xref: /linux/arch/x86/kernel/tsc_sync.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * arch/x86_64/kernel/tsc_sync.c: check TSC synchronization.
3  *
4  * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
5  *
6  * We check whether all boot CPUs have their TSC's synchronized,
7  * print a warning if not and turn off the TSC clock-source.
8  *
9  * The warp-check is point-to-point between two CPUs, the CPU
10  * initiating the bootup is the 'source CPU', the freshly booting
11  * CPU is the 'target CPU'.
12  *
13  * Only two CPUs may participate - they can enter in any order.
14  * ( The serial nature of the boot logic and the CPU hotplug lock
15  *   protects against more than 2 CPUs entering this code. )
16  */
17 #include <linux/spinlock.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/smp.h>
21 #include <linux/nmi.h>
22 #include <asm/tsc.h>
23 
24 /*
25  * Entry/exit counters that make sure that both CPUs
26  * run the measurement code at once:
27  */
28 static __cpuinitdata atomic_t start_count;
29 static __cpuinitdata atomic_t stop_count;
30 
31 /*
32  * We use a raw spinlock in this exceptional case, because
33  * we want to have the fastest, inlined, non-debug version
34  * of a critical section, to be able to prove TSC time-warps:
35  */
36 static __cpuinitdata raw_spinlock_t sync_lock = __RAW_SPIN_LOCK_UNLOCKED;
37 static __cpuinitdata cycles_t last_tsc;
38 static __cpuinitdata cycles_t max_warp;
39 static __cpuinitdata int nr_warps;
40 
41 /*
42  * TSC-warp measurement loop running on both CPUs:
43  */
44 static __cpuinit void check_tsc_warp(void)
45 {
46 	cycles_t start, now, prev, end;
47 	int i;
48 
49 	start = get_cycles_sync();
50 	/*
51 	 * The measurement runs for 20 msecs:
52 	 */
53 	end = start + tsc_khz * 20ULL;
54 	now = start;
55 
56 	for (i = 0; ; i++) {
57 		/*
58 		 * We take the global lock, measure TSC, save the
59 		 * previous TSC that was measured (possibly on
60 		 * another CPU) and update the previous TSC timestamp.
61 		 */
62 		__raw_spin_lock(&sync_lock);
63 		prev = last_tsc;
64 		now = get_cycles_sync();
65 		last_tsc = now;
66 		__raw_spin_unlock(&sync_lock);
67 
68 		/*
69 		 * Be nice every now and then (and also check whether
70 		 * measurement is done [we also insert a 100 million
71 		 * loops safety exit, so we dont lock up in case the
72 		 * TSC readout is totally broken]):
73 		 */
74 		if (unlikely(!(i & 7))) {
75 			if (now > end || i > 100000000)
76 				break;
77 			cpu_relax();
78 			touch_nmi_watchdog();
79 		}
80 		/*
81 		 * Outside the critical section we can now see whether
82 		 * we saw a time-warp of the TSC going backwards:
83 		 */
84 		if (unlikely(prev > now)) {
85 			__raw_spin_lock(&sync_lock);
86 			max_warp = max(max_warp, prev - now);
87 			nr_warps++;
88 			__raw_spin_unlock(&sync_lock);
89 		}
90 
91 	}
92 }
93 
94 /*
95  * Source CPU calls into this - it waits for the freshly booted
96  * target CPU to arrive and then starts the measurement:
97  */
98 void __cpuinit check_tsc_sync_source(int cpu)
99 {
100 	int cpus = 2;
101 
102 	/*
103 	 * No need to check if we already know that the TSC is not
104 	 * synchronized:
105 	 */
106 	if (unsynchronized_tsc())
107 		return;
108 
109 	printk(KERN_INFO "checking TSC synchronization [CPU#%d -> CPU#%d]:",
110 			  smp_processor_id(), cpu);
111 
112 	/*
113 	 * Reset it - in case this is a second bootup:
114 	 */
115 	atomic_set(&stop_count, 0);
116 
117 	/*
118 	 * Wait for the target to arrive:
119 	 */
120 	while (atomic_read(&start_count) != cpus-1)
121 		cpu_relax();
122 	/*
123 	 * Trigger the target to continue into the measurement too:
124 	 */
125 	atomic_inc(&start_count);
126 
127 	check_tsc_warp();
128 
129 	while (atomic_read(&stop_count) != cpus-1)
130 		cpu_relax();
131 
132 	/*
133 	 * Reset it - just in case we boot another CPU later:
134 	 */
135 	atomic_set(&start_count, 0);
136 
137 	if (nr_warps) {
138 		printk("\n");
139 		printk(KERN_WARNING "Measured %Ld cycles TSC warp between CPUs,"
140 				    " turning off TSC clock.\n", max_warp);
141 		mark_tsc_unstable("check_tsc_sync_source failed");
142 		nr_warps = 0;
143 		max_warp = 0;
144 		last_tsc = 0;
145 	} else {
146 		printk(" passed.\n");
147 	}
148 
149 	/*
150 	 * Let the target continue with the bootup:
151 	 */
152 	atomic_inc(&stop_count);
153 }
154 
155 /*
156  * Freshly booted CPUs call into this:
157  */
158 void __cpuinit check_tsc_sync_target(void)
159 {
160 	int cpus = 2;
161 
162 	if (unsynchronized_tsc())
163 		return;
164 
165 	/*
166 	 * Register this CPU's participation and wait for the
167 	 * source CPU to start the measurement:
168 	 */
169 	atomic_inc(&start_count);
170 	while (atomic_read(&start_count) != cpus)
171 		cpu_relax();
172 
173 	check_tsc_warp();
174 
175 	/*
176 	 * Ok, we are done:
177 	 */
178 	atomic_inc(&stop_count);
179 
180 	/*
181 	 * Wait for the source CPU to print stuff:
182 	 */
183 	while (atomic_read(&stop_count) != cpus)
184 		cpu_relax();
185 }
186 #undef NR_LOOPS
187 
188