xref: /linux/arch/x86/kernel/tsc.c (revision f96a974170b749e3a56844e25b31d46a7233b6f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17 #include <linux/static_call.h>
18 
19 #include <asm/cpuid.h>
20 #include <asm/hpet.h>
21 #include <asm/timer.h>
22 #include <asm/vgtod.h>
23 #include <asm/time.h>
24 #include <asm/delay.h>
25 #include <asm/hypervisor.h>
26 #include <asm/nmi.h>
27 #include <asm/x86_init.h>
28 #include <asm/geode.h>
29 #include <asm/apic.h>
30 #include <asm/cpu_device_id.h>
31 #include <asm/i8259.h>
32 #include <asm/topology.h>
33 #include <asm/uv/uv.h>
34 #include <asm/sev.h>
35 
36 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
37 EXPORT_SYMBOL(cpu_khz);
38 
39 unsigned int __read_mostly tsc_khz;
40 EXPORT_SYMBOL(tsc_khz);
41 
42 #define KHZ	1000
43 
44 /*
45  * TSC can be unstable due to cpufreq or due to unsynced TSCs
46  */
47 static int __read_mostly tsc_unstable;
48 static unsigned int __initdata tsc_early_khz;
49 
50 static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc);
51 
52 int tsc_clocksource_reliable;
53 
54 static int __read_mostly tsc_force_recalibrate;
55 
56 static struct clocksource_base art_base_clk = {
57 	.id    = CSID_X86_ART,
58 };
59 static bool have_art;
60 
61 struct cyc2ns {
62 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
63 	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
64 
65 }; /* fits one cacheline */
66 
67 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
68 
69 static int __init tsc_early_khz_setup(char *buf)
70 {
71 	return kstrtouint(buf, 0, &tsc_early_khz);
72 }
73 early_param("tsc_early_khz", tsc_early_khz_setup);
74 
75 __always_inline void __cyc2ns_read(struct cyc2ns_data *data)
76 {
77 	int seq, idx;
78 
79 	do {
80 		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
81 		idx = seq & 1;
82 
83 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
84 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
85 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
86 
87 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
88 }
89 
90 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
91 {
92 	preempt_disable_notrace();
93 	__cyc2ns_read(data);
94 }
95 
96 __always_inline void cyc2ns_read_end(void)
97 {
98 	preempt_enable_notrace();
99 }
100 
101 /*
102  * Accelerators for sched_clock()
103  * convert from cycles(64bits) => nanoseconds (64bits)
104  *  basic equation:
105  *              ns = cycles / (freq / ns_per_sec)
106  *              ns = cycles * (ns_per_sec / freq)
107  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
108  *              ns = cycles * (10^6 / cpu_khz)
109  *
110  *      Then we use scaling math (suggested by george@mvista.com) to get:
111  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
112  *              ns = cycles * cyc2ns_scale / SC
113  *
114  *      And since SC is a constant power of two, we can convert the div
115  *  into a shift. The larger SC is, the more accurate the conversion, but
116  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
117  *  (64-bit result) can be used.
118  *
119  *  We can use khz divisor instead of mhz to keep a better precision.
120  *  (mathieu.desnoyers@polymtl.ca)
121  *
122  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
123  */
124 
125 static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
126 {
127 	struct cyc2ns_data data;
128 	unsigned long long ns;
129 
130 	__cyc2ns_read(&data);
131 
132 	ns = data.cyc2ns_offset;
133 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
134 
135 	return ns;
136 }
137 
138 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
139 {
140 	unsigned long long ns;
141 	preempt_disable_notrace();
142 	ns = __cycles_2_ns(cyc);
143 	preempt_enable_notrace();
144 	return ns;
145 }
146 
147 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
148 {
149 	unsigned long long ns_now;
150 	struct cyc2ns_data data;
151 	struct cyc2ns *c2n;
152 
153 	ns_now = cycles_2_ns(tsc_now);
154 
155 	/*
156 	 * Compute a new multiplier as per the above comment and ensure our
157 	 * time function is continuous; see the comment near struct
158 	 * cyc2ns_data.
159 	 */
160 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
161 			       NSEC_PER_MSEC, 0);
162 
163 	/*
164 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
165 	 * not expected to be greater than 31 due to the original published
166 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
167 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
168 	 */
169 	if (data.cyc2ns_shift == 32) {
170 		data.cyc2ns_shift = 31;
171 		data.cyc2ns_mul >>= 1;
172 	}
173 
174 	data.cyc2ns_offset = ns_now -
175 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
176 
177 	c2n = per_cpu_ptr(&cyc2ns, cpu);
178 
179 	write_seqcount_latch_begin(&c2n->seq);
180 	c2n->data[0] = data;
181 	write_seqcount_latch(&c2n->seq);
182 	c2n->data[1] = data;
183 	write_seqcount_latch_end(&c2n->seq);
184 }
185 
186 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
187 {
188 	unsigned long flags;
189 
190 	local_irq_save(flags);
191 	sched_clock_idle_sleep_event();
192 
193 	if (khz)
194 		__set_cyc2ns_scale(khz, cpu, tsc_now);
195 
196 	sched_clock_idle_wakeup_event();
197 	local_irq_restore(flags);
198 }
199 
200 /*
201  * Initialize cyc2ns for boot cpu
202  */
203 static void __init cyc2ns_init_boot_cpu(void)
204 {
205 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
206 
207 	seqcount_latch_init(&c2n->seq);
208 	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
209 }
210 
211 /*
212  * Secondary CPUs do not run through tsc_init(), so set up
213  * all the scale factors for all CPUs, assuming the same
214  * speed as the bootup CPU.
215  */
216 static void __init cyc2ns_init_secondary_cpus(void)
217 {
218 	unsigned int cpu, this_cpu = smp_processor_id();
219 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
220 	struct cyc2ns_data *data = c2n->data;
221 
222 	for_each_possible_cpu(cpu) {
223 		if (cpu != this_cpu) {
224 			seqcount_latch_init(&c2n->seq);
225 			c2n = per_cpu_ptr(&cyc2ns, cpu);
226 			c2n->data[0] = data[0];
227 			c2n->data[1] = data[1];
228 		}
229 	}
230 }
231 
232 /*
233  * Scheduler clock - returns current time in nanosec units.
234  */
235 noinstr u64 native_sched_clock(void)
236 {
237 	if (static_branch_likely(&__use_tsc)) {
238 		u64 tsc_now = rdtsc();
239 
240 		/* return the value in ns */
241 		return __cycles_2_ns(tsc_now);
242 	}
243 
244 	/*
245 	 * Fall back to jiffies if there's no TSC available:
246 	 * ( But note that we still use it if the TSC is marked
247 	 *   unstable. We do this because unlike Time Of Day,
248 	 *   the scheduler clock tolerates small errors and it's
249 	 *   very important for it to be as fast as the platform
250 	 *   can achieve it. )
251 	 */
252 
253 	/* No locking but a rare wrong value is not a big deal: */
254 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
255 }
256 
257 /*
258  * Generate a sched_clock if you already have a TSC value.
259  */
260 u64 native_sched_clock_from_tsc(u64 tsc)
261 {
262 	return cycles_2_ns(tsc);
263 }
264 
265 /* We need to define a real function for sched_clock, to override the
266    weak default version */
267 #ifdef CONFIG_PARAVIRT
268 noinstr u64 sched_clock_noinstr(void)
269 {
270 	return paravirt_sched_clock();
271 }
272 
273 bool using_native_sched_clock(void)
274 {
275 	return static_call_query(pv_sched_clock) == native_sched_clock;
276 }
277 #else
278 u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
279 
280 bool using_native_sched_clock(void) { return true; }
281 #endif
282 
283 notrace u64 sched_clock(void)
284 {
285 	u64 now;
286 	preempt_disable_notrace();
287 	now = sched_clock_noinstr();
288 	preempt_enable_notrace();
289 	return now;
290 }
291 
292 int check_tsc_unstable(void)
293 {
294 	return tsc_unstable;
295 }
296 EXPORT_SYMBOL_GPL(check_tsc_unstable);
297 
298 #ifdef CONFIG_X86_TSC
299 int __init notsc_setup(char *str)
300 {
301 	mark_tsc_unstable("boot parameter notsc");
302 	return 1;
303 }
304 #else
305 /*
306  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
307  * in cpu/common.c
308  */
309 int __init notsc_setup(char *str)
310 {
311 	setup_clear_cpu_cap(X86_FEATURE_TSC);
312 	return 1;
313 }
314 #endif
315 
316 __setup("notsc", notsc_setup);
317 
318 static int no_sched_irq_time;
319 static int no_tsc_watchdog;
320 static int tsc_as_watchdog;
321 
322 static int __init tsc_setup(char *str)
323 {
324 	if (!strcmp(str, "reliable"))
325 		tsc_clocksource_reliable = 1;
326 	if (!strncmp(str, "noirqtime", 9))
327 		no_sched_irq_time = 1;
328 	if (!strcmp(str, "unstable"))
329 		mark_tsc_unstable("boot parameter");
330 	if (!strcmp(str, "nowatchdog")) {
331 		no_tsc_watchdog = 1;
332 		if (tsc_as_watchdog)
333 			pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
334 				 __func__);
335 		tsc_as_watchdog = 0;
336 	}
337 	if (!strcmp(str, "recalibrate"))
338 		tsc_force_recalibrate = 1;
339 	if (!strcmp(str, "watchdog")) {
340 		if (no_tsc_watchdog)
341 			pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
342 				 __func__);
343 		else
344 			tsc_as_watchdog = 1;
345 	}
346 	return 1;
347 }
348 
349 __setup("tsc=", tsc_setup);
350 
351 #define MAX_RETRIES		5
352 #define TSC_DEFAULT_THRESHOLD	0x20000
353 
354 /*
355  * Read TSC and the reference counters. Take care of any disturbances
356  */
357 static u64 tsc_read_refs(u64 *p, int hpet)
358 {
359 	u64 t1, t2;
360 	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
361 	int i;
362 
363 	for (i = 0; i < MAX_RETRIES; i++) {
364 		t1 = get_cycles();
365 		if (hpet)
366 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
367 		else
368 			*p = acpi_pm_read_early();
369 		t2 = get_cycles();
370 		if ((t2 - t1) < thresh)
371 			return t2;
372 	}
373 	return ULLONG_MAX;
374 }
375 
376 /*
377  * Calculate the TSC frequency from HPET reference
378  */
379 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
380 {
381 	u64 tmp;
382 
383 	if (hpet2 < hpet1)
384 		hpet2 += 0x100000000ULL;
385 	hpet2 -= hpet1;
386 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
387 	do_div(tmp, 1000000);
388 	deltatsc = div64_u64(deltatsc, tmp);
389 
390 	return (unsigned long) deltatsc;
391 }
392 
393 /*
394  * Calculate the TSC frequency from PMTimer reference
395  */
396 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
397 {
398 	u64 tmp;
399 
400 	if (!pm1 && !pm2)
401 		return ULONG_MAX;
402 
403 	if (pm2 < pm1)
404 		pm2 += (u64)ACPI_PM_OVRRUN;
405 	pm2 -= pm1;
406 	tmp = pm2 * 1000000000LL;
407 	do_div(tmp, PMTMR_TICKS_PER_SEC);
408 	do_div(deltatsc, tmp);
409 
410 	return (unsigned long) deltatsc;
411 }
412 
413 #define CAL_MS		10
414 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
415 #define CAL_PIT_LOOPS	1000
416 
417 #define CAL2_MS		50
418 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
419 #define CAL2_PIT_LOOPS	5000
420 
421 
422 /*
423  * Try to calibrate the TSC against the Programmable
424  * Interrupt Timer and return the frequency of the TSC
425  * in kHz.
426  *
427  * Return ULONG_MAX on failure to calibrate.
428  */
429 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
430 {
431 	u64 tsc, t1, t2, delta;
432 	unsigned long tscmin, tscmax;
433 	int pitcnt;
434 
435 	if (!has_legacy_pic()) {
436 		/*
437 		 * Relies on tsc_early_delay_calibrate() to have given us semi
438 		 * usable udelay(), wait for the same 50ms we would have with
439 		 * the PIT loop below.
440 		 */
441 		udelay(10 * USEC_PER_MSEC);
442 		udelay(10 * USEC_PER_MSEC);
443 		udelay(10 * USEC_PER_MSEC);
444 		udelay(10 * USEC_PER_MSEC);
445 		udelay(10 * USEC_PER_MSEC);
446 		return ULONG_MAX;
447 	}
448 
449 	/* Set the Gate high, disable speaker */
450 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
451 
452 	/*
453 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
454 	 * count mode), binary count. Set the latch register to 50ms
455 	 * (LSB then MSB) to begin countdown.
456 	 */
457 	outb(0xb0, 0x43);
458 	outb(latch & 0xff, 0x42);
459 	outb(latch >> 8, 0x42);
460 
461 	tsc = t1 = t2 = get_cycles();
462 
463 	pitcnt = 0;
464 	tscmax = 0;
465 	tscmin = ULONG_MAX;
466 	while ((inb(0x61) & 0x20) == 0) {
467 		t2 = get_cycles();
468 		delta = t2 - tsc;
469 		tsc = t2;
470 		if ((unsigned long) delta < tscmin)
471 			tscmin = (unsigned int) delta;
472 		if ((unsigned long) delta > tscmax)
473 			tscmax = (unsigned int) delta;
474 		pitcnt++;
475 	}
476 
477 	/*
478 	 * Sanity checks:
479 	 *
480 	 * If we were not able to read the PIT more than loopmin
481 	 * times, then we have been hit by a massive SMI
482 	 *
483 	 * If the maximum is 10 times larger than the minimum,
484 	 * then we got hit by an SMI as well.
485 	 */
486 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
487 		return ULONG_MAX;
488 
489 	/* Calculate the PIT value */
490 	delta = t2 - t1;
491 	do_div(delta, ms);
492 	return delta;
493 }
494 
495 /*
496  * This reads the current MSB of the PIT counter, and
497  * checks if we are running on sufficiently fast and
498  * non-virtualized hardware.
499  *
500  * Our expectations are:
501  *
502  *  - the PIT is running at roughly 1.19MHz
503  *
504  *  - each IO is going to take about 1us on real hardware,
505  *    but we allow it to be much faster (by a factor of 10) or
506  *    _slightly_ slower (ie we allow up to a 2us read+counter
507  *    update - anything else implies a unacceptably slow CPU
508  *    or PIT for the fast calibration to work.
509  *
510  *  - with 256 PIT ticks to read the value, we have 214us to
511  *    see the same MSB (and overhead like doing a single TSC
512  *    read per MSB value etc).
513  *
514  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
515  *    them each to take about a microsecond on real hardware.
516  *    So we expect a count value of around 100. But we'll be
517  *    generous, and accept anything over 50.
518  *
519  *  - if the PIT is stuck, and we see *many* more reads, we
520  *    return early (and the next caller of pit_expect_msb()
521  *    then consider it a failure when they don't see the
522  *    next expected value).
523  *
524  * These expectations mean that we know that we have seen the
525  * transition from one expected value to another with a fairly
526  * high accuracy, and we didn't miss any events. We can thus
527  * use the TSC value at the transitions to calculate a pretty
528  * good value for the TSC frequency.
529  */
530 static inline int pit_verify_msb(unsigned char val)
531 {
532 	/* Ignore LSB */
533 	inb(0x42);
534 	return inb(0x42) == val;
535 }
536 
537 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
538 {
539 	int count;
540 	u64 tsc = 0, prev_tsc = 0;
541 
542 	for (count = 0; count < 50000; count++) {
543 		if (!pit_verify_msb(val))
544 			break;
545 		prev_tsc = tsc;
546 		tsc = get_cycles();
547 	}
548 	*deltap = get_cycles() - prev_tsc;
549 	*tscp = tsc;
550 
551 	/*
552 	 * We require _some_ success, but the quality control
553 	 * will be based on the error terms on the TSC values.
554 	 */
555 	return count > 5;
556 }
557 
558 /*
559  * How many MSB values do we want to see? We aim for
560  * a maximum error rate of 500ppm (in practice the
561  * real error is much smaller), but refuse to spend
562  * more than 50ms on it.
563  */
564 #define MAX_QUICK_PIT_MS 50
565 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
566 
567 static unsigned long quick_pit_calibrate(void)
568 {
569 	int i;
570 	u64 tsc, delta;
571 	unsigned long d1, d2;
572 
573 	if (!has_legacy_pic())
574 		return 0;
575 
576 	/* Set the Gate high, disable speaker */
577 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
578 
579 	/*
580 	 * Counter 2, mode 0 (one-shot), binary count
581 	 *
582 	 * NOTE! Mode 2 decrements by two (and then the
583 	 * output is flipped each time, giving the same
584 	 * final output frequency as a decrement-by-one),
585 	 * so mode 0 is much better when looking at the
586 	 * individual counts.
587 	 */
588 	outb(0xb0, 0x43);
589 
590 	/* Start at 0xffff */
591 	outb(0xff, 0x42);
592 	outb(0xff, 0x42);
593 
594 	/*
595 	 * The PIT starts counting at the next edge, so we
596 	 * need to delay for a microsecond. The easiest way
597 	 * to do that is to just read back the 16-bit counter
598 	 * once from the PIT.
599 	 */
600 	pit_verify_msb(0);
601 
602 	if (pit_expect_msb(0xff, &tsc, &d1)) {
603 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
604 			if (!pit_expect_msb(0xff-i, &delta, &d2))
605 				break;
606 
607 			delta -= tsc;
608 
609 			/*
610 			 * Extrapolate the error and fail fast if the error will
611 			 * never be below 500 ppm.
612 			 */
613 			if (i == 1 &&
614 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
615 				return 0;
616 
617 			/*
618 			 * Iterate until the error is less than 500 ppm
619 			 */
620 			if (d1+d2 >= delta >> 11)
621 				continue;
622 
623 			/*
624 			 * Check the PIT one more time to verify that
625 			 * all TSC reads were stable wrt the PIT.
626 			 *
627 			 * This also guarantees serialization of the
628 			 * last cycle read ('d2') in pit_expect_msb.
629 			 */
630 			if (!pit_verify_msb(0xfe - i))
631 				break;
632 			goto success;
633 		}
634 	}
635 	pr_info("Fast TSC calibration failed\n");
636 	return 0;
637 
638 success:
639 	/*
640 	 * Ok, if we get here, then we've seen the
641 	 * MSB of the PIT decrement 'i' times, and the
642 	 * error has shrunk to less than 500 ppm.
643 	 *
644 	 * As a result, we can depend on there not being
645 	 * any odd delays anywhere, and the TSC reads are
646 	 * reliable (within the error).
647 	 *
648 	 * kHz = ticks / time-in-seconds / 1000;
649 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
650 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
651 	 */
652 	delta *= PIT_TICK_RATE;
653 	do_div(delta, i*256*1000);
654 	pr_info("Fast TSC calibration using PIT\n");
655 	return delta;
656 }
657 
658 /**
659  * native_calibrate_tsc - determine TSC frequency
660  * Determine TSC frequency via CPUID, else return 0.
661  */
662 unsigned long native_calibrate_tsc(void)
663 {
664 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
665 	unsigned int crystal_khz;
666 
667 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
668 		return 0;
669 
670 	if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
671 		return 0;
672 
673 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
674 
675 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
676 	cpuid(CPUID_LEAF_TSC, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
677 
678 	if (ebx_numerator == 0 || eax_denominator == 0)
679 		return 0;
680 
681 	crystal_khz = ecx_hz / 1000;
682 
683 	/*
684 	 * Denverton SoCs don't report crystal clock, and also don't support
685 	 * CPUID_LEAF_FREQ for the calculation below, so hardcode the 25MHz
686 	 * crystal clock.
687 	 */
688 	if (crystal_khz == 0 &&
689 			boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D)
690 		crystal_khz = 25000;
691 
692 	/*
693 	 * TSC frequency reported directly by CPUID is a "hardware reported"
694 	 * frequency and is the most accurate one so far we have. This
695 	 * is considered a known frequency.
696 	 */
697 	if (crystal_khz != 0)
698 		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
699 
700 	/*
701 	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
702 	 * clock, but we can easily calculate it to a high degree of accuracy
703 	 * by considering the crystal ratio and the CPU speed.
704 	 */
705 	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= CPUID_LEAF_FREQ) {
706 		unsigned int eax_base_mhz, ebx, ecx, edx;
707 
708 		cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx, &ecx, &edx);
709 		crystal_khz = eax_base_mhz * 1000 *
710 			eax_denominator / ebx_numerator;
711 	}
712 
713 	if (crystal_khz == 0)
714 		return 0;
715 
716 	/*
717 	 * For Atom SoCs TSC is the only reliable clocksource.
718 	 * Mark TSC reliable so no watchdog on it.
719 	 */
720 	if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT)
721 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
722 
723 #ifdef CONFIG_X86_LOCAL_APIC
724 	/*
725 	 * The local APIC appears to be fed by the core crystal clock
726 	 * (which sounds entirely sensible). We can set the global
727 	 * lapic_timer_period here to avoid having to calibrate the APIC
728 	 * timer later.
729 	 */
730 	lapic_timer_period = crystal_khz * 1000 / HZ;
731 #endif
732 
733 	return crystal_khz * ebx_numerator / eax_denominator;
734 }
735 
736 static unsigned long cpu_khz_from_cpuid(void)
737 {
738 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
739 
740 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
741 		return 0;
742 
743 	if (boot_cpu_data.cpuid_level < CPUID_LEAF_FREQ)
744 		return 0;
745 
746 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
747 
748 	cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
749 
750 	return eax_base_mhz * 1000;
751 }
752 
753 /*
754  * calibrate cpu using pit, hpet, and ptimer methods. They are available
755  * later in boot after acpi is initialized.
756  */
757 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
758 {
759 	u64 tsc1, tsc2, delta, ref1, ref2;
760 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
761 	unsigned long flags, latch, ms;
762 	int hpet = is_hpet_enabled(), i, loopmin;
763 
764 	/*
765 	 * Run 5 calibration loops to get the lowest frequency value
766 	 * (the best estimate). We use two different calibration modes
767 	 * here:
768 	 *
769 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
770 	 * load a timeout of 50ms. We read the time right after we
771 	 * started the timer and wait until the PIT count down reaches
772 	 * zero. In each wait loop iteration we read the TSC and check
773 	 * the delta to the previous read. We keep track of the min
774 	 * and max values of that delta. The delta is mostly defined
775 	 * by the IO time of the PIT access, so we can detect when
776 	 * any disturbance happened between the two reads. If the
777 	 * maximum time is significantly larger than the minimum time,
778 	 * then we discard the result and have another try.
779 	 *
780 	 * 2) Reference counter. If available we use the HPET or the
781 	 * PMTIMER as a reference to check the sanity of that value.
782 	 * We use separate TSC readouts and check inside of the
783 	 * reference read for any possible disturbance. We discard
784 	 * disturbed values here as well. We do that around the PIT
785 	 * calibration delay loop as we have to wait for a certain
786 	 * amount of time anyway.
787 	 */
788 
789 	/* Preset PIT loop values */
790 	latch = CAL_LATCH;
791 	ms = CAL_MS;
792 	loopmin = CAL_PIT_LOOPS;
793 
794 	for (i = 0; i < 3; i++) {
795 		unsigned long tsc_pit_khz;
796 
797 		/*
798 		 * Read the start value and the reference count of
799 		 * hpet/pmtimer when available. Then do the PIT
800 		 * calibration, which will take at least 50ms, and
801 		 * read the end value.
802 		 */
803 		local_irq_save(flags);
804 		tsc1 = tsc_read_refs(&ref1, hpet);
805 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
806 		tsc2 = tsc_read_refs(&ref2, hpet);
807 		local_irq_restore(flags);
808 
809 		/* Pick the lowest PIT TSC calibration so far */
810 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
811 
812 		/* hpet or pmtimer available ? */
813 		if (ref1 == ref2)
814 			continue;
815 
816 		/* Check, whether the sampling was disturbed */
817 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
818 			continue;
819 
820 		tsc2 = (tsc2 - tsc1) * 1000000LL;
821 		if (hpet)
822 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
823 		else
824 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
825 
826 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
827 
828 		/* Check the reference deviation */
829 		delta = ((u64) tsc_pit_min) * 100;
830 		do_div(delta, tsc_ref_min);
831 
832 		/*
833 		 * If both calibration results are inside a 10% window
834 		 * then we can be sure, that the calibration
835 		 * succeeded. We break out of the loop right away. We
836 		 * use the reference value, as it is more precise.
837 		 */
838 		if (delta >= 90 && delta <= 110) {
839 			pr_info("PIT calibration matches %s. %d loops\n",
840 				hpet ? "HPET" : "PMTIMER", i + 1);
841 			return tsc_ref_min;
842 		}
843 
844 		/*
845 		 * Check whether PIT failed more than once. This
846 		 * happens in virtualized environments. We need to
847 		 * give the virtual PC a slightly longer timeframe for
848 		 * the HPET/PMTIMER to make the result precise.
849 		 */
850 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
851 			latch = CAL2_LATCH;
852 			ms = CAL2_MS;
853 			loopmin = CAL2_PIT_LOOPS;
854 		}
855 	}
856 
857 	/*
858 	 * Now check the results.
859 	 */
860 	if (tsc_pit_min == ULONG_MAX) {
861 		/* PIT gave no useful value */
862 		pr_warn("Unable to calibrate against PIT\n");
863 
864 		/* We don't have an alternative source, disable TSC */
865 		if (!hpet && !ref1 && !ref2) {
866 			pr_notice("No reference (HPET/PMTIMER) available\n");
867 			return 0;
868 		}
869 
870 		/* The alternative source failed as well, disable TSC */
871 		if (tsc_ref_min == ULONG_MAX) {
872 			pr_warn("HPET/PMTIMER calibration failed\n");
873 			return 0;
874 		}
875 
876 		/* Use the alternative source */
877 		pr_info("using %s reference calibration\n",
878 			hpet ? "HPET" : "PMTIMER");
879 
880 		return tsc_ref_min;
881 	}
882 
883 	/* We don't have an alternative source, use the PIT calibration value */
884 	if (!hpet && !ref1 && !ref2) {
885 		pr_info("Using PIT calibration value\n");
886 		return tsc_pit_min;
887 	}
888 
889 	/* The alternative source failed, use the PIT calibration value */
890 	if (tsc_ref_min == ULONG_MAX) {
891 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
892 		return tsc_pit_min;
893 	}
894 
895 	/*
896 	 * The calibration values differ too much. In doubt, we use
897 	 * the PIT value as we know that there are PMTIMERs around
898 	 * running at double speed. At least we let the user know:
899 	 */
900 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
901 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
902 	pr_info("Using PIT calibration value\n");
903 	return tsc_pit_min;
904 }
905 
906 /**
907  * native_calibrate_cpu_early - can calibrate the cpu early in boot
908  */
909 unsigned long native_calibrate_cpu_early(void)
910 {
911 	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
912 
913 	if (!fast_calibrate)
914 		fast_calibrate = cpu_khz_from_msr();
915 	if (!fast_calibrate) {
916 		local_irq_save(flags);
917 		fast_calibrate = quick_pit_calibrate();
918 		local_irq_restore(flags);
919 	}
920 	return fast_calibrate;
921 }
922 
923 
924 /**
925  * native_calibrate_cpu - calibrate the cpu
926  */
927 static unsigned long native_calibrate_cpu(void)
928 {
929 	unsigned long tsc_freq = native_calibrate_cpu_early();
930 
931 	if (!tsc_freq)
932 		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
933 
934 	return tsc_freq;
935 }
936 
937 void recalibrate_cpu_khz(void)
938 {
939 #ifndef CONFIG_SMP
940 	unsigned long cpu_khz_old = cpu_khz;
941 
942 	if (!boot_cpu_has(X86_FEATURE_TSC))
943 		return;
944 
945 	cpu_khz = x86_platform.calibrate_cpu();
946 	tsc_khz = x86_platform.calibrate_tsc();
947 	if (tsc_khz == 0)
948 		tsc_khz = cpu_khz;
949 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
950 		cpu_khz = tsc_khz;
951 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
952 						    cpu_khz_old, cpu_khz);
953 #endif
954 }
955 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
956 
957 
958 static unsigned long long cyc2ns_suspend;
959 
960 void tsc_save_sched_clock_state(void)
961 {
962 	if (!sched_clock_stable())
963 		return;
964 
965 	cyc2ns_suspend = sched_clock();
966 }
967 
968 /*
969  * Even on processors with invariant TSC, TSC gets reset in some the
970  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
971  * arbitrary value (still sync'd across cpu's) during resume from such sleep
972  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
973  * that sched_clock() continues from the point where it was left off during
974  * suspend.
975  */
976 void tsc_restore_sched_clock_state(void)
977 {
978 	unsigned long long offset;
979 	unsigned long flags;
980 	int cpu;
981 
982 	if (!sched_clock_stable())
983 		return;
984 
985 	local_irq_save(flags);
986 
987 	/*
988 	 * We're coming out of suspend, there's no concurrency yet; don't
989 	 * bother being nice about the RCU stuff, just write to both
990 	 * data fields.
991 	 */
992 
993 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
994 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
995 
996 	offset = cyc2ns_suspend - sched_clock();
997 
998 	for_each_possible_cpu(cpu) {
999 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
1000 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
1001 	}
1002 
1003 	local_irq_restore(flags);
1004 }
1005 
1006 #ifdef CONFIG_CPU_FREQ
1007 /*
1008  * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1009  * changes.
1010  *
1011  * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1012  * as unstable and give up in those cases.
1013  *
1014  * Should fix up last_tsc too. Currently gettimeofday in the
1015  * first tick after the change will be slightly wrong.
1016  */
1017 
1018 static unsigned int  ref_freq;
1019 static unsigned long loops_per_jiffy_ref;
1020 static unsigned long tsc_khz_ref;
1021 
1022 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1023 				void *data)
1024 {
1025 	struct cpufreq_freqs *freq = data;
1026 
1027 	if (num_online_cpus() > 1) {
1028 		mark_tsc_unstable("cpufreq changes on SMP");
1029 		return 0;
1030 	}
1031 
1032 	if (!ref_freq) {
1033 		ref_freq = freq->old;
1034 		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1035 		tsc_khz_ref = tsc_khz;
1036 	}
1037 
1038 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1039 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1040 		boot_cpu_data.loops_per_jiffy =
1041 			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1042 
1043 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1044 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1045 			mark_tsc_unstable("cpufreq changes");
1046 
1047 		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 static struct notifier_block time_cpufreq_notifier_block = {
1054 	.notifier_call  = time_cpufreq_notifier
1055 };
1056 
1057 static int __init cpufreq_register_tsc_scaling(void)
1058 {
1059 	if (!boot_cpu_has(X86_FEATURE_TSC))
1060 		return 0;
1061 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1062 		return 0;
1063 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1064 				CPUFREQ_TRANSITION_NOTIFIER);
1065 	return 0;
1066 }
1067 
1068 core_initcall(cpufreq_register_tsc_scaling);
1069 
1070 #endif /* CONFIG_CPU_FREQ */
1071 
1072 #define ART_MIN_DENOMINATOR (1)
1073 
1074 /*
1075  * If ART is present detect the numerator:denominator to convert to TSC
1076  */
1077 static void __init detect_art(void)
1078 {
1079 	unsigned int unused;
1080 
1081 	if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
1082 		return;
1083 
1084 	/*
1085 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1086 	 * and the TSC counter resets must not occur asynchronously.
1087 	 */
1088 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1089 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1090 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1091 	    tsc_async_resets)
1092 		return;
1093 
1094 	cpuid(CPUID_LEAF_TSC, &art_base_clk.denominator,
1095 	      &art_base_clk.numerator, &art_base_clk.freq_khz, &unused);
1096 
1097 	art_base_clk.freq_khz /= KHZ;
1098 	if (art_base_clk.denominator < ART_MIN_DENOMINATOR)
1099 		return;
1100 
1101 	rdmsrl(MSR_IA32_TSC_ADJUST, art_base_clk.offset);
1102 
1103 	/* Make this sticky over multiple CPU init calls */
1104 	setup_force_cpu_cap(X86_FEATURE_ART);
1105 }
1106 
1107 
1108 /* clocksource code */
1109 
1110 static void tsc_resume(struct clocksource *cs)
1111 {
1112 	tsc_verify_tsc_adjust(true);
1113 }
1114 
1115 /*
1116  * We used to compare the TSC to the cycle_last value in the clocksource
1117  * structure to avoid a nasty time-warp. This can be observed in a
1118  * very small window right after one CPU updated cycle_last under
1119  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1120  * is smaller than the cycle_last reference value due to a TSC which
1121  * is slightly behind. This delta is nowhere else observable, but in
1122  * that case it results in a forward time jump in the range of hours
1123  * due to the unsigned delta calculation of the time keeping core
1124  * code, which is necessary to support wrapping clocksources like pm
1125  * timer.
1126  *
1127  * This sanity check is now done in the core timekeeping code.
1128  * checking the result of read_tsc() - cycle_last for being negative.
1129  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1130  */
1131 static u64 read_tsc(struct clocksource *cs)
1132 {
1133 	return (u64)rdtsc_ordered();
1134 }
1135 
1136 static void tsc_cs_mark_unstable(struct clocksource *cs)
1137 {
1138 	if (tsc_unstable)
1139 		return;
1140 
1141 	tsc_unstable = 1;
1142 	if (using_native_sched_clock())
1143 		clear_sched_clock_stable();
1144 	disable_sched_clock_irqtime();
1145 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1146 }
1147 
1148 static void tsc_cs_tick_stable(struct clocksource *cs)
1149 {
1150 	if (tsc_unstable)
1151 		return;
1152 
1153 	if (using_native_sched_clock())
1154 		sched_clock_tick_stable();
1155 }
1156 
1157 static int tsc_cs_enable(struct clocksource *cs)
1158 {
1159 	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1160 	return 0;
1161 }
1162 
1163 /*
1164  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1165  */
1166 static struct clocksource clocksource_tsc_early = {
1167 	.name			= "tsc-early",
1168 	.rating			= 299,
1169 	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1170 	.read			= read_tsc,
1171 	.mask			= CLOCKSOURCE_MASK(64),
1172 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1173 				  CLOCK_SOURCE_MUST_VERIFY,
1174 	.id			= CSID_X86_TSC_EARLY,
1175 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1176 	.enable			= tsc_cs_enable,
1177 	.resume			= tsc_resume,
1178 	.mark_unstable		= tsc_cs_mark_unstable,
1179 	.tick_stable		= tsc_cs_tick_stable,
1180 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1181 };
1182 
1183 /*
1184  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1185  * this one will immediately take over. We will only register if TSC has
1186  * been found good.
1187  */
1188 static struct clocksource clocksource_tsc = {
1189 	.name			= "tsc",
1190 	.rating			= 300,
1191 	.read			= read_tsc,
1192 	.mask			= CLOCKSOURCE_MASK(64),
1193 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1194 				  CLOCK_SOURCE_VALID_FOR_HRES |
1195 				  CLOCK_SOURCE_MUST_VERIFY |
1196 				  CLOCK_SOURCE_VERIFY_PERCPU,
1197 	.id			= CSID_X86_TSC,
1198 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1199 	.enable			= tsc_cs_enable,
1200 	.resume			= tsc_resume,
1201 	.mark_unstable		= tsc_cs_mark_unstable,
1202 	.tick_stable		= tsc_cs_tick_stable,
1203 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1204 };
1205 
1206 void mark_tsc_unstable(char *reason)
1207 {
1208 	if (tsc_unstable)
1209 		return;
1210 
1211 	tsc_unstable = 1;
1212 	if (using_native_sched_clock())
1213 		clear_sched_clock_stable();
1214 	disable_sched_clock_irqtime();
1215 	pr_info("Marking TSC unstable due to %s\n", reason);
1216 
1217 	clocksource_mark_unstable(&clocksource_tsc_early);
1218 	clocksource_mark_unstable(&clocksource_tsc);
1219 }
1220 
1221 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1222 
1223 static void __init tsc_disable_clocksource_watchdog(void)
1224 {
1225 	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1226 	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1227 }
1228 
1229 bool tsc_clocksource_watchdog_disabled(void)
1230 {
1231 	return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1232 	       tsc_as_watchdog && !no_tsc_watchdog;
1233 }
1234 
1235 static void __init check_system_tsc_reliable(void)
1236 {
1237 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1238 	if (is_geode_lx()) {
1239 		/* RTSC counts during suspend */
1240 #define RTSC_SUSP 0x100
1241 		unsigned long res_low, res_high;
1242 
1243 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1244 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1245 		if (res_low & RTSC_SUSP)
1246 			tsc_clocksource_reliable = 1;
1247 	}
1248 #endif
1249 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1250 		tsc_clocksource_reliable = 1;
1251 
1252 	/*
1253 	 * Disable the clocksource watchdog when the system has:
1254 	 *  - TSC running at constant frequency
1255 	 *  - TSC which does not stop in C-States
1256 	 *  - the TSC_ADJUST register which allows to detect even minimal
1257 	 *    modifications
1258 	 *  - not more than four packages
1259 	 */
1260 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1261 	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1262 	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1263 	    topology_max_packages() <= 4)
1264 		tsc_disable_clocksource_watchdog();
1265 }
1266 
1267 /*
1268  * Make an educated guess if the TSC is trustworthy and synchronized
1269  * over all CPUs.
1270  */
1271 int unsynchronized_tsc(void)
1272 {
1273 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1274 		return 1;
1275 
1276 #ifdef CONFIG_SMP
1277 	if (apic_is_clustered_box())
1278 		return 1;
1279 #endif
1280 
1281 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1282 		return 0;
1283 
1284 	if (tsc_clocksource_reliable)
1285 		return 0;
1286 	/*
1287 	 * Intel systems are normally all synchronized.
1288 	 * Exceptions must mark TSC as unstable:
1289 	 */
1290 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1291 		/* assume multi socket systems are not synchronized: */
1292 		if (topology_max_packages() > 1)
1293 			return 1;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 static void tsc_refine_calibration_work(struct work_struct *work);
1300 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1301 /**
1302  * tsc_refine_calibration_work - Further refine tsc freq calibration
1303  * @work: ignored.
1304  *
1305  * This functions uses delayed work over a period of a
1306  * second to further refine the TSC freq value. Since this is
1307  * timer based, instead of loop based, we don't block the boot
1308  * process while this longer calibration is done.
1309  *
1310  * If there are any calibration anomalies (too many SMIs, etc),
1311  * or the refined calibration is off by 1% of the fast early
1312  * calibration, we throw out the new calibration and use the
1313  * early calibration.
1314  */
1315 static void tsc_refine_calibration_work(struct work_struct *work)
1316 {
1317 	static u64 tsc_start = ULLONG_MAX, ref_start;
1318 	static int hpet;
1319 	u64 tsc_stop, ref_stop, delta;
1320 	unsigned long freq;
1321 	int cpu;
1322 
1323 	/* Don't bother refining TSC on unstable systems */
1324 	if (tsc_unstable)
1325 		goto unreg;
1326 
1327 	/*
1328 	 * Since the work is started early in boot, we may be
1329 	 * delayed the first time we expire. So set the workqueue
1330 	 * again once we know timers are working.
1331 	 */
1332 	if (tsc_start == ULLONG_MAX) {
1333 restart:
1334 		/*
1335 		 * Only set hpet once, to avoid mixing hardware
1336 		 * if the hpet becomes enabled later.
1337 		 */
1338 		hpet = is_hpet_enabled();
1339 		tsc_start = tsc_read_refs(&ref_start, hpet);
1340 		schedule_delayed_work(&tsc_irqwork, HZ);
1341 		return;
1342 	}
1343 
1344 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1345 
1346 	/* hpet or pmtimer available ? */
1347 	if (ref_start == ref_stop)
1348 		goto out;
1349 
1350 	/* Check, whether the sampling was disturbed */
1351 	if (tsc_stop == ULLONG_MAX)
1352 		goto restart;
1353 
1354 	delta = tsc_stop - tsc_start;
1355 	delta *= 1000000LL;
1356 	if (hpet)
1357 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1358 	else
1359 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1360 
1361 	/* Will hit this only if tsc_force_recalibrate has been set */
1362 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1363 
1364 		/* Warn if the deviation exceeds 500 ppm */
1365 		if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1366 			pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1367 			pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1368 				(unsigned long)tsc_khz / 1000,
1369 				(unsigned long)tsc_khz % 1000);
1370 		}
1371 
1372 		pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1373 			hpet ? "HPET" : "PM_TIMER",
1374 			(unsigned long)freq / 1000,
1375 			(unsigned long)freq % 1000);
1376 
1377 		return;
1378 	}
1379 
1380 	/* Make sure we're within 1% */
1381 	if (abs(tsc_khz - freq) > tsc_khz/100)
1382 		goto out;
1383 
1384 	tsc_khz = freq;
1385 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1386 		(unsigned long)tsc_khz / 1000,
1387 		(unsigned long)tsc_khz % 1000);
1388 
1389 	/* Inform the TSC deadline clockevent devices about the recalibration */
1390 	lapic_update_tsc_freq();
1391 
1392 	/* Update the sched_clock() rate to match the clocksource one */
1393 	for_each_possible_cpu(cpu)
1394 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1395 
1396 out:
1397 	if (tsc_unstable)
1398 		goto unreg;
1399 
1400 	if (boot_cpu_has(X86_FEATURE_ART)) {
1401 		have_art = true;
1402 		clocksource_tsc.base = &art_base_clk;
1403 	}
1404 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1405 unreg:
1406 	clocksource_unregister(&clocksource_tsc_early);
1407 }
1408 
1409 
1410 static int __init init_tsc_clocksource(void)
1411 {
1412 	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1413 		return 0;
1414 
1415 	if (tsc_unstable) {
1416 		clocksource_unregister(&clocksource_tsc_early);
1417 		return 0;
1418 	}
1419 
1420 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1421 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1422 
1423 	/*
1424 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1425 	 * the refined calibration and directly register it as a clocksource.
1426 	 */
1427 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1428 		if (boot_cpu_has(X86_FEATURE_ART)) {
1429 			have_art = true;
1430 			clocksource_tsc.base = &art_base_clk;
1431 		}
1432 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1433 		clocksource_unregister(&clocksource_tsc_early);
1434 
1435 		if (!tsc_force_recalibrate)
1436 			return 0;
1437 	}
1438 
1439 	schedule_delayed_work(&tsc_irqwork, 0);
1440 	return 0;
1441 }
1442 /*
1443  * We use device_initcall here, to ensure we run after the hpet
1444  * is fully initialized, which may occur at fs_initcall time.
1445  */
1446 device_initcall(init_tsc_clocksource);
1447 
1448 static bool __init determine_cpu_tsc_frequencies(bool early)
1449 {
1450 	/* Make sure that cpu and tsc are not already calibrated */
1451 	WARN_ON(cpu_khz || tsc_khz);
1452 
1453 	if (early) {
1454 		cpu_khz = x86_platform.calibrate_cpu();
1455 		if (tsc_early_khz) {
1456 			tsc_khz = tsc_early_khz;
1457 		} else {
1458 			tsc_khz = x86_platform.calibrate_tsc();
1459 			clocksource_tsc.freq_khz = tsc_khz;
1460 		}
1461 	} else {
1462 		/* We should not be here with non-native cpu calibration */
1463 		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1464 		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1465 	}
1466 
1467 	/*
1468 	 * Trust non-zero tsc_khz as authoritative,
1469 	 * and use it to sanity check cpu_khz,
1470 	 * which will be off if system timer is off.
1471 	 */
1472 	if (tsc_khz == 0)
1473 		tsc_khz = cpu_khz;
1474 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1475 		cpu_khz = tsc_khz;
1476 
1477 	if (tsc_khz == 0)
1478 		return false;
1479 
1480 	pr_info("Detected %lu.%03lu MHz processor\n",
1481 		(unsigned long)cpu_khz / KHZ,
1482 		(unsigned long)cpu_khz % KHZ);
1483 
1484 	if (cpu_khz != tsc_khz) {
1485 		pr_info("Detected %lu.%03lu MHz TSC",
1486 			(unsigned long)tsc_khz / KHZ,
1487 			(unsigned long)tsc_khz % KHZ);
1488 	}
1489 	return true;
1490 }
1491 
1492 static unsigned long __init get_loops_per_jiffy(void)
1493 {
1494 	u64 lpj = (u64)tsc_khz * KHZ;
1495 
1496 	do_div(lpj, HZ);
1497 	return lpj;
1498 }
1499 
1500 static void __init tsc_enable_sched_clock(void)
1501 {
1502 	loops_per_jiffy = get_loops_per_jiffy();
1503 	use_tsc_delay();
1504 
1505 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1506 	tsc_store_and_check_tsc_adjust(true);
1507 	cyc2ns_init_boot_cpu();
1508 	static_branch_enable(&__use_tsc);
1509 }
1510 
1511 void __init tsc_early_init(void)
1512 {
1513 	if (!boot_cpu_has(X86_FEATURE_TSC))
1514 		return;
1515 	/* Don't change UV TSC multi-chassis synchronization */
1516 	if (is_early_uv_system())
1517 		return;
1518 
1519 	snp_secure_tsc_init();
1520 
1521 	if (!determine_cpu_tsc_frequencies(true))
1522 		return;
1523 	tsc_enable_sched_clock();
1524 }
1525 
1526 void __init tsc_init(void)
1527 {
1528 	if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1529 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1530 		return;
1531 	}
1532 
1533 	/*
1534 	 * native_calibrate_cpu_early can only calibrate using methods that are
1535 	 * available early in boot.
1536 	 */
1537 	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1538 		x86_platform.calibrate_cpu = native_calibrate_cpu;
1539 
1540 	if (!tsc_khz) {
1541 		/* We failed to determine frequencies earlier, try again */
1542 		if (!determine_cpu_tsc_frequencies(false)) {
1543 			mark_tsc_unstable("could not calculate TSC khz");
1544 			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1545 			return;
1546 		}
1547 		tsc_enable_sched_clock();
1548 	}
1549 
1550 	cyc2ns_init_secondary_cpus();
1551 
1552 	if (!no_sched_irq_time)
1553 		enable_sched_clock_irqtime();
1554 
1555 	lpj_fine = get_loops_per_jiffy();
1556 
1557 	check_system_tsc_reliable();
1558 
1559 	if (unsynchronized_tsc()) {
1560 		mark_tsc_unstable("TSCs unsynchronized");
1561 		return;
1562 	}
1563 
1564 	if (tsc_clocksource_reliable || no_tsc_watchdog)
1565 		tsc_disable_clocksource_watchdog();
1566 
1567 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1568 	detect_art();
1569 }
1570 
1571 #ifdef CONFIG_SMP
1572 /*
1573  * Check whether existing calibration data can be reused.
1574  */
1575 unsigned long calibrate_delay_is_known(void)
1576 {
1577 	int sibling, cpu = smp_processor_id();
1578 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1579 	const struct cpumask *mask = topology_core_cpumask(cpu);
1580 
1581 	/*
1582 	 * If TSC has constant frequency and TSC is synchronized across
1583 	 * sockets then reuse CPU0 calibration.
1584 	 */
1585 	if (constant_tsc && !tsc_unstable)
1586 		return cpu_data(0).loops_per_jiffy;
1587 
1588 	/*
1589 	 * If TSC has constant frequency and TSC is not synchronized across
1590 	 * sockets and this is not the first CPU in the socket, then reuse
1591 	 * the calibration value of an already online CPU on that socket.
1592 	 *
1593 	 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1594 	 * socket.
1595 	 */
1596 	if (!constant_tsc || !mask)
1597 		return 0;
1598 
1599 	sibling = cpumask_any_but(mask, cpu);
1600 	if (sibling < nr_cpu_ids)
1601 		return cpu_data(sibling).loops_per_jiffy;
1602 	return 0;
1603 }
1604 #endif
1605