xref: /linux/arch/x86/kernel/unwind_frame.c (revision 62dd86ac01f9fb6386d7f8c6b389c3ea4582a50a)
1 #include <linux/sched.h>
2 #include <linux/sched/task.h>
3 #include <linux/sched/task_stack.h>
4 #include <linux/interrupt.h>
5 #include <asm/sections.h>
6 #include <asm/ptrace.h>
7 #include <asm/bitops.h>
8 #include <asm/stacktrace.h>
9 #include <asm/unwind.h>
10 
11 #define FRAME_HEADER_SIZE (sizeof(long) * 2)
12 
13 unsigned long unwind_get_return_address(struct unwind_state *state)
14 {
15 	if (unwind_done(state))
16 		return 0;
17 
18 	return __kernel_text_address(state->ip) ? state->ip : 0;
19 }
20 EXPORT_SYMBOL_GPL(unwind_get_return_address);
21 
22 unsigned long *unwind_get_return_address_ptr(struct unwind_state *state)
23 {
24 	if (unwind_done(state))
25 		return NULL;
26 
27 	return state->regs ? &state->regs->ip : state->bp + 1;
28 }
29 
30 static void unwind_dump(struct unwind_state *state)
31 {
32 	static bool dumped_before = false;
33 	bool prev_zero, zero = false;
34 	unsigned long word, *sp;
35 	struct stack_info stack_info = {0};
36 	unsigned long visit_mask = 0;
37 
38 	if (dumped_before)
39 		return;
40 
41 	dumped_before = true;
42 
43 	printk_deferred("unwind stack type:%d next_sp:%p mask:0x%lx graph_idx:%d\n",
44 			state->stack_info.type, state->stack_info.next_sp,
45 			state->stack_mask, state->graph_idx);
46 
47 	for (sp = state->orig_sp; sp; sp = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
48 		if (get_stack_info(sp, state->task, &stack_info, &visit_mask))
49 			break;
50 
51 		for (; sp < stack_info.end; sp++) {
52 
53 			word = READ_ONCE_NOCHECK(*sp);
54 
55 			prev_zero = zero;
56 			zero = word == 0;
57 
58 			if (zero) {
59 				if (!prev_zero)
60 					printk_deferred("%p: %0*x ...\n",
61 							sp, BITS_PER_LONG/4, 0);
62 				continue;
63 			}
64 
65 			printk_deferred("%p: %0*lx (%pB)\n",
66 					sp, BITS_PER_LONG/4, word, (void *)word);
67 		}
68 	}
69 }
70 
71 static size_t regs_size(struct pt_regs *regs)
72 {
73 	/* x86_32 regs from kernel mode are two words shorter: */
74 	if (IS_ENABLED(CONFIG_X86_32) && !user_mode(regs))
75 		return sizeof(*regs) - 2*sizeof(long);
76 
77 	return sizeof(*regs);
78 }
79 
80 static bool in_entry_code(unsigned long ip)
81 {
82 	char *addr = (char *)ip;
83 
84 	if (addr >= __entry_text_start && addr < __entry_text_end)
85 		return true;
86 
87 	if (addr >= __irqentry_text_start && addr < __irqentry_text_end)
88 		return true;
89 
90 	return false;
91 }
92 
93 static inline unsigned long *last_frame(struct unwind_state *state)
94 {
95 	return (unsigned long *)task_pt_regs(state->task) - 2;
96 }
97 
98 static bool is_last_frame(struct unwind_state *state)
99 {
100 	return state->bp == last_frame(state);
101 }
102 
103 #ifdef CONFIG_X86_32
104 #define GCC_REALIGN_WORDS 3
105 #else
106 #define GCC_REALIGN_WORDS 1
107 #endif
108 
109 static inline unsigned long *last_aligned_frame(struct unwind_state *state)
110 {
111 	return last_frame(state) - GCC_REALIGN_WORDS;
112 }
113 
114 static bool is_last_aligned_frame(struct unwind_state *state)
115 {
116 	unsigned long *last_bp = last_frame(state);
117 	unsigned long *aligned_bp = last_aligned_frame(state);
118 
119 	/*
120 	 * GCC can occasionally decide to realign the stack pointer and change
121 	 * the offset of the stack frame in the prologue of a function called
122 	 * by head/entry code.  Examples:
123 	 *
124 	 * <start_secondary>:
125 	 *      push   %edi
126 	 *      lea    0x8(%esp),%edi
127 	 *      and    $0xfffffff8,%esp
128 	 *      pushl  -0x4(%edi)
129 	 *      push   %ebp
130 	 *      mov    %esp,%ebp
131 	 *
132 	 * <x86_64_start_kernel>:
133 	 *      lea    0x8(%rsp),%r10
134 	 *      and    $0xfffffffffffffff0,%rsp
135 	 *      pushq  -0x8(%r10)
136 	 *      push   %rbp
137 	 *      mov    %rsp,%rbp
138 	 *
139 	 * After aligning the stack, it pushes a duplicate copy of the return
140 	 * address before pushing the frame pointer.
141 	 */
142 	return (state->bp == aligned_bp && *(aligned_bp + 1) == *(last_bp + 1));
143 }
144 
145 static bool is_last_ftrace_frame(struct unwind_state *state)
146 {
147 	unsigned long *last_bp = last_frame(state);
148 	unsigned long *last_ftrace_bp = last_bp - 3;
149 
150 	/*
151 	 * When unwinding from an ftrace handler of a function called by entry
152 	 * code, the stack layout of the last frame is:
153 	 *
154 	 *   bp
155 	 *   parent ret addr
156 	 *   bp
157 	 *   function ret addr
158 	 *   parent ret addr
159 	 *   pt_regs
160 	 *   -----------------
161 	 */
162 	return (state->bp == last_ftrace_bp &&
163 		*state->bp == *(state->bp + 2) &&
164 		*(state->bp + 1) == *(state->bp + 4));
165 }
166 
167 static bool is_last_task_frame(struct unwind_state *state)
168 {
169 	return is_last_frame(state) || is_last_aligned_frame(state) ||
170 	       is_last_ftrace_frame(state);
171 }
172 
173 /*
174  * This determines if the frame pointer actually contains an encoded pointer to
175  * pt_regs on the stack.  See ENCODE_FRAME_POINTER.
176  */
177 static struct pt_regs *decode_frame_pointer(unsigned long *bp)
178 {
179 	unsigned long regs = (unsigned long)bp;
180 
181 	if (!(regs & 0x1))
182 		return NULL;
183 
184 	return (struct pt_regs *)(regs & ~0x1);
185 }
186 
187 #ifdef CONFIG_X86_32
188 #define KERNEL_REGS_SIZE (sizeof(struct pt_regs) - 2*sizeof(long))
189 #else
190 #define KERNEL_REGS_SIZE (sizeof(struct pt_regs))
191 #endif
192 
193 static bool update_stack_state(struct unwind_state *state,
194 			       unsigned long *next_bp)
195 {
196 	struct stack_info *info = &state->stack_info;
197 	enum stack_type prev_type = info->type;
198 	struct pt_regs *regs;
199 	unsigned long *frame, *prev_frame_end, *addr_p, addr;
200 	size_t len;
201 
202 	if (state->regs)
203 		prev_frame_end = (void *)state->regs + regs_size(state->regs);
204 	else
205 		prev_frame_end = (void *)state->bp + FRAME_HEADER_SIZE;
206 
207 	/* Is the next frame pointer an encoded pointer to pt_regs? */
208 	regs = decode_frame_pointer(next_bp);
209 	if (regs) {
210 		frame = (unsigned long *)regs;
211 		len = KERNEL_REGS_SIZE;
212 		state->got_irq = true;
213 	} else {
214 		frame = next_bp;
215 		len = FRAME_HEADER_SIZE;
216 	}
217 
218 	/*
219 	 * If the next bp isn't on the current stack, switch to the next one.
220 	 *
221 	 * We may have to traverse multiple stacks to deal with the possibility
222 	 * that info->next_sp could point to an empty stack and the next bp
223 	 * could be on a subsequent stack.
224 	 */
225 	while (!on_stack(info, frame, len))
226 		if (get_stack_info(info->next_sp, state->task, info,
227 				   &state->stack_mask))
228 			return false;
229 
230 	/* Make sure it only unwinds up and doesn't overlap the prev frame: */
231 	if (state->orig_sp && state->stack_info.type == prev_type &&
232 	    frame < prev_frame_end)
233 		return false;
234 
235 	/*
236 	 * On 32-bit with user mode regs, make sure the last two regs are safe
237 	 * to access:
238 	 */
239 	if (IS_ENABLED(CONFIG_X86_32) && regs && user_mode(regs) &&
240 	    !on_stack(info, frame, len + 2*sizeof(long)))
241 		return false;
242 
243 	/* Move state to the next frame: */
244 	if (regs) {
245 		state->regs = regs;
246 		state->bp = NULL;
247 	} else {
248 		state->bp = next_bp;
249 		state->regs = NULL;
250 	}
251 
252 	/* Save the return address: */
253 	if (state->regs && user_mode(state->regs))
254 		state->ip = 0;
255 	else {
256 		addr_p = unwind_get_return_address_ptr(state);
257 		addr = READ_ONCE_TASK_STACK(state->task, *addr_p);
258 		state->ip = ftrace_graph_ret_addr(state->task, &state->graph_idx,
259 						  addr, addr_p);
260 	}
261 
262 	/* Save the original stack pointer for unwind_dump(): */
263 	if (!state->orig_sp)
264 		state->orig_sp = frame;
265 
266 	return true;
267 }
268 
269 bool unwind_next_frame(struct unwind_state *state)
270 {
271 	struct pt_regs *regs;
272 	unsigned long *next_bp;
273 
274 	if (unwind_done(state))
275 		return false;
276 
277 	/* Have we reached the end? */
278 	if (state->regs && user_mode(state->regs))
279 		goto the_end;
280 
281 	if (is_last_task_frame(state)) {
282 		regs = task_pt_regs(state->task);
283 
284 		/*
285 		 * kthreads (other than the boot CPU's idle thread) have some
286 		 * partial regs at the end of their stack which were placed
287 		 * there by copy_thread_tls().  But the regs don't have any
288 		 * useful information, so we can skip them.
289 		 *
290 		 * This user_mode() check is slightly broader than a PF_KTHREAD
291 		 * check because it also catches the awkward situation where a
292 		 * newly forked kthread transitions into a user task by calling
293 		 * do_execve(), which eventually clears PF_KTHREAD.
294 		 */
295 		if (!user_mode(regs))
296 			goto the_end;
297 
298 		/*
299 		 * We're almost at the end, but not quite: there's still the
300 		 * syscall regs frame.  Entry code doesn't encode the regs
301 		 * pointer for syscalls, so we have to set it manually.
302 		 */
303 		state->regs = regs;
304 		state->bp = NULL;
305 		state->ip = 0;
306 		return true;
307 	}
308 
309 	/* Get the next frame pointer: */
310 	if (state->regs)
311 		next_bp = (unsigned long *)state->regs->bp;
312 	else
313 		next_bp = (unsigned long *)READ_ONCE_TASK_STACK(state->task, *state->bp);
314 
315 	/* Move to the next frame if it's safe: */
316 	if (!update_stack_state(state, next_bp))
317 		goto bad_address;
318 
319 	return true;
320 
321 bad_address:
322 	state->error = true;
323 
324 	/*
325 	 * When unwinding a non-current task, the task might actually be
326 	 * running on another CPU, in which case it could be modifying its
327 	 * stack while we're reading it.  This is generally not a problem and
328 	 * can be ignored as long as the caller understands that unwinding
329 	 * another task will not always succeed.
330 	 */
331 	if (state->task != current)
332 		goto the_end;
333 
334 	/*
335 	 * Don't warn if the unwinder got lost due to an interrupt in entry
336 	 * code or in the C handler before the first frame pointer got set up:
337 	 */
338 	if (state->got_irq && in_entry_code(state->ip))
339 		goto the_end;
340 	if (state->regs &&
341 	    state->regs->sp >= (unsigned long)last_aligned_frame(state) &&
342 	    state->regs->sp < (unsigned long)task_pt_regs(state->task))
343 		goto the_end;
344 
345 	if (state->regs) {
346 		printk_deferred_once(KERN_WARNING
347 			"WARNING: kernel stack regs at %p in %s:%d has bad 'bp' value %p\n",
348 			state->regs, state->task->comm,
349 			state->task->pid, next_bp);
350 		unwind_dump(state);
351 	} else {
352 		printk_deferred_once(KERN_WARNING
353 			"WARNING: kernel stack frame pointer at %p in %s:%d has bad value %p\n",
354 			state->bp, state->task->comm,
355 			state->task->pid, next_bp);
356 		unwind_dump(state);
357 	}
358 the_end:
359 	state->stack_info.type = STACK_TYPE_UNKNOWN;
360 	return false;
361 }
362 EXPORT_SYMBOL_GPL(unwind_next_frame);
363 
364 void __unwind_start(struct unwind_state *state, struct task_struct *task,
365 		    struct pt_regs *regs, unsigned long *first_frame)
366 {
367 	unsigned long *bp;
368 
369 	memset(state, 0, sizeof(*state));
370 	state->task = task;
371 	state->got_irq = (regs);
372 
373 	/* Don't even attempt to start from user mode regs: */
374 	if (regs && user_mode(regs)) {
375 		state->stack_info.type = STACK_TYPE_UNKNOWN;
376 		return;
377 	}
378 
379 	bp = get_frame_pointer(task, regs);
380 
381 	/* Initialize stack info and make sure the frame data is accessible: */
382 	get_stack_info(bp, state->task, &state->stack_info,
383 		       &state->stack_mask);
384 	update_stack_state(state, bp);
385 
386 	/*
387 	 * The caller can provide the address of the first frame directly
388 	 * (first_frame) or indirectly (regs->sp) to indicate which stack frame
389 	 * to start unwinding at.  Skip ahead until we reach it.
390 	 */
391 	while (!unwind_done(state) &&
392 	       (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
393 			state->bp < first_frame))
394 		unwind_next_frame(state);
395 }
396 EXPORT_SYMBOL_GPL(__unwind_start);
397