xref: /linux/arch/x86/kernel/unwind_frame.c (revision 5ed8d8bb38c5dcd78de540182cedb0fb19399aab)
1 #include <linux/sched.h>
2 #include <linux/sched/task.h>
3 #include <linux/sched/task_stack.h>
4 #include <asm/ptrace.h>
5 #include <asm/bitops.h>
6 #include <asm/stacktrace.h>
7 #include <asm/unwind.h>
8 
9 #define FRAME_HEADER_SIZE (sizeof(long) * 2)
10 
11 /*
12  * This disables KASAN checking when reading a value from another task's stack,
13  * since the other task could be running on another CPU and could have poisoned
14  * the stack in the meantime.
15  */
16 #define READ_ONCE_TASK_STACK(task, x)			\
17 ({							\
18 	unsigned long val;				\
19 	if (task == current)				\
20 		val = READ_ONCE(x);			\
21 	else						\
22 		val = READ_ONCE_NOCHECK(x);		\
23 	val;						\
24 })
25 
26 static void unwind_dump(struct unwind_state *state, unsigned long *sp)
27 {
28 	static bool dumped_before = false;
29 	bool prev_zero, zero = false;
30 	unsigned long word;
31 
32 	if (dumped_before)
33 		return;
34 
35 	dumped_before = true;
36 
37 	printk_deferred("unwind stack type:%d next_sp:%p mask:%lx graph_idx:%d\n",
38 			state->stack_info.type, state->stack_info.next_sp,
39 			state->stack_mask, state->graph_idx);
40 
41 	for (sp = state->orig_sp; sp < state->stack_info.end; sp++) {
42 		word = READ_ONCE_NOCHECK(*sp);
43 
44 		prev_zero = zero;
45 		zero = word == 0;
46 
47 		if (zero) {
48 			if (!prev_zero)
49 				printk_deferred("%p: %016x ...\n", sp, 0);
50 			continue;
51 		}
52 
53 		printk_deferred("%p: %016lx (%pB)\n", sp, word, (void *)word);
54 	}
55 }
56 
57 unsigned long unwind_get_return_address(struct unwind_state *state)
58 {
59 	unsigned long addr;
60 	unsigned long *addr_p = unwind_get_return_address_ptr(state);
61 
62 	if (unwind_done(state))
63 		return 0;
64 
65 	if (state->regs && user_mode(state->regs))
66 		return 0;
67 
68 	addr = READ_ONCE_TASK_STACK(state->task, *addr_p);
69 	addr = ftrace_graph_ret_addr(state->task, &state->graph_idx, addr,
70 				     addr_p);
71 
72 	return __kernel_text_address(addr) ? addr : 0;
73 }
74 EXPORT_SYMBOL_GPL(unwind_get_return_address);
75 
76 static size_t regs_size(struct pt_regs *regs)
77 {
78 	/* x86_32 regs from kernel mode are two words shorter: */
79 	if (IS_ENABLED(CONFIG_X86_32) && !user_mode(regs))
80 		return sizeof(*regs) - 2*sizeof(long);
81 
82 	return sizeof(*regs);
83 }
84 
85 #ifdef CONFIG_X86_32
86 #define GCC_REALIGN_WORDS 3
87 #else
88 #define GCC_REALIGN_WORDS 1
89 #endif
90 
91 static bool is_last_task_frame(struct unwind_state *state)
92 {
93 	unsigned long *last_bp = (unsigned long *)task_pt_regs(state->task) - 2;
94 	unsigned long *aligned_bp = last_bp - GCC_REALIGN_WORDS;
95 
96 	/*
97 	 * We have to check for the last task frame at two different locations
98 	 * because gcc can occasionally decide to realign the stack pointer and
99 	 * change the offset of the stack frame in the prologue of a function
100 	 * called by head/entry code.  Examples:
101 	 *
102 	 * <start_secondary>:
103 	 *      push   %edi
104 	 *      lea    0x8(%esp),%edi
105 	 *      and    $0xfffffff8,%esp
106 	 *      pushl  -0x4(%edi)
107 	 *      push   %ebp
108 	 *      mov    %esp,%ebp
109 	 *
110 	 * <x86_64_start_kernel>:
111 	 *      lea    0x8(%rsp),%r10
112 	 *      and    $0xfffffffffffffff0,%rsp
113 	 *      pushq  -0x8(%r10)
114 	 *      push   %rbp
115 	 *      mov    %rsp,%rbp
116 	 *
117 	 * Note that after aligning the stack, it pushes a duplicate copy of
118 	 * the return address before pushing the frame pointer.
119 	 */
120 	return (state->bp == last_bp ||
121 		(state->bp == aligned_bp && *(aligned_bp+1) == *(last_bp+1)));
122 }
123 
124 /*
125  * This determines if the frame pointer actually contains an encoded pointer to
126  * pt_regs on the stack.  See ENCODE_FRAME_POINTER.
127  */
128 static struct pt_regs *decode_frame_pointer(unsigned long *bp)
129 {
130 	unsigned long regs = (unsigned long)bp;
131 
132 	if (!(regs & 0x1))
133 		return NULL;
134 
135 	return (struct pt_regs *)(regs & ~0x1);
136 }
137 
138 static bool update_stack_state(struct unwind_state *state,
139 			       unsigned long *next_bp)
140 {
141 	struct stack_info *info = &state->stack_info;
142 	enum stack_type prev_type = info->type;
143 	struct pt_regs *regs;
144 	unsigned long *frame, *prev_frame_end;
145 	size_t len;
146 
147 	if (state->regs)
148 		prev_frame_end = (void *)state->regs + regs_size(state->regs);
149 	else
150 		prev_frame_end = (void *)state->bp + FRAME_HEADER_SIZE;
151 
152 	/* Is the next frame pointer an encoded pointer to pt_regs? */
153 	regs = decode_frame_pointer(next_bp);
154 	if (regs) {
155 		frame = (unsigned long *)regs;
156 		len = regs_size(regs);
157 	} else {
158 		frame = next_bp;
159 		len = FRAME_HEADER_SIZE;
160 	}
161 
162 	/*
163 	 * If the next bp isn't on the current stack, switch to the next one.
164 	 *
165 	 * We may have to traverse multiple stacks to deal with the possibility
166 	 * that info->next_sp could point to an empty stack and the next bp
167 	 * could be on a subsequent stack.
168 	 */
169 	while (!on_stack(info, frame, len))
170 		if (get_stack_info(info->next_sp, state->task, info,
171 				   &state->stack_mask))
172 			return false;
173 
174 	/* Make sure it only unwinds up and doesn't overlap the prev frame: */
175 	if (state->orig_sp && state->stack_info.type == prev_type &&
176 	    frame < prev_frame_end)
177 		return false;
178 
179 	/* Move state to the next frame: */
180 	if (regs) {
181 		state->regs = regs;
182 		state->bp = NULL;
183 	} else {
184 		state->bp = next_bp;
185 		state->regs = NULL;
186 	}
187 
188 	/* Save the original stack pointer for unwind_dump(): */
189 	if (!state->orig_sp || info->type != prev_type)
190 		state->orig_sp = frame;
191 
192 	return true;
193 }
194 
195 bool unwind_next_frame(struct unwind_state *state)
196 {
197 	struct pt_regs *regs;
198 	unsigned long *next_bp;
199 
200 	if (unwind_done(state))
201 		return false;
202 
203 	/* Have we reached the end? */
204 	if (state->regs && user_mode(state->regs))
205 		goto the_end;
206 
207 	if (is_last_task_frame(state)) {
208 		regs = task_pt_regs(state->task);
209 
210 		/*
211 		 * kthreads (other than the boot CPU's idle thread) have some
212 		 * partial regs at the end of their stack which were placed
213 		 * there by copy_thread_tls().  But the regs don't have any
214 		 * useful information, so we can skip them.
215 		 *
216 		 * This user_mode() check is slightly broader than a PF_KTHREAD
217 		 * check because it also catches the awkward situation where a
218 		 * newly forked kthread transitions into a user task by calling
219 		 * do_execve(), which eventually clears PF_KTHREAD.
220 		 */
221 		if (!user_mode(regs))
222 			goto the_end;
223 
224 		/*
225 		 * We're almost at the end, but not quite: there's still the
226 		 * syscall regs frame.  Entry code doesn't encode the regs
227 		 * pointer for syscalls, so we have to set it manually.
228 		 */
229 		state->regs = regs;
230 		state->bp = NULL;
231 		return true;
232 	}
233 
234 	/* Get the next frame pointer: */
235 	if (state->regs)
236 		next_bp = (unsigned long *)state->regs->bp;
237 	else
238 		next_bp = (unsigned long *)READ_ONCE_TASK_STACK(state->task, *state->bp);
239 
240 	/* Move to the next frame if it's safe: */
241 	if (!update_stack_state(state, next_bp)) {
242 		/*
243 		 * Don't warn on bad regs->bp.  An interrupt in entry code
244 		 * might cause a false positive warning.
245 		 */
246 		if (state->regs)
247 			goto the_end;
248 
249 		goto bad_address;
250 	}
251 
252 	return true;
253 
254 bad_address:
255 	/*
256 	 * When unwinding a non-current task, the task might actually be
257 	 * running on another CPU, in which case it could be modifying its
258 	 * stack while we're reading it.  This is generally not a problem and
259 	 * can be ignored as long as the caller understands that unwinding
260 	 * another task will not always succeed.
261 	 */
262 	if (state->task != current)
263 		goto the_end;
264 
265 	if (state->regs) {
266 		printk_deferred_once(KERN_WARNING
267 			"WARNING: kernel stack regs at %p in %s:%d has bad 'bp' value %p\n",
268 			state->regs, state->task->comm,
269 			state->task->pid, next_bp);
270 		unwind_dump(state, (unsigned long *)state->regs);
271 	} else {
272 		printk_deferred_once(KERN_WARNING
273 			"WARNING: kernel stack frame pointer at %p in %s:%d has bad value %p\n",
274 			state->bp, state->task->comm,
275 			state->task->pid, next_bp);
276 		unwind_dump(state, state->bp);
277 	}
278 the_end:
279 	state->stack_info.type = STACK_TYPE_UNKNOWN;
280 	return false;
281 }
282 EXPORT_SYMBOL_GPL(unwind_next_frame);
283 
284 void __unwind_start(struct unwind_state *state, struct task_struct *task,
285 		    struct pt_regs *regs, unsigned long *first_frame)
286 {
287 	unsigned long *bp;
288 
289 	memset(state, 0, sizeof(*state));
290 	state->task = task;
291 
292 	/* Don't even attempt to start from user mode regs: */
293 	if (regs && user_mode(regs)) {
294 		state->stack_info.type = STACK_TYPE_UNKNOWN;
295 		return;
296 	}
297 
298 	bp = get_frame_pointer(task, regs);
299 
300 	/* Initialize stack info and make sure the frame data is accessible: */
301 	get_stack_info(bp, state->task, &state->stack_info,
302 		       &state->stack_mask);
303 	update_stack_state(state, bp);
304 
305 	/*
306 	 * The caller can provide the address of the first frame directly
307 	 * (first_frame) or indirectly (regs->sp) to indicate which stack frame
308 	 * to start unwinding at.  Skip ahead until we reach it.
309 	 */
310 	while (!unwind_done(state) &&
311 	       (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
312 			state->bp < first_frame))
313 		unwind_next_frame(state);
314 }
315 EXPORT_SYMBOL_GPL(__unwind_start);
316