %p\n",
265 			state->regs, state->task->comm,
266 			state->task->pid, next_frame);
267 		unwind_dump(state, (unsigned long *)state->regs);
268 	} else {
269 		printk_deferred_once(KERN_WARNING
270 			"WARNING: kernel stack frame pointer at %p in %s:%d has bad value %p\n",
271 			state->bp, state->task->comm,
272 			state->task->pid, next_frame);
273 		unwind_dump(state, state->bp);
274 	}
275 the_end:
276 	state->stack_info.type = STACK_TYPE_UNKNOWN;
277 	return false;
278 }
279 EXPORT_SYMBOL_GPL(unwind_next_frame);
280 
281 void __unwind_start(struct unwind_state *state, struct task_struct *task,
282 		    struct pt_regs *regs, unsigned long *first_frame)
283 {
284 	unsigned long *bp, *frame;
285 	size_t len;
286 
287 	memset(state, 0, sizeof(*state));
288 	state->task = task;
289 
290 	/* don't even attempt to start from user mode regs */
291 	if (regs && user_mode(regs)) {
292 		state->stack_info.type = STACK_TYPE_UNKNOWN;
293 		return;
294 	}
295 
296 	/* set up the starting stack frame */
297 	bp = get_frame_pointer(task, regs);
298 	regs = decode_frame_pointer(bp);
299 	if (regs) {
300 		state->regs = regs;
301 		frame = (unsigned long *)regs;
302 		len = sizeof(*regs);
303 	} else {
304 		state->bp = bp;
305 		frame = bp;
306 		len = FRAME_HEADER_SIZE;
307 	}
308 
309 	/* initialize stack info and make sure the frame data is accessible */
310 	get_stack_info(frame, state->task, &state->stack_info,
311 		       &state->stack_mask);
312 	update_stack_state(state, frame, len);
313 
314 	/*
315 	 * The caller can provide the address of the first frame directly
316 	 * (first_frame) or indirectly (regs->sp) to indicate which stack frame
317 	 * to start unwinding at.  Skip ahead until we reach it.
318 	 */
319 	while (!unwind_done(state) &&
320 	       (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
321 			state->bp < first_frame))
322 		unwind_next_frame(state);
323 }
324 EXPORT_SYMBOL_GPL(__unwind_start);
325