xref: /linux/arch/x86/kernel/tsc_sync.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  * check TSC synchronization.
3  *
4  * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
5  *
6  * We check whether all boot CPUs have their TSC's synchronized,
7  * print a warning if not and turn off the TSC clock-source.
8  *
9  * The warp-check is point-to-point between two CPUs, the CPU
10  * initiating the bootup is the 'source CPU', the freshly booting
11  * CPU is the 'target CPU'.
12  *
13  * Only two CPUs may participate - they can enter in any order.
14  * ( The serial nature of the boot logic and the CPU hotplug lock
15  *   protects against more than 2 CPUs entering this code. )
16  */
17 #include <linux/spinlock.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/smp.h>
21 #include <linux/nmi.h>
22 #include <asm/tsc.h>
23 
24 /*
25  * Entry/exit counters that make sure that both CPUs
26  * run the measurement code at once:
27  */
28 static __cpuinitdata atomic_t start_count;
29 static __cpuinitdata atomic_t stop_count;
30 
31 /*
32  * We use a raw spinlock in this exceptional case, because
33  * we want to have the fastest, inlined, non-debug version
34  * of a critical section, to be able to prove TSC time-warps:
35  */
36 static __cpuinitdata raw_spinlock_t sync_lock = __RAW_SPIN_LOCK_UNLOCKED;
37 static __cpuinitdata cycles_t last_tsc;
38 static __cpuinitdata cycles_t max_warp;
39 static __cpuinitdata int nr_warps;
40 
41 /*
42  * TSC-warp measurement loop running on both CPUs:
43  */
44 static __cpuinit void check_tsc_warp(void)
45 {
46 	cycles_t start, now, prev, end;
47 	int i;
48 
49 	rdtsc_barrier();
50 	start = get_cycles();
51 	rdtsc_barrier();
52 	/*
53 	 * The measurement runs for 20 msecs:
54 	 */
55 	end = start + tsc_khz * 20ULL;
56 	now = start;
57 
58 	for (i = 0; ; i++) {
59 		/*
60 		 * We take the global lock, measure TSC, save the
61 		 * previous TSC that was measured (possibly on
62 		 * another CPU) and update the previous TSC timestamp.
63 		 */
64 		__raw_spin_lock(&sync_lock);
65 		prev = last_tsc;
66 		rdtsc_barrier();
67 		now = get_cycles();
68 		rdtsc_barrier();
69 		last_tsc = now;
70 		__raw_spin_unlock(&sync_lock);
71 
72 		/*
73 		 * Be nice every now and then (and also check whether
74 		 * measurement is done [we also insert a 10 million
75 		 * loops safety exit, so we dont lock up in case the
76 		 * TSC readout is totally broken]):
77 		 */
78 		if (unlikely(!(i & 7))) {
79 			if (now > end || i > 10000000)
80 				break;
81 			cpu_relax();
82 			touch_nmi_watchdog();
83 		}
84 		/*
85 		 * Outside the critical section we can now see whether
86 		 * we saw a time-warp of the TSC going backwards:
87 		 */
88 		if (unlikely(prev > now)) {
89 			__raw_spin_lock(&sync_lock);
90 			max_warp = max(max_warp, prev - now);
91 			nr_warps++;
92 			__raw_spin_unlock(&sync_lock);
93 		}
94 	}
95 	WARN(!(now-start),
96 		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
97 			now-start, end-start);
98 }
99 
100 /*
101  * Source CPU calls into this - it waits for the freshly booted
102  * target CPU to arrive and then starts the measurement:
103  */
104 void __cpuinit check_tsc_sync_source(int cpu)
105 {
106 	int cpus = 2;
107 
108 	/*
109 	 * No need to check if we already know that the TSC is not
110 	 * synchronized:
111 	 */
112 	if (unsynchronized_tsc())
113 		return;
114 
115 	printk(KERN_INFO "checking TSC synchronization [CPU#%d -> CPU#%d]:",
116 			  smp_processor_id(), cpu);
117 
118 	/*
119 	 * Reset it - in case this is a second bootup:
120 	 */
121 	atomic_set(&stop_count, 0);
122 
123 	/*
124 	 * Wait for the target to arrive:
125 	 */
126 	while (atomic_read(&start_count) != cpus-1)
127 		cpu_relax();
128 	/*
129 	 * Trigger the target to continue into the measurement too:
130 	 */
131 	atomic_inc(&start_count);
132 
133 	check_tsc_warp();
134 
135 	while (atomic_read(&stop_count) != cpus-1)
136 		cpu_relax();
137 
138 	if (nr_warps) {
139 		printk("\n");
140 		printk(KERN_WARNING "Measured %Ld cycles TSC warp between CPUs,"
141 				    " turning off TSC clock.\n", max_warp);
142 		mark_tsc_unstable("check_tsc_sync_source failed");
143 	} else {
144 		printk(" passed.\n");
145 	}
146 
147 	/*
148 	 * Reset it - just in case we boot another CPU later:
149 	 */
150 	atomic_set(&start_count, 0);
151 	nr_warps = 0;
152 	max_warp = 0;
153 	last_tsc = 0;
154 
155 	/*
156 	 * Let the target continue with the bootup:
157 	 */
158 	atomic_inc(&stop_count);
159 }
160 
161 /*
162  * Freshly booted CPUs call into this:
163  */
164 void __cpuinit check_tsc_sync_target(void)
165 {
166 	int cpus = 2;
167 
168 	if (unsynchronized_tsc())
169 		return;
170 
171 	/*
172 	 * Register this CPU's participation and wait for the
173 	 * source CPU to start the measurement:
174 	 */
175 	atomic_inc(&start_count);
176 	while (atomic_read(&start_count) != cpus)
177 		cpu_relax();
178 
179 	check_tsc_warp();
180 
181 	/*
182 	 * Ok, we are done:
183 	 */
184 	atomic_inc(&stop_count);
185 
186 	/*
187 	 * Wait for the source CPU to print stuff:
188 	 */
189 	while (atomic_read(&stop_count) != cpus)
190 		cpu_relax();
191 }
192 #undef NR_LOOPS
193 
194