xref: /linux/arch/x86/kernel/umip.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 /*
2  * umip.c Emulation for instruction protected by the User-Mode Instruction
3  * Prevention feature
4  *
5  * Copyright (c) 2017, Intel Corporation.
6  * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
7  */
8 
9 #include <linux/uaccess.h>
10 #include <asm/umip.h>
11 #include <asm/traps.h>
12 #include <asm/insn.h>
13 #include <asm/insn-eval.h>
14 #include <linux/ratelimit.h>
15 
16 #undef pr_fmt
17 #define pr_fmt(fmt) "umip: " fmt
18 
19 /** DOC: Emulation for User-Mode Instruction Prevention (UMIP)
20  *
21  * User-Mode Instruction Prevention is a security feature present in recent
22  * x86 processors that, when enabled, prevents a group of instructions (SGDT,
23  * SIDT, SLDT, SMSW and STR) from being run in user mode by issuing a general
24  * protection fault if the instruction is executed with CPL > 0.
25  *
26  * Rather than relaying to the user space the general protection fault caused by
27  * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be
28  * trapped and emulate the result of such instructions to provide dummy values.
29  * This allows to both conserve the current kernel behavior and not reveal the
30  * system resources that UMIP intends to protect (i.e., the locations of the
31  * global descriptor and interrupt descriptor tables, the segment selectors of
32  * the local descriptor table, the value of the task state register and the
33  * contents of the CR0 register).
34  *
35  * This emulation is needed because certain applications (e.g., WineHQ and
36  * DOSEMU2) rely on this subset of instructions to function.
37  *
38  * The instructions protected by UMIP can be split in two groups. Those which
39  * return a kernel memory address (SGDT and SIDT) and those which return a
40  * value (SLDT, STR and SMSW).
41  *
42  * For the instructions that return a kernel memory address, applications
43  * such as WineHQ rely on the result being located in the kernel memory space,
44  * not the actual location of the table. The result is emulated as a hard-coded
45  * value that, lies close to the top of the kernel memory. The limit for the GDT
46  * and the IDT are set to zero.
47  *
48  * The instruction SMSW is emulated to return the value that the register CR0
49  * has at boot time as set in the head_32.
50  * SLDT and STR are emulated to return the values that the kernel programmatically
51  * assigns:
52  * - SLDT returns (GDT_ENTRY_LDT * 8) if an LDT has been set, 0 if not.
53  * - STR returns (GDT_ENTRY_TSS * 8).
54  *
55  * Emulation is provided for both 32-bit and 64-bit processes.
56  *
57  * Care is taken to appropriately emulate the results when segmentation is
58  * used. That is, rather than relying on USER_DS and USER_CS, the function
59  * insn_get_addr_ref() inspects the segment descriptor pointed by the
60  * registers in pt_regs. This ensures that we correctly obtain the segment
61  * base address and the address and operand sizes even if the user space
62  * application uses a local descriptor table.
63  */
64 
65 #define UMIP_DUMMY_GDT_BASE 0xfffffffffffe0000ULL
66 #define UMIP_DUMMY_IDT_BASE 0xffffffffffff0000ULL
67 
68 /*
69  * The SGDT and SIDT instructions store the contents of the global descriptor
70  * table and interrupt table registers, respectively. The destination is a
71  * memory operand of X+2 bytes. X bytes are used to store the base address of
72  * the table and 2 bytes are used to store the limit. In 32-bit processes X
73  * has a value of 4, in 64-bit processes X has a value of 8.
74  */
75 #define UMIP_GDT_IDT_BASE_SIZE_64BIT 8
76 #define UMIP_GDT_IDT_BASE_SIZE_32BIT 4
77 #define UMIP_GDT_IDT_LIMIT_SIZE 2
78 
79 #define	UMIP_INST_SGDT	0	/* 0F 01 /0 */
80 #define	UMIP_INST_SIDT	1	/* 0F 01 /1 */
81 #define	UMIP_INST_SMSW	2	/* 0F 01 /4 */
82 #define	UMIP_INST_SLDT  3       /* 0F 00 /0 */
83 #define	UMIP_INST_STR   4       /* 0F 00 /1 */
84 
85 static const char * const umip_insns[5] = {
86 	[UMIP_INST_SGDT] = "SGDT",
87 	[UMIP_INST_SIDT] = "SIDT",
88 	[UMIP_INST_SMSW] = "SMSW",
89 	[UMIP_INST_SLDT] = "SLDT",
90 	[UMIP_INST_STR] = "STR",
91 };
92 
93 #define umip_pr_err(regs, fmt, ...) \
94 	umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__)
95 #define umip_pr_warn(regs, fmt, ...) \
96 	umip_printk(regs, KERN_WARNING, fmt,  ##__VA_ARGS__)
97 
98 /**
99  * umip_printk() - Print a rate-limited message
100  * @regs:	Register set with the context in which the warning is printed
101  * @log_level:	Kernel log level to print the message
102  * @fmt:	The text string to print
103  *
104  * Print the text contained in @fmt. The print rate is limited to bursts of 5
105  * messages every two minutes. The purpose of this customized version of
106  * printk() is to print messages when user space processes use any of the
107  * UMIP-protected instructions. Thus, the printed text is prepended with the
108  * task name and process ID number of the current task as well as the
109  * instruction and stack pointers in @regs as seen when entering kernel mode.
110  *
111  * Returns:
112  *
113  * None.
114  */
115 static __printf(3, 4)
116 void umip_printk(const struct pt_regs *regs, const char *log_level,
117 		 const char *fmt, ...)
118 {
119 	/* Bursts of 5 messages every two minutes */
120 	static DEFINE_RATELIMIT_STATE(ratelimit, 2 * 60 * HZ, 5);
121 	struct task_struct *tsk = current;
122 	struct va_format vaf;
123 	va_list args;
124 
125 	if (!__ratelimit(&ratelimit))
126 		return;
127 
128 	va_start(args, fmt);
129 	vaf.fmt = fmt;
130 	vaf.va = &args;
131 	printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level, tsk->comm,
132 	       task_pid_nr(tsk), regs->ip, regs->sp, &vaf);
133 	va_end(args);
134 }
135 
136 /**
137  * identify_insn() - Identify a UMIP-protected instruction
138  * @insn:	Instruction structure with opcode and ModRM byte.
139  *
140  * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected
141  * instruction that can be emulated.
142  *
143  * Returns:
144  *
145  * On success, a constant identifying a specific UMIP-protected instruction that
146  * can be emulated.
147  *
148  * -EINVAL on error or when not an UMIP-protected instruction that can be
149  * emulated.
150  */
151 static int identify_insn(struct insn *insn)
152 {
153 	/* By getting modrm we also get the opcode. */
154 	insn_get_modrm(insn);
155 
156 	if (!insn->modrm.nbytes)
157 		return -EINVAL;
158 
159 	/* All the instructions of interest start with 0x0f. */
160 	if (insn->opcode.bytes[0] != 0xf)
161 		return -EINVAL;
162 
163 	if (insn->opcode.bytes[1] == 0x1) {
164 		switch (X86_MODRM_REG(insn->modrm.value)) {
165 		case 0:
166 			return UMIP_INST_SGDT;
167 		case 1:
168 			return UMIP_INST_SIDT;
169 		case 4:
170 			return UMIP_INST_SMSW;
171 		default:
172 			return -EINVAL;
173 		}
174 	} else if (insn->opcode.bytes[1] == 0x0) {
175 		if (X86_MODRM_REG(insn->modrm.value) == 0)
176 			return UMIP_INST_SLDT;
177 		else if (X86_MODRM_REG(insn->modrm.value) == 1)
178 			return UMIP_INST_STR;
179 		else
180 			return -EINVAL;
181 	} else {
182 		return -EINVAL;
183 	}
184 }
185 
186 /**
187  * emulate_umip_insn() - Emulate UMIP instructions and return dummy values
188  * @insn:	Instruction structure with operands
189  * @umip_inst:	A constant indicating the instruction to emulate
190  * @data:	Buffer into which the dummy result is stored
191  * @data_size:	Size of the emulated result
192  * @x86_64:	true if process is 64-bit, false otherwise
193  *
194  * Emulate an instruction protected by UMIP and provide a dummy result. The
195  * result of the emulation is saved in @data. The size of the results depends
196  * on both the instruction and type of operand (register vs memory address).
197  * The size of the result is updated in @data_size. Caller is responsible
198  * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE +
199  * UMIP_GDT_IDT_LIMIT_SIZE bytes.
200  *
201  * Returns:
202  *
203  * 0 on success, -EINVAL on error while emulating.
204  */
205 static int emulate_umip_insn(struct insn *insn, int umip_inst,
206 			     unsigned char *data, int *data_size, bool x86_64)
207 {
208 	if (!data || !data_size || !insn)
209 		return -EINVAL;
210 	/*
211 	 * These two instructions return the base address and limit of the
212 	 * global and interrupt descriptor table, respectively. According to the
213 	 * Intel Software Development manual, the base address can be 24-bit,
214 	 * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is
215 	 * 16-bit, the returned value of the base address is supposed to be a
216 	 * zero-extended 24-byte number. However, it seems that a 32-byte number
217 	 * is always returned irrespective of the operand size.
218 	 */
219 	if (umip_inst == UMIP_INST_SGDT || umip_inst == UMIP_INST_SIDT) {
220 		u64 dummy_base_addr;
221 		u16 dummy_limit = 0;
222 
223 		/* SGDT and SIDT do not use registers operands. */
224 		if (X86_MODRM_MOD(insn->modrm.value) == 3)
225 			return -EINVAL;
226 
227 		if (umip_inst == UMIP_INST_SGDT)
228 			dummy_base_addr = UMIP_DUMMY_GDT_BASE;
229 		else
230 			dummy_base_addr = UMIP_DUMMY_IDT_BASE;
231 
232 		/*
233 		 * 64-bit processes use the entire dummy base address.
234 		 * 32-bit processes use the lower 32 bits of the base address.
235 		 * dummy_base_addr is always 64 bits, but we memcpy the correct
236 		 * number of bytes from it to the destination.
237 		 */
238 		if (x86_64)
239 			*data_size = UMIP_GDT_IDT_BASE_SIZE_64BIT;
240 		else
241 			*data_size = UMIP_GDT_IDT_BASE_SIZE_32BIT;
242 
243 		memcpy(data + 2, &dummy_base_addr, *data_size);
244 
245 		*data_size += UMIP_GDT_IDT_LIMIT_SIZE;
246 		memcpy(data, &dummy_limit, UMIP_GDT_IDT_LIMIT_SIZE);
247 
248 	} else if (umip_inst == UMIP_INST_SMSW || umip_inst == UMIP_INST_SLDT ||
249 		   umip_inst == UMIP_INST_STR) {
250 		unsigned long dummy_value;
251 
252 		if (umip_inst == UMIP_INST_SMSW) {
253 			dummy_value = CR0_STATE;
254 		} else if (umip_inst == UMIP_INST_STR) {
255 			dummy_value = GDT_ENTRY_TSS * 8;
256 		} else if (umip_inst == UMIP_INST_SLDT) {
257 #ifdef CONFIG_MODIFY_LDT_SYSCALL
258 			down_read(&current->mm->context.ldt_usr_sem);
259 			if (current->mm->context.ldt)
260 				dummy_value = GDT_ENTRY_LDT * 8;
261 			else
262 				dummy_value = 0;
263 			up_read(&current->mm->context.ldt_usr_sem);
264 #else
265 			dummy_value = 0;
266 #endif
267 		}
268 
269 		/*
270 		 * For these 3 instructions, the number
271 		 * of bytes to be copied in the result buffer is determined
272 		 * by whether the operand is a register or a memory location.
273 		 * If operand is a register, return as many bytes as the operand
274 		 * size. If operand is memory, return only the two least
275 		 * significant bytes.
276 		 */
277 		if (X86_MODRM_MOD(insn->modrm.value) == 3)
278 			*data_size = insn->opnd_bytes;
279 		else
280 			*data_size = 2;
281 
282 		memcpy(data, &dummy_value, *data_size);
283 	} else {
284 		return -EINVAL;
285 	}
286 
287 	return 0;
288 }
289 
290 /**
291  * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR
292  * @addr:	Address that caused the signal
293  * @regs:	Register set containing the instruction pointer
294  *
295  * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is
296  * intended to be used to provide a segmentation fault when the result of the
297  * UMIP emulation could not be copied to the user space memory.
298  *
299  * Returns: none
300  */
301 static void force_sig_info_umip_fault(void __user *addr, struct pt_regs *regs)
302 {
303 	struct task_struct *tsk = current;
304 
305 	tsk->thread.cr2		= (unsigned long)addr;
306 	tsk->thread.error_code	= X86_PF_USER | X86_PF_WRITE;
307 	tsk->thread.trap_nr	= X86_TRAP_PF;
308 
309 	force_sig_fault(SIGSEGV, SEGV_MAPERR, addr);
310 
311 	if (!(show_unhandled_signals && unhandled_signal(tsk, SIGSEGV)))
312 		return;
313 
314 	umip_pr_err(regs, "segfault in emulation. error%x\n",
315 		    X86_PF_USER | X86_PF_WRITE);
316 }
317 
318 /**
319  * fixup_umip_exception() - Fixup a general protection fault caused by UMIP
320  * @regs:	Registers as saved when entering the #GP handler
321  *
322  * The instructions SGDT, SIDT, STR, SMSW and SLDT cause a general protection
323  * fault if executed with CPL > 0 (i.e., from user space). This function fixes
324  * the exception up and provides dummy results for SGDT, SIDT and SMSW; STR
325  * and SLDT are not fixed up.
326  *
327  * If operands are memory addresses, results are copied to user-space memory as
328  * indicated by the instruction pointed by eIP using the registers indicated in
329  * the instruction operands. If operands are registers, results are copied into
330  * the context that was saved when entering kernel mode.
331  *
332  * Returns:
333  *
334  * True if emulation was successful; false if not.
335  */
336 bool fixup_umip_exception(struct pt_regs *regs)
337 {
338 	int nr_copied, reg_offset, dummy_data_size, umip_inst;
339 	/* 10 bytes is the maximum size of the result of UMIP instructions */
340 	unsigned char dummy_data[10] = { 0 };
341 	unsigned char buf[MAX_INSN_SIZE];
342 	unsigned long *reg_addr;
343 	void __user *uaddr;
344 	struct insn insn;
345 
346 	if (!regs)
347 		return false;
348 
349 	nr_copied = insn_fetch_from_user(regs, buf);
350 
351 	/*
352 	 * The insn_fetch_from_user above could have failed if user code
353 	 * is protected by a memory protection key. Give up on emulation
354 	 * in such a case.  Should we issue a page fault?
355 	 */
356 	if (!nr_copied)
357 		return false;
358 
359 	if (!insn_decode_from_regs(&insn, regs, buf, nr_copied))
360 		return false;
361 
362 	umip_inst = identify_insn(&insn);
363 	if (umip_inst < 0)
364 		return false;
365 
366 	umip_pr_warn(regs, "%s instruction cannot be used by applications.\n",
367 			umip_insns[umip_inst]);
368 
369 	umip_pr_warn(regs, "For now, expensive software emulation returns the result.\n");
370 
371 	if (emulate_umip_insn(&insn, umip_inst, dummy_data, &dummy_data_size,
372 			      user_64bit_mode(regs)))
373 		return false;
374 
375 	/*
376 	 * If operand is a register, write result to the copy of the register
377 	 * value that was pushed to the stack when entering into kernel mode.
378 	 * Upon exit, the value we write will be restored to the actual hardware
379 	 * register.
380 	 */
381 	if (X86_MODRM_MOD(insn.modrm.value) == 3) {
382 		reg_offset = insn_get_modrm_rm_off(&insn, regs);
383 
384 		/*
385 		 * Negative values are usually errors. In memory addressing,
386 		 * the exception is -EDOM. Since we expect a register operand,
387 		 * all negative values are errors.
388 		 */
389 		if (reg_offset < 0)
390 			return false;
391 
392 		reg_addr = (unsigned long *)((unsigned long)regs + reg_offset);
393 		memcpy(reg_addr, dummy_data, dummy_data_size);
394 	} else {
395 		uaddr = insn_get_addr_ref(&insn, regs);
396 		if ((unsigned long)uaddr == -1L)
397 			return false;
398 
399 		nr_copied = copy_to_user(uaddr, dummy_data, dummy_data_size);
400 		if (nr_copied  > 0) {
401 			/*
402 			 * If copy fails, send a signal and tell caller that
403 			 * fault was fixed up.
404 			 */
405 			force_sig_info_umip_fault(uaddr, regs);
406 			return true;
407 		}
408 	}
409 
410 	/* increase IP to let the program keep going */
411 	regs->ip += insn.length;
412 	return true;
413 }
414