xref: /linux/arch/x86/kernel/tsc_sync.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * check TSC synchronization.
3  *
4  * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
5  *
6  * We check whether all boot CPUs have their TSC's synchronized,
7  * print a warning if not and turn off the TSC clock-source.
8  *
9  * The warp-check is point-to-point between two CPUs, the CPU
10  * initiating the bootup is the 'source CPU', the freshly booting
11  * CPU is the 'target CPU'.
12  *
13  * Only two CPUs may participate - they can enter in any order.
14  * ( The serial nature of the boot logic and the CPU hotplug lock
15  *   protects against more than 2 CPUs entering this code. )
16  */
17 #include <linux/spinlock.h>
18 #include <linux/kernel.h>
19 #include <linux/smp.h>
20 #include <linux/nmi.h>
21 #include <asm/tsc.h>
22 
23 /*
24  * Entry/exit counters that make sure that both CPUs
25  * run the measurement code at once:
26  */
27 static atomic_t start_count;
28 static atomic_t stop_count;
29 
30 /*
31  * We use a raw spinlock in this exceptional case, because
32  * we want to have the fastest, inlined, non-debug version
33  * of a critical section, to be able to prove TSC time-warps:
34  */
35 static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
36 
37 static cycles_t last_tsc;
38 static cycles_t max_warp;
39 static int nr_warps;
40 
41 /*
42  * TSC-warp measurement loop running on both CPUs:
43  */
44 static void check_tsc_warp(unsigned int timeout)
45 {
46 	cycles_t start, now, prev, end;
47 	int i;
48 
49 	rdtsc_barrier();
50 	start = get_cycles();
51 	rdtsc_barrier();
52 	/*
53 	 * The measurement runs for 'timeout' msecs:
54 	 */
55 	end = start + (cycles_t) tsc_khz * timeout;
56 	now = start;
57 
58 	for (i = 0; ; i++) {
59 		/*
60 		 * We take the global lock, measure TSC, save the
61 		 * previous TSC that was measured (possibly on
62 		 * another CPU) and update the previous TSC timestamp.
63 		 */
64 		arch_spin_lock(&sync_lock);
65 		prev = last_tsc;
66 		rdtsc_barrier();
67 		now = get_cycles();
68 		rdtsc_barrier();
69 		last_tsc = now;
70 		arch_spin_unlock(&sync_lock);
71 
72 		/*
73 		 * Be nice every now and then (and also check whether
74 		 * measurement is done [we also insert a 10 million
75 		 * loops safety exit, so we dont lock up in case the
76 		 * TSC readout is totally broken]):
77 		 */
78 		if (unlikely(!(i & 7))) {
79 			if (now > end || i > 10000000)
80 				break;
81 			cpu_relax();
82 			touch_nmi_watchdog();
83 		}
84 		/*
85 		 * Outside the critical section we can now see whether
86 		 * we saw a time-warp of the TSC going backwards:
87 		 */
88 		if (unlikely(prev > now)) {
89 			arch_spin_lock(&sync_lock);
90 			max_warp = max(max_warp, prev - now);
91 			nr_warps++;
92 			arch_spin_unlock(&sync_lock);
93 		}
94 	}
95 	WARN(!(now-start),
96 		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
97 			now-start, end-start);
98 }
99 
100 /*
101  * If the target CPU coming online doesn't have any of its core-siblings
102  * online, a timeout of 20msec will be used for the TSC-warp measurement
103  * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
104  * information about this socket already (and this information grows as we
105  * have more and more logical-siblings in that socket).
106  *
107  * Ideally we should be able to skip the TSC sync check on the other
108  * core-siblings, if the first logical CPU in a socket passed the sync test.
109  * But as the TSC is per-logical CPU and can potentially be modified wrongly
110  * by the bios, TSC sync test for smaller duration should be able
111  * to catch such errors. Also this will catch the condition where all the
112  * cores in the socket doesn't get reset at the same time.
113  */
114 static inline unsigned int loop_timeout(int cpu)
115 {
116 	return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
117 }
118 
119 /*
120  * Source CPU calls into this - it waits for the freshly booted
121  * target CPU to arrive and then starts the measurement:
122  */
123 void check_tsc_sync_source(int cpu)
124 {
125 	int cpus = 2;
126 
127 	/*
128 	 * No need to check if we already know that the TSC is not
129 	 * synchronized:
130 	 */
131 	if (unsynchronized_tsc())
132 		return;
133 
134 	if (tsc_clocksource_reliable) {
135 		if (cpu == (nr_cpu_ids-1) || system_state != SYSTEM_BOOTING)
136 			pr_info(
137 			"Skipped synchronization checks as TSC is reliable.\n");
138 		return;
139 	}
140 
141 	/*
142 	 * Reset it - in case this is a second bootup:
143 	 */
144 	atomic_set(&stop_count, 0);
145 
146 	/*
147 	 * Wait for the target to arrive:
148 	 */
149 	while (atomic_read(&start_count) != cpus-1)
150 		cpu_relax();
151 	/*
152 	 * Trigger the target to continue into the measurement too:
153 	 */
154 	atomic_inc(&start_count);
155 
156 	check_tsc_warp(loop_timeout(cpu));
157 
158 	while (atomic_read(&stop_count) != cpus-1)
159 		cpu_relax();
160 
161 	if (nr_warps) {
162 		pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
163 			smp_processor_id(), cpu);
164 		pr_warning("Measured %Ld cycles TSC warp between CPUs, "
165 			   "turning off TSC clock.\n", max_warp);
166 		mark_tsc_unstable("check_tsc_sync_source failed");
167 	} else {
168 		pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
169 			smp_processor_id(), cpu);
170 	}
171 
172 	/*
173 	 * Reset it - just in case we boot another CPU later:
174 	 */
175 	atomic_set(&start_count, 0);
176 	nr_warps = 0;
177 	max_warp = 0;
178 	last_tsc = 0;
179 
180 	/*
181 	 * Let the target continue with the bootup:
182 	 */
183 	atomic_inc(&stop_count);
184 }
185 
186 /*
187  * Freshly booted CPUs call into this:
188  */
189 void check_tsc_sync_target(void)
190 {
191 	int cpus = 2;
192 
193 	if (unsynchronized_tsc() || tsc_clocksource_reliable)
194 		return;
195 
196 	/*
197 	 * Register this CPU's participation and wait for the
198 	 * source CPU to start the measurement:
199 	 */
200 	atomic_inc(&start_count);
201 	while (atomic_read(&start_count) != cpus)
202 		cpu_relax();
203 
204 	check_tsc_warp(loop_timeout(smp_processor_id()));
205 
206 	/*
207 	 * Ok, we are done:
208 	 */
209 	atomic_inc(&stop_count);
210 
211 	/*
212 	 * Wait for the source CPU to print stuff:
213 	 */
214 	while (atomic_read(&stop_count) != cpus)
215 		cpu_relax();
216 }
217