xref: /linux/arch/x86/kernel/tsc_sync.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * check TSC synchronization.
3  *
4  * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
5  *
6  * We check whether all boot CPUs have their TSC's synchronized,
7  * print a warning if not and turn off the TSC clock-source.
8  *
9  * The warp-check is point-to-point between two CPUs, the CPU
10  * initiating the bootup is the 'source CPU', the freshly booting
11  * CPU is the 'target CPU'.
12  *
13  * Only two CPUs may participate - they can enter in any order.
14  * ( The serial nature of the boot logic and the CPU hotplug lock
15  *   protects against more than 2 CPUs entering this code. )
16  */
17 #include <linux/spinlock.h>
18 #include <linux/kernel.h>
19 #include <linux/smp.h>
20 #include <linux/nmi.h>
21 #include <asm/tsc.h>
22 
23 /*
24  * Entry/exit counters that make sure that both CPUs
25  * run the measurement code at once:
26  */
27 static atomic_t start_count;
28 static atomic_t stop_count;
29 
30 /*
31  * We use a raw spinlock in this exceptional case, because
32  * we want to have the fastest, inlined, non-debug version
33  * of a critical section, to be able to prove TSC time-warps:
34  */
35 static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
36 
37 static cycles_t last_tsc;
38 static cycles_t max_warp;
39 static int nr_warps;
40 
41 /*
42  * TSC-warp measurement loop running on both CPUs.  This is not called
43  * if there is no TSC.
44  */
45 static void check_tsc_warp(unsigned int timeout)
46 {
47 	cycles_t start, now, prev, end;
48 	int i;
49 
50 	start = rdtsc_ordered();
51 	/*
52 	 * The measurement runs for 'timeout' msecs:
53 	 */
54 	end = start + (cycles_t) tsc_khz * timeout;
55 	now = start;
56 
57 	for (i = 0; ; i++) {
58 		/*
59 		 * We take the global lock, measure TSC, save the
60 		 * previous TSC that was measured (possibly on
61 		 * another CPU) and update the previous TSC timestamp.
62 		 */
63 		arch_spin_lock(&sync_lock);
64 		prev = last_tsc;
65 		now = rdtsc_ordered();
66 		last_tsc = now;
67 		arch_spin_unlock(&sync_lock);
68 
69 		/*
70 		 * Be nice every now and then (and also check whether
71 		 * measurement is done [we also insert a 10 million
72 		 * loops safety exit, so we dont lock up in case the
73 		 * TSC readout is totally broken]):
74 		 */
75 		if (unlikely(!(i & 7))) {
76 			if (now > end || i > 10000000)
77 				break;
78 			cpu_relax();
79 			touch_nmi_watchdog();
80 		}
81 		/*
82 		 * Outside the critical section we can now see whether
83 		 * we saw a time-warp of the TSC going backwards:
84 		 */
85 		if (unlikely(prev > now)) {
86 			arch_spin_lock(&sync_lock);
87 			max_warp = max(max_warp, prev - now);
88 			nr_warps++;
89 			arch_spin_unlock(&sync_lock);
90 		}
91 	}
92 	WARN(!(now-start),
93 		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
94 			now-start, end-start);
95 }
96 
97 /*
98  * If the target CPU coming online doesn't have any of its core-siblings
99  * online, a timeout of 20msec will be used for the TSC-warp measurement
100  * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
101  * information about this socket already (and this information grows as we
102  * have more and more logical-siblings in that socket).
103  *
104  * Ideally we should be able to skip the TSC sync check on the other
105  * core-siblings, if the first logical CPU in a socket passed the sync test.
106  * But as the TSC is per-logical CPU and can potentially be modified wrongly
107  * by the bios, TSC sync test for smaller duration should be able
108  * to catch such errors. Also this will catch the condition where all the
109  * cores in the socket doesn't get reset at the same time.
110  */
111 static inline unsigned int loop_timeout(int cpu)
112 {
113 	return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
114 }
115 
116 /*
117  * Source CPU calls into this - it waits for the freshly booted
118  * target CPU to arrive and then starts the measurement:
119  */
120 void check_tsc_sync_source(int cpu)
121 {
122 	int cpus = 2;
123 
124 	/*
125 	 * No need to check if we already know that the TSC is not
126 	 * synchronized or if we have no TSC.
127 	 */
128 	if (unsynchronized_tsc())
129 		return;
130 
131 	if (tsc_clocksource_reliable) {
132 		if (cpu == (nr_cpu_ids-1) || system_state != SYSTEM_BOOTING)
133 			pr_info(
134 			"Skipped synchronization checks as TSC is reliable.\n");
135 		return;
136 	}
137 
138 	/*
139 	 * Reset it - in case this is a second bootup:
140 	 */
141 	atomic_set(&stop_count, 0);
142 
143 	/*
144 	 * Wait for the target to arrive:
145 	 */
146 	while (atomic_read(&start_count) != cpus-1)
147 		cpu_relax();
148 	/*
149 	 * Trigger the target to continue into the measurement too:
150 	 */
151 	atomic_inc(&start_count);
152 
153 	check_tsc_warp(loop_timeout(cpu));
154 
155 	while (atomic_read(&stop_count) != cpus-1)
156 		cpu_relax();
157 
158 	if (nr_warps) {
159 		pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
160 			smp_processor_id(), cpu);
161 		pr_warning("Measured %Ld cycles TSC warp between CPUs, "
162 			   "turning off TSC clock.\n", max_warp);
163 		mark_tsc_unstable("check_tsc_sync_source failed");
164 	} else {
165 		pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
166 			smp_processor_id(), cpu);
167 	}
168 
169 	/*
170 	 * Reset it - just in case we boot another CPU later:
171 	 */
172 	atomic_set(&start_count, 0);
173 	nr_warps = 0;
174 	max_warp = 0;
175 	last_tsc = 0;
176 
177 	/*
178 	 * Let the target continue with the bootup:
179 	 */
180 	atomic_inc(&stop_count);
181 }
182 
183 /*
184  * Freshly booted CPUs call into this:
185  */
186 void check_tsc_sync_target(void)
187 {
188 	int cpus = 2;
189 
190 	/* Also aborts if there is no TSC. */
191 	if (unsynchronized_tsc() || tsc_clocksource_reliable)
192 		return;
193 
194 	/*
195 	 * Register this CPU's participation and wait for the
196 	 * source CPU to start the measurement:
197 	 */
198 	atomic_inc(&start_count);
199 	while (atomic_read(&start_count) != cpus)
200 		cpu_relax();
201 
202 	check_tsc_warp(loop_timeout(smp_processor_id()));
203 
204 	/*
205 	 * Ok, we are done:
206 	 */
207 	atomic_inc(&stop_count);
208 
209 	/*
210 	 * Wait for the source CPU to print stuff:
211 	 */
212 	while (atomic_read(&stop_count) != cpus)
213 		cpu_relax();
214 }
215