1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/init.h> 8 #include <linux/export.h> 9 #include <linux/timer.h> 10 #include <linux/acpi_pmtmr.h> 11 #include <linux/cpufreq.h> 12 #include <linux/delay.h> 13 #include <linux/clocksource.h> 14 #include <linux/percpu.h> 15 #include <linux/timex.h> 16 #include <linux/static_key.h> 17 #include <linux/static_call.h> 18 19 #include <asm/hpet.h> 20 #include <asm/timer.h> 21 #include <asm/vgtod.h> 22 #include <asm/time.h> 23 #include <asm/delay.h> 24 #include <asm/hypervisor.h> 25 #include <asm/nmi.h> 26 #include <asm/x86_init.h> 27 #include <asm/geode.h> 28 #include <asm/apic.h> 29 #include <asm/intel-family.h> 30 #include <asm/i8259.h> 31 #include <asm/uv/uv.h> 32 33 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 34 EXPORT_SYMBOL(cpu_khz); 35 36 unsigned int __read_mostly tsc_khz; 37 EXPORT_SYMBOL(tsc_khz); 38 39 #define KHZ 1000 40 41 /* 42 * TSC can be unstable due to cpufreq or due to unsynced TSCs 43 */ 44 static int __read_mostly tsc_unstable; 45 static unsigned int __initdata tsc_early_khz; 46 47 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 48 49 int tsc_clocksource_reliable; 50 51 static int __read_mostly tsc_force_recalibrate; 52 53 static u32 art_to_tsc_numerator; 54 static u32 art_to_tsc_denominator; 55 static u64 art_to_tsc_offset; 56 static struct clocksource *art_related_clocksource; 57 58 struct cyc2ns { 59 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ 60 seqcount_latch_t seq; /* 32 + 4 = 36 */ 61 62 }; /* fits one cacheline */ 63 64 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 65 66 static int __init tsc_early_khz_setup(char *buf) 67 { 68 return kstrtouint(buf, 0, &tsc_early_khz); 69 } 70 early_param("tsc_early_khz", tsc_early_khz_setup); 71 72 __always_inline void __cyc2ns_read(struct cyc2ns_data *data) 73 { 74 int seq, idx; 75 76 do { 77 seq = this_cpu_read(cyc2ns.seq.seqcount.sequence); 78 idx = seq & 1; 79 80 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); 81 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); 82 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); 83 84 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence))); 85 } 86 87 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) 88 { 89 preempt_disable_notrace(); 90 __cyc2ns_read(data); 91 } 92 93 __always_inline void cyc2ns_read_end(void) 94 { 95 preempt_enable_notrace(); 96 } 97 98 /* 99 * Accelerators for sched_clock() 100 * convert from cycles(64bits) => nanoseconds (64bits) 101 * basic equation: 102 * ns = cycles / (freq / ns_per_sec) 103 * ns = cycles * (ns_per_sec / freq) 104 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 105 * ns = cycles * (10^6 / cpu_khz) 106 * 107 * Then we use scaling math (suggested by george@mvista.com) to get: 108 * ns = cycles * (10^6 * SC / cpu_khz) / SC 109 * ns = cycles * cyc2ns_scale / SC 110 * 111 * And since SC is a constant power of two, we can convert the div 112 * into a shift. The larger SC is, the more accurate the conversion, but 113 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 114 * (64-bit result) can be used. 115 * 116 * We can use khz divisor instead of mhz to keep a better precision. 117 * (mathieu.desnoyers@polymtl.ca) 118 * 119 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 120 */ 121 122 static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc) 123 { 124 struct cyc2ns_data data; 125 unsigned long long ns; 126 127 __cyc2ns_read(&data); 128 129 ns = data.cyc2ns_offset; 130 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); 131 132 return ns; 133 } 134 135 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) 136 { 137 unsigned long long ns; 138 preempt_disable_notrace(); 139 ns = __cycles_2_ns(cyc); 140 preempt_enable_notrace(); 141 return ns; 142 } 143 144 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 145 { 146 unsigned long long ns_now; 147 struct cyc2ns_data data; 148 struct cyc2ns *c2n; 149 150 ns_now = cycles_2_ns(tsc_now); 151 152 /* 153 * Compute a new multiplier as per the above comment and ensure our 154 * time function is continuous; see the comment near struct 155 * cyc2ns_data. 156 */ 157 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, 158 NSEC_PER_MSEC, 0); 159 160 /* 161 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 162 * not expected to be greater than 31 due to the original published 163 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 164 * value) - refer perf_event_mmap_page documentation in perf_event.h. 165 */ 166 if (data.cyc2ns_shift == 32) { 167 data.cyc2ns_shift = 31; 168 data.cyc2ns_mul >>= 1; 169 } 170 171 data.cyc2ns_offset = ns_now - 172 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); 173 174 c2n = per_cpu_ptr(&cyc2ns, cpu); 175 176 raw_write_seqcount_latch(&c2n->seq); 177 c2n->data[0] = data; 178 raw_write_seqcount_latch(&c2n->seq); 179 c2n->data[1] = data; 180 } 181 182 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 183 { 184 unsigned long flags; 185 186 local_irq_save(flags); 187 sched_clock_idle_sleep_event(); 188 189 if (khz) 190 __set_cyc2ns_scale(khz, cpu, tsc_now); 191 192 sched_clock_idle_wakeup_event(); 193 local_irq_restore(flags); 194 } 195 196 /* 197 * Initialize cyc2ns for boot cpu 198 */ 199 static void __init cyc2ns_init_boot_cpu(void) 200 { 201 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 202 203 seqcount_latch_init(&c2n->seq); 204 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); 205 } 206 207 /* 208 * Secondary CPUs do not run through tsc_init(), so set up 209 * all the scale factors for all CPUs, assuming the same 210 * speed as the bootup CPU. 211 */ 212 static void __init cyc2ns_init_secondary_cpus(void) 213 { 214 unsigned int cpu, this_cpu = smp_processor_id(); 215 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 216 struct cyc2ns_data *data = c2n->data; 217 218 for_each_possible_cpu(cpu) { 219 if (cpu != this_cpu) { 220 seqcount_latch_init(&c2n->seq); 221 c2n = per_cpu_ptr(&cyc2ns, cpu); 222 c2n->data[0] = data[0]; 223 c2n->data[1] = data[1]; 224 } 225 } 226 } 227 228 /* 229 * Scheduler clock - returns current time in nanosec units. 230 */ 231 noinstr u64 native_sched_clock(void) 232 { 233 if (static_branch_likely(&__use_tsc)) { 234 u64 tsc_now = rdtsc(); 235 236 /* return the value in ns */ 237 return __cycles_2_ns(tsc_now); 238 } 239 240 /* 241 * Fall back to jiffies if there's no TSC available: 242 * ( But note that we still use it if the TSC is marked 243 * unstable. We do this because unlike Time Of Day, 244 * the scheduler clock tolerates small errors and it's 245 * very important for it to be as fast as the platform 246 * can achieve it. ) 247 */ 248 249 /* No locking but a rare wrong value is not a big deal: */ 250 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 251 } 252 253 /* 254 * Generate a sched_clock if you already have a TSC value. 255 */ 256 u64 native_sched_clock_from_tsc(u64 tsc) 257 { 258 return cycles_2_ns(tsc); 259 } 260 261 /* We need to define a real function for sched_clock, to override the 262 weak default version */ 263 #ifdef CONFIG_PARAVIRT 264 noinstr u64 sched_clock_noinstr(void) 265 { 266 return paravirt_sched_clock(); 267 } 268 269 bool using_native_sched_clock(void) 270 { 271 return static_call_query(pv_sched_clock) == native_sched_clock; 272 } 273 #else 274 u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock"))); 275 276 bool using_native_sched_clock(void) { return true; } 277 #endif 278 279 notrace u64 sched_clock(void) 280 { 281 u64 now; 282 preempt_disable_notrace(); 283 now = sched_clock_noinstr(); 284 preempt_enable_notrace(); 285 return now; 286 } 287 288 int check_tsc_unstable(void) 289 { 290 return tsc_unstable; 291 } 292 EXPORT_SYMBOL_GPL(check_tsc_unstable); 293 294 #ifdef CONFIG_X86_TSC 295 int __init notsc_setup(char *str) 296 { 297 mark_tsc_unstable("boot parameter notsc"); 298 return 1; 299 } 300 #else 301 /* 302 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 303 * in cpu/common.c 304 */ 305 int __init notsc_setup(char *str) 306 { 307 setup_clear_cpu_cap(X86_FEATURE_TSC); 308 return 1; 309 } 310 #endif 311 312 __setup("notsc", notsc_setup); 313 314 static int no_sched_irq_time; 315 static int no_tsc_watchdog; 316 static int tsc_as_watchdog; 317 318 static int __init tsc_setup(char *str) 319 { 320 if (!strcmp(str, "reliable")) 321 tsc_clocksource_reliable = 1; 322 if (!strncmp(str, "noirqtime", 9)) 323 no_sched_irq_time = 1; 324 if (!strcmp(str, "unstable")) 325 mark_tsc_unstable("boot parameter"); 326 if (!strcmp(str, "nowatchdog")) { 327 no_tsc_watchdog = 1; 328 if (tsc_as_watchdog) 329 pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n", 330 __func__); 331 tsc_as_watchdog = 0; 332 } 333 if (!strcmp(str, "recalibrate")) 334 tsc_force_recalibrate = 1; 335 if (!strcmp(str, "watchdog")) { 336 if (no_tsc_watchdog) 337 pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n", 338 __func__); 339 else 340 tsc_as_watchdog = 1; 341 } 342 return 1; 343 } 344 345 __setup("tsc=", tsc_setup); 346 347 #define MAX_RETRIES 5 348 #define TSC_DEFAULT_THRESHOLD 0x20000 349 350 /* 351 * Read TSC and the reference counters. Take care of any disturbances 352 */ 353 static u64 tsc_read_refs(u64 *p, int hpet) 354 { 355 u64 t1, t2; 356 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; 357 int i; 358 359 for (i = 0; i < MAX_RETRIES; i++) { 360 t1 = get_cycles(); 361 if (hpet) 362 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 363 else 364 *p = acpi_pm_read_early(); 365 t2 = get_cycles(); 366 if ((t2 - t1) < thresh) 367 return t2; 368 } 369 return ULLONG_MAX; 370 } 371 372 /* 373 * Calculate the TSC frequency from HPET reference 374 */ 375 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 376 { 377 u64 tmp; 378 379 if (hpet2 < hpet1) 380 hpet2 += 0x100000000ULL; 381 hpet2 -= hpet1; 382 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 383 do_div(tmp, 1000000); 384 deltatsc = div64_u64(deltatsc, tmp); 385 386 return (unsigned long) deltatsc; 387 } 388 389 /* 390 * Calculate the TSC frequency from PMTimer reference 391 */ 392 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 393 { 394 u64 tmp; 395 396 if (!pm1 && !pm2) 397 return ULONG_MAX; 398 399 if (pm2 < pm1) 400 pm2 += (u64)ACPI_PM_OVRRUN; 401 pm2 -= pm1; 402 tmp = pm2 * 1000000000LL; 403 do_div(tmp, PMTMR_TICKS_PER_SEC); 404 do_div(deltatsc, tmp); 405 406 return (unsigned long) deltatsc; 407 } 408 409 #define CAL_MS 10 410 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 411 #define CAL_PIT_LOOPS 1000 412 413 #define CAL2_MS 50 414 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 415 #define CAL2_PIT_LOOPS 5000 416 417 418 /* 419 * Try to calibrate the TSC against the Programmable 420 * Interrupt Timer and return the frequency of the TSC 421 * in kHz. 422 * 423 * Return ULONG_MAX on failure to calibrate. 424 */ 425 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 426 { 427 u64 tsc, t1, t2, delta; 428 unsigned long tscmin, tscmax; 429 int pitcnt; 430 431 if (!has_legacy_pic()) { 432 /* 433 * Relies on tsc_early_delay_calibrate() to have given us semi 434 * usable udelay(), wait for the same 50ms we would have with 435 * the PIT loop below. 436 */ 437 udelay(10 * USEC_PER_MSEC); 438 udelay(10 * USEC_PER_MSEC); 439 udelay(10 * USEC_PER_MSEC); 440 udelay(10 * USEC_PER_MSEC); 441 udelay(10 * USEC_PER_MSEC); 442 return ULONG_MAX; 443 } 444 445 /* Set the Gate high, disable speaker */ 446 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 447 448 /* 449 * Setup CTC channel 2* for mode 0, (interrupt on terminal 450 * count mode), binary count. Set the latch register to 50ms 451 * (LSB then MSB) to begin countdown. 452 */ 453 outb(0xb0, 0x43); 454 outb(latch & 0xff, 0x42); 455 outb(latch >> 8, 0x42); 456 457 tsc = t1 = t2 = get_cycles(); 458 459 pitcnt = 0; 460 tscmax = 0; 461 tscmin = ULONG_MAX; 462 while ((inb(0x61) & 0x20) == 0) { 463 t2 = get_cycles(); 464 delta = t2 - tsc; 465 tsc = t2; 466 if ((unsigned long) delta < tscmin) 467 tscmin = (unsigned int) delta; 468 if ((unsigned long) delta > tscmax) 469 tscmax = (unsigned int) delta; 470 pitcnt++; 471 } 472 473 /* 474 * Sanity checks: 475 * 476 * If we were not able to read the PIT more than loopmin 477 * times, then we have been hit by a massive SMI 478 * 479 * If the maximum is 10 times larger than the minimum, 480 * then we got hit by an SMI as well. 481 */ 482 if (pitcnt < loopmin || tscmax > 10 * tscmin) 483 return ULONG_MAX; 484 485 /* Calculate the PIT value */ 486 delta = t2 - t1; 487 do_div(delta, ms); 488 return delta; 489 } 490 491 /* 492 * This reads the current MSB of the PIT counter, and 493 * checks if we are running on sufficiently fast and 494 * non-virtualized hardware. 495 * 496 * Our expectations are: 497 * 498 * - the PIT is running at roughly 1.19MHz 499 * 500 * - each IO is going to take about 1us on real hardware, 501 * but we allow it to be much faster (by a factor of 10) or 502 * _slightly_ slower (ie we allow up to a 2us read+counter 503 * update - anything else implies a unacceptably slow CPU 504 * or PIT for the fast calibration to work. 505 * 506 * - with 256 PIT ticks to read the value, we have 214us to 507 * see the same MSB (and overhead like doing a single TSC 508 * read per MSB value etc). 509 * 510 * - We're doing 2 reads per loop (LSB, MSB), and we expect 511 * them each to take about a microsecond on real hardware. 512 * So we expect a count value of around 100. But we'll be 513 * generous, and accept anything over 50. 514 * 515 * - if the PIT is stuck, and we see *many* more reads, we 516 * return early (and the next caller of pit_expect_msb() 517 * then consider it a failure when they don't see the 518 * next expected value). 519 * 520 * These expectations mean that we know that we have seen the 521 * transition from one expected value to another with a fairly 522 * high accuracy, and we didn't miss any events. We can thus 523 * use the TSC value at the transitions to calculate a pretty 524 * good value for the TSC frequency. 525 */ 526 static inline int pit_verify_msb(unsigned char val) 527 { 528 /* Ignore LSB */ 529 inb(0x42); 530 return inb(0x42) == val; 531 } 532 533 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 534 { 535 int count; 536 u64 tsc = 0, prev_tsc = 0; 537 538 for (count = 0; count < 50000; count++) { 539 if (!pit_verify_msb(val)) 540 break; 541 prev_tsc = tsc; 542 tsc = get_cycles(); 543 } 544 *deltap = get_cycles() - prev_tsc; 545 *tscp = tsc; 546 547 /* 548 * We require _some_ success, but the quality control 549 * will be based on the error terms on the TSC values. 550 */ 551 return count > 5; 552 } 553 554 /* 555 * How many MSB values do we want to see? We aim for 556 * a maximum error rate of 500ppm (in practice the 557 * real error is much smaller), but refuse to spend 558 * more than 50ms on it. 559 */ 560 #define MAX_QUICK_PIT_MS 50 561 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 562 563 static unsigned long quick_pit_calibrate(void) 564 { 565 int i; 566 u64 tsc, delta; 567 unsigned long d1, d2; 568 569 if (!has_legacy_pic()) 570 return 0; 571 572 /* Set the Gate high, disable speaker */ 573 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 574 575 /* 576 * Counter 2, mode 0 (one-shot), binary count 577 * 578 * NOTE! Mode 2 decrements by two (and then the 579 * output is flipped each time, giving the same 580 * final output frequency as a decrement-by-one), 581 * so mode 0 is much better when looking at the 582 * individual counts. 583 */ 584 outb(0xb0, 0x43); 585 586 /* Start at 0xffff */ 587 outb(0xff, 0x42); 588 outb(0xff, 0x42); 589 590 /* 591 * The PIT starts counting at the next edge, so we 592 * need to delay for a microsecond. The easiest way 593 * to do that is to just read back the 16-bit counter 594 * once from the PIT. 595 */ 596 pit_verify_msb(0); 597 598 if (pit_expect_msb(0xff, &tsc, &d1)) { 599 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 600 if (!pit_expect_msb(0xff-i, &delta, &d2)) 601 break; 602 603 delta -= tsc; 604 605 /* 606 * Extrapolate the error and fail fast if the error will 607 * never be below 500 ppm. 608 */ 609 if (i == 1 && 610 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 611 return 0; 612 613 /* 614 * Iterate until the error is less than 500 ppm 615 */ 616 if (d1+d2 >= delta >> 11) 617 continue; 618 619 /* 620 * Check the PIT one more time to verify that 621 * all TSC reads were stable wrt the PIT. 622 * 623 * This also guarantees serialization of the 624 * last cycle read ('d2') in pit_expect_msb. 625 */ 626 if (!pit_verify_msb(0xfe - i)) 627 break; 628 goto success; 629 } 630 } 631 pr_info("Fast TSC calibration failed\n"); 632 return 0; 633 634 success: 635 /* 636 * Ok, if we get here, then we've seen the 637 * MSB of the PIT decrement 'i' times, and the 638 * error has shrunk to less than 500 ppm. 639 * 640 * As a result, we can depend on there not being 641 * any odd delays anywhere, and the TSC reads are 642 * reliable (within the error). 643 * 644 * kHz = ticks / time-in-seconds / 1000; 645 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 646 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 647 */ 648 delta *= PIT_TICK_RATE; 649 do_div(delta, i*256*1000); 650 pr_info("Fast TSC calibration using PIT\n"); 651 return delta; 652 } 653 654 /** 655 * native_calibrate_tsc 656 * Determine TSC frequency via CPUID, else return 0. 657 */ 658 unsigned long native_calibrate_tsc(void) 659 { 660 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 661 unsigned int crystal_khz; 662 663 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 664 return 0; 665 666 if (boot_cpu_data.cpuid_level < 0x15) 667 return 0; 668 669 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 670 671 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 672 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 673 674 if (ebx_numerator == 0 || eax_denominator == 0) 675 return 0; 676 677 crystal_khz = ecx_hz / 1000; 678 679 /* 680 * Denverton SoCs don't report crystal clock, and also don't support 681 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal 682 * clock. 683 */ 684 if (crystal_khz == 0 && 685 boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D) 686 crystal_khz = 25000; 687 688 /* 689 * TSC frequency reported directly by CPUID is a "hardware reported" 690 * frequency and is the most accurate one so far we have. This 691 * is considered a known frequency. 692 */ 693 if (crystal_khz != 0) 694 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); 695 696 /* 697 * Some Intel SoCs like Skylake and Kabylake don't report the crystal 698 * clock, but we can easily calculate it to a high degree of accuracy 699 * by considering the crystal ratio and the CPU speed. 700 */ 701 if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) { 702 unsigned int eax_base_mhz, ebx, ecx, edx; 703 704 cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx); 705 crystal_khz = eax_base_mhz * 1000 * 706 eax_denominator / ebx_numerator; 707 } 708 709 if (crystal_khz == 0) 710 return 0; 711 712 /* 713 * For Atom SoCs TSC is the only reliable clocksource. 714 * Mark TSC reliable so no watchdog on it. 715 */ 716 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) 717 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 718 719 #ifdef CONFIG_X86_LOCAL_APIC 720 /* 721 * The local APIC appears to be fed by the core crystal clock 722 * (which sounds entirely sensible). We can set the global 723 * lapic_timer_period here to avoid having to calibrate the APIC 724 * timer later. 725 */ 726 lapic_timer_period = crystal_khz * 1000 / HZ; 727 #endif 728 729 return crystal_khz * ebx_numerator / eax_denominator; 730 } 731 732 static unsigned long cpu_khz_from_cpuid(void) 733 { 734 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 735 736 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 737 return 0; 738 739 if (boot_cpu_data.cpuid_level < 0x16) 740 return 0; 741 742 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 743 744 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 745 746 return eax_base_mhz * 1000; 747 } 748 749 /* 750 * calibrate cpu using pit, hpet, and ptimer methods. They are available 751 * later in boot after acpi is initialized. 752 */ 753 static unsigned long pit_hpet_ptimer_calibrate_cpu(void) 754 { 755 u64 tsc1, tsc2, delta, ref1, ref2; 756 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 757 unsigned long flags, latch, ms; 758 int hpet = is_hpet_enabled(), i, loopmin; 759 760 /* 761 * Run 5 calibration loops to get the lowest frequency value 762 * (the best estimate). We use two different calibration modes 763 * here: 764 * 765 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 766 * load a timeout of 50ms. We read the time right after we 767 * started the timer and wait until the PIT count down reaches 768 * zero. In each wait loop iteration we read the TSC and check 769 * the delta to the previous read. We keep track of the min 770 * and max values of that delta. The delta is mostly defined 771 * by the IO time of the PIT access, so we can detect when 772 * any disturbance happened between the two reads. If the 773 * maximum time is significantly larger than the minimum time, 774 * then we discard the result and have another try. 775 * 776 * 2) Reference counter. If available we use the HPET or the 777 * PMTIMER as a reference to check the sanity of that value. 778 * We use separate TSC readouts and check inside of the 779 * reference read for any possible disturbance. We discard 780 * disturbed values here as well. We do that around the PIT 781 * calibration delay loop as we have to wait for a certain 782 * amount of time anyway. 783 */ 784 785 /* Preset PIT loop values */ 786 latch = CAL_LATCH; 787 ms = CAL_MS; 788 loopmin = CAL_PIT_LOOPS; 789 790 for (i = 0; i < 3; i++) { 791 unsigned long tsc_pit_khz; 792 793 /* 794 * Read the start value and the reference count of 795 * hpet/pmtimer when available. Then do the PIT 796 * calibration, which will take at least 50ms, and 797 * read the end value. 798 */ 799 local_irq_save(flags); 800 tsc1 = tsc_read_refs(&ref1, hpet); 801 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 802 tsc2 = tsc_read_refs(&ref2, hpet); 803 local_irq_restore(flags); 804 805 /* Pick the lowest PIT TSC calibration so far */ 806 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 807 808 /* hpet or pmtimer available ? */ 809 if (ref1 == ref2) 810 continue; 811 812 /* Check, whether the sampling was disturbed */ 813 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 814 continue; 815 816 tsc2 = (tsc2 - tsc1) * 1000000LL; 817 if (hpet) 818 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 819 else 820 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 821 822 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 823 824 /* Check the reference deviation */ 825 delta = ((u64) tsc_pit_min) * 100; 826 do_div(delta, tsc_ref_min); 827 828 /* 829 * If both calibration results are inside a 10% window 830 * then we can be sure, that the calibration 831 * succeeded. We break out of the loop right away. We 832 * use the reference value, as it is more precise. 833 */ 834 if (delta >= 90 && delta <= 110) { 835 pr_info("PIT calibration matches %s. %d loops\n", 836 hpet ? "HPET" : "PMTIMER", i + 1); 837 return tsc_ref_min; 838 } 839 840 /* 841 * Check whether PIT failed more than once. This 842 * happens in virtualized environments. We need to 843 * give the virtual PC a slightly longer timeframe for 844 * the HPET/PMTIMER to make the result precise. 845 */ 846 if (i == 1 && tsc_pit_min == ULONG_MAX) { 847 latch = CAL2_LATCH; 848 ms = CAL2_MS; 849 loopmin = CAL2_PIT_LOOPS; 850 } 851 } 852 853 /* 854 * Now check the results. 855 */ 856 if (tsc_pit_min == ULONG_MAX) { 857 /* PIT gave no useful value */ 858 pr_warn("Unable to calibrate against PIT\n"); 859 860 /* We don't have an alternative source, disable TSC */ 861 if (!hpet && !ref1 && !ref2) { 862 pr_notice("No reference (HPET/PMTIMER) available\n"); 863 return 0; 864 } 865 866 /* The alternative source failed as well, disable TSC */ 867 if (tsc_ref_min == ULONG_MAX) { 868 pr_warn("HPET/PMTIMER calibration failed\n"); 869 return 0; 870 } 871 872 /* Use the alternative source */ 873 pr_info("using %s reference calibration\n", 874 hpet ? "HPET" : "PMTIMER"); 875 876 return tsc_ref_min; 877 } 878 879 /* We don't have an alternative source, use the PIT calibration value */ 880 if (!hpet && !ref1 && !ref2) { 881 pr_info("Using PIT calibration value\n"); 882 return tsc_pit_min; 883 } 884 885 /* The alternative source failed, use the PIT calibration value */ 886 if (tsc_ref_min == ULONG_MAX) { 887 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 888 return tsc_pit_min; 889 } 890 891 /* 892 * The calibration values differ too much. In doubt, we use 893 * the PIT value as we know that there are PMTIMERs around 894 * running at double speed. At least we let the user know: 895 */ 896 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 897 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 898 pr_info("Using PIT calibration value\n"); 899 return tsc_pit_min; 900 } 901 902 /** 903 * native_calibrate_cpu_early - can calibrate the cpu early in boot 904 */ 905 unsigned long native_calibrate_cpu_early(void) 906 { 907 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); 908 909 if (!fast_calibrate) 910 fast_calibrate = cpu_khz_from_msr(); 911 if (!fast_calibrate) { 912 local_irq_save(flags); 913 fast_calibrate = quick_pit_calibrate(); 914 local_irq_restore(flags); 915 } 916 return fast_calibrate; 917 } 918 919 920 /** 921 * native_calibrate_cpu - calibrate the cpu 922 */ 923 static unsigned long native_calibrate_cpu(void) 924 { 925 unsigned long tsc_freq = native_calibrate_cpu_early(); 926 927 if (!tsc_freq) 928 tsc_freq = pit_hpet_ptimer_calibrate_cpu(); 929 930 return tsc_freq; 931 } 932 933 void recalibrate_cpu_khz(void) 934 { 935 #ifndef CONFIG_SMP 936 unsigned long cpu_khz_old = cpu_khz; 937 938 if (!boot_cpu_has(X86_FEATURE_TSC)) 939 return; 940 941 cpu_khz = x86_platform.calibrate_cpu(); 942 tsc_khz = x86_platform.calibrate_tsc(); 943 if (tsc_khz == 0) 944 tsc_khz = cpu_khz; 945 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 946 cpu_khz = tsc_khz; 947 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 948 cpu_khz_old, cpu_khz); 949 #endif 950 } 951 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz); 952 953 954 static unsigned long long cyc2ns_suspend; 955 956 void tsc_save_sched_clock_state(void) 957 { 958 if (!sched_clock_stable()) 959 return; 960 961 cyc2ns_suspend = sched_clock(); 962 } 963 964 /* 965 * Even on processors with invariant TSC, TSC gets reset in some the 966 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 967 * arbitrary value (still sync'd across cpu's) during resume from such sleep 968 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 969 * that sched_clock() continues from the point where it was left off during 970 * suspend. 971 */ 972 void tsc_restore_sched_clock_state(void) 973 { 974 unsigned long long offset; 975 unsigned long flags; 976 int cpu; 977 978 if (!sched_clock_stable()) 979 return; 980 981 local_irq_save(flags); 982 983 /* 984 * We're coming out of suspend, there's no concurrency yet; don't 985 * bother being nice about the RCU stuff, just write to both 986 * data fields. 987 */ 988 989 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 990 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 991 992 offset = cyc2ns_suspend - sched_clock(); 993 994 for_each_possible_cpu(cpu) { 995 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 996 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 997 } 998 999 local_irq_restore(flags); 1000 } 1001 1002 #ifdef CONFIG_CPU_FREQ 1003 /* 1004 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency 1005 * changes. 1006 * 1007 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC 1008 * as unstable and give up in those cases. 1009 * 1010 * Should fix up last_tsc too. Currently gettimeofday in the 1011 * first tick after the change will be slightly wrong. 1012 */ 1013 1014 static unsigned int ref_freq; 1015 static unsigned long loops_per_jiffy_ref; 1016 static unsigned long tsc_khz_ref; 1017 1018 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 1019 void *data) 1020 { 1021 struct cpufreq_freqs *freq = data; 1022 1023 if (num_online_cpus() > 1) { 1024 mark_tsc_unstable("cpufreq changes on SMP"); 1025 return 0; 1026 } 1027 1028 if (!ref_freq) { 1029 ref_freq = freq->old; 1030 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; 1031 tsc_khz_ref = tsc_khz; 1032 } 1033 1034 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 1035 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 1036 boot_cpu_data.loops_per_jiffy = 1037 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 1038 1039 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 1040 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 1041 mark_tsc_unstable("cpufreq changes"); 1042 1043 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); 1044 } 1045 1046 return 0; 1047 } 1048 1049 static struct notifier_block time_cpufreq_notifier_block = { 1050 .notifier_call = time_cpufreq_notifier 1051 }; 1052 1053 static int __init cpufreq_register_tsc_scaling(void) 1054 { 1055 if (!boot_cpu_has(X86_FEATURE_TSC)) 1056 return 0; 1057 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1058 return 0; 1059 cpufreq_register_notifier(&time_cpufreq_notifier_block, 1060 CPUFREQ_TRANSITION_NOTIFIER); 1061 return 0; 1062 } 1063 1064 core_initcall(cpufreq_register_tsc_scaling); 1065 1066 #endif /* CONFIG_CPU_FREQ */ 1067 1068 #define ART_CPUID_LEAF (0x15) 1069 #define ART_MIN_DENOMINATOR (1) 1070 1071 1072 /* 1073 * If ART is present detect the numerator:denominator to convert to TSC 1074 */ 1075 static void __init detect_art(void) 1076 { 1077 unsigned int unused[2]; 1078 1079 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 1080 return; 1081 1082 /* 1083 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, 1084 * and the TSC counter resets must not occur asynchronously. 1085 */ 1086 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1087 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1088 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || 1089 tsc_async_resets) 1090 return; 1091 1092 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 1093 &art_to_tsc_numerator, unused, unused+1); 1094 1095 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) 1096 return; 1097 1098 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); 1099 1100 /* Make this sticky over multiple CPU init calls */ 1101 setup_force_cpu_cap(X86_FEATURE_ART); 1102 } 1103 1104 1105 /* clocksource code */ 1106 1107 static void tsc_resume(struct clocksource *cs) 1108 { 1109 tsc_verify_tsc_adjust(true); 1110 } 1111 1112 /* 1113 * We used to compare the TSC to the cycle_last value in the clocksource 1114 * structure to avoid a nasty time-warp. This can be observed in a 1115 * very small window right after one CPU updated cycle_last under 1116 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1117 * is smaller than the cycle_last reference value due to a TSC which 1118 * is slightly behind. This delta is nowhere else observable, but in 1119 * that case it results in a forward time jump in the range of hours 1120 * due to the unsigned delta calculation of the time keeping core 1121 * code, which is necessary to support wrapping clocksources like pm 1122 * timer. 1123 * 1124 * This sanity check is now done in the core timekeeping code. 1125 * checking the result of read_tsc() - cycle_last for being negative. 1126 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1127 */ 1128 static u64 read_tsc(struct clocksource *cs) 1129 { 1130 return (u64)rdtsc_ordered(); 1131 } 1132 1133 static void tsc_cs_mark_unstable(struct clocksource *cs) 1134 { 1135 if (tsc_unstable) 1136 return; 1137 1138 tsc_unstable = 1; 1139 if (using_native_sched_clock()) 1140 clear_sched_clock_stable(); 1141 disable_sched_clock_irqtime(); 1142 pr_info("Marking TSC unstable due to clocksource watchdog\n"); 1143 } 1144 1145 static void tsc_cs_tick_stable(struct clocksource *cs) 1146 { 1147 if (tsc_unstable) 1148 return; 1149 1150 if (using_native_sched_clock()) 1151 sched_clock_tick_stable(); 1152 } 1153 1154 static int tsc_cs_enable(struct clocksource *cs) 1155 { 1156 vclocks_set_used(VDSO_CLOCKMODE_TSC); 1157 return 0; 1158 } 1159 1160 /* 1161 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1162 */ 1163 static struct clocksource clocksource_tsc_early = { 1164 .name = "tsc-early", 1165 .rating = 299, 1166 .uncertainty_margin = 32 * NSEC_PER_MSEC, 1167 .read = read_tsc, 1168 .mask = CLOCKSOURCE_MASK(64), 1169 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1170 CLOCK_SOURCE_MUST_VERIFY, 1171 .vdso_clock_mode = VDSO_CLOCKMODE_TSC, 1172 .enable = tsc_cs_enable, 1173 .resume = tsc_resume, 1174 .mark_unstable = tsc_cs_mark_unstable, 1175 .tick_stable = tsc_cs_tick_stable, 1176 .list = LIST_HEAD_INIT(clocksource_tsc_early.list), 1177 }; 1178 1179 /* 1180 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early 1181 * this one will immediately take over. We will only register if TSC has 1182 * been found good. 1183 */ 1184 static struct clocksource clocksource_tsc = { 1185 .name = "tsc", 1186 .rating = 300, 1187 .read = read_tsc, 1188 .mask = CLOCKSOURCE_MASK(64), 1189 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1190 CLOCK_SOURCE_VALID_FOR_HRES | 1191 CLOCK_SOURCE_MUST_VERIFY | 1192 CLOCK_SOURCE_VERIFY_PERCPU, 1193 .vdso_clock_mode = VDSO_CLOCKMODE_TSC, 1194 .enable = tsc_cs_enable, 1195 .resume = tsc_resume, 1196 .mark_unstable = tsc_cs_mark_unstable, 1197 .tick_stable = tsc_cs_tick_stable, 1198 .list = LIST_HEAD_INIT(clocksource_tsc.list), 1199 }; 1200 1201 void mark_tsc_unstable(char *reason) 1202 { 1203 if (tsc_unstable) 1204 return; 1205 1206 tsc_unstable = 1; 1207 if (using_native_sched_clock()) 1208 clear_sched_clock_stable(); 1209 disable_sched_clock_irqtime(); 1210 pr_info("Marking TSC unstable due to %s\n", reason); 1211 1212 clocksource_mark_unstable(&clocksource_tsc_early); 1213 clocksource_mark_unstable(&clocksource_tsc); 1214 } 1215 1216 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1217 1218 static void __init tsc_disable_clocksource_watchdog(void) 1219 { 1220 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1221 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1222 } 1223 1224 bool tsc_clocksource_watchdog_disabled(void) 1225 { 1226 return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) && 1227 tsc_as_watchdog && !no_tsc_watchdog; 1228 } 1229 1230 static void __init check_system_tsc_reliable(void) 1231 { 1232 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1233 if (is_geode_lx()) { 1234 /* RTSC counts during suspend */ 1235 #define RTSC_SUSP 0x100 1236 unsigned long res_low, res_high; 1237 1238 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1239 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1240 if (res_low & RTSC_SUSP) 1241 tsc_clocksource_reliable = 1; 1242 } 1243 #endif 1244 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1245 tsc_clocksource_reliable = 1; 1246 1247 /* 1248 * Disable the clocksource watchdog when the system has: 1249 * - TSC running at constant frequency 1250 * - TSC which does not stop in C-States 1251 * - the TSC_ADJUST register which allows to detect even minimal 1252 * modifications 1253 * - not more than two sockets. As the number of sockets cannot be 1254 * evaluated at the early boot stage where this has to be 1255 * invoked, check the number of online memory nodes as a 1256 * fallback solution which is an reasonable estimate. 1257 */ 1258 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && 1259 boot_cpu_has(X86_FEATURE_NONSTOP_TSC) && 1260 boot_cpu_has(X86_FEATURE_TSC_ADJUST) && 1261 nr_online_nodes <= 2) 1262 tsc_disable_clocksource_watchdog(); 1263 } 1264 1265 /* 1266 * Make an educated guess if the TSC is trustworthy and synchronized 1267 * over all CPUs. 1268 */ 1269 int unsynchronized_tsc(void) 1270 { 1271 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1272 return 1; 1273 1274 #ifdef CONFIG_SMP 1275 if (apic_is_clustered_box()) 1276 return 1; 1277 #endif 1278 1279 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1280 return 0; 1281 1282 if (tsc_clocksource_reliable) 1283 return 0; 1284 /* 1285 * Intel systems are normally all synchronized. 1286 * Exceptions must mark TSC as unstable: 1287 */ 1288 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1289 /* assume multi socket systems are not synchronized: */ 1290 if (num_possible_cpus() > 1) 1291 return 1; 1292 } 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * Convert ART to TSC given numerator/denominator found in detect_art() 1299 */ 1300 struct system_counterval_t convert_art_to_tsc(u64 art) 1301 { 1302 u64 tmp, res, rem; 1303 1304 rem = do_div(art, art_to_tsc_denominator); 1305 1306 res = art * art_to_tsc_numerator; 1307 tmp = rem * art_to_tsc_numerator; 1308 1309 do_div(tmp, art_to_tsc_denominator); 1310 res += tmp + art_to_tsc_offset; 1311 1312 return (struct system_counterval_t) {.cs = art_related_clocksource, 1313 .cycles = res}; 1314 } 1315 EXPORT_SYMBOL(convert_art_to_tsc); 1316 1317 /** 1318 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC. 1319 * @art_ns: ART (Always Running Timer) in unit of nanoseconds 1320 * 1321 * PTM requires all timestamps to be in units of nanoseconds. When user 1322 * software requests a cross-timestamp, this function converts system timestamp 1323 * to TSC. 1324 * 1325 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set 1326 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check 1327 * that this flag is set before conversion to TSC is attempted. 1328 * 1329 * Return: 1330 * struct system_counterval_t - system counter value with the pointer to the 1331 * corresponding clocksource 1332 * @cycles: System counter value 1333 * @cs: Clocksource corresponding to system counter value. Used 1334 * by timekeeping code to verify comparability of two cycle 1335 * values. 1336 */ 1337 1338 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns) 1339 { 1340 u64 tmp, res, rem; 1341 1342 rem = do_div(art_ns, USEC_PER_SEC); 1343 1344 res = art_ns * tsc_khz; 1345 tmp = rem * tsc_khz; 1346 1347 do_div(tmp, USEC_PER_SEC); 1348 res += tmp; 1349 1350 return (struct system_counterval_t) { .cs = art_related_clocksource, 1351 .cycles = res}; 1352 } 1353 EXPORT_SYMBOL(convert_art_ns_to_tsc); 1354 1355 1356 static void tsc_refine_calibration_work(struct work_struct *work); 1357 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1358 /** 1359 * tsc_refine_calibration_work - Further refine tsc freq calibration 1360 * @work - ignored. 1361 * 1362 * This functions uses delayed work over a period of a 1363 * second to further refine the TSC freq value. Since this is 1364 * timer based, instead of loop based, we don't block the boot 1365 * process while this longer calibration is done. 1366 * 1367 * If there are any calibration anomalies (too many SMIs, etc), 1368 * or the refined calibration is off by 1% of the fast early 1369 * calibration, we throw out the new calibration and use the 1370 * early calibration. 1371 */ 1372 static void tsc_refine_calibration_work(struct work_struct *work) 1373 { 1374 static u64 tsc_start = ULLONG_MAX, ref_start; 1375 static int hpet; 1376 u64 tsc_stop, ref_stop, delta; 1377 unsigned long freq; 1378 int cpu; 1379 1380 /* Don't bother refining TSC on unstable systems */ 1381 if (tsc_unstable) 1382 goto unreg; 1383 1384 /* 1385 * Since the work is started early in boot, we may be 1386 * delayed the first time we expire. So set the workqueue 1387 * again once we know timers are working. 1388 */ 1389 if (tsc_start == ULLONG_MAX) { 1390 restart: 1391 /* 1392 * Only set hpet once, to avoid mixing hardware 1393 * if the hpet becomes enabled later. 1394 */ 1395 hpet = is_hpet_enabled(); 1396 tsc_start = tsc_read_refs(&ref_start, hpet); 1397 schedule_delayed_work(&tsc_irqwork, HZ); 1398 return; 1399 } 1400 1401 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1402 1403 /* hpet or pmtimer available ? */ 1404 if (ref_start == ref_stop) 1405 goto out; 1406 1407 /* Check, whether the sampling was disturbed */ 1408 if (tsc_stop == ULLONG_MAX) 1409 goto restart; 1410 1411 delta = tsc_stop - tsc_start; 1412 delta *= 1000000LL; 1413 if (hpet) 1414 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1415 else 1416 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1417 1418 /* Will hit this only if tsc_force_recalibrate has been set */ 1419 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1420 1421 /* Warn if the deviation exceeds 500 ppm */ 1422 if (abs(tsc_khz - freq) > (tsc_khz >> 11)) { 1423 pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n"); 1424 pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n", 1425 (unsigned long)tsc_khz / 1000, 1426 (unsigned long)tsc_khz % 1000); 1427 } 1428 1429 pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n", 1430 hpet ? "HPET" : "PM_TIMER", 1431 (unsigned long)freq / 1000, 1432 (unsigned long)freq % 1000); 1433 1434 return; 1435 } 1436 1437 /* Make sure we're within 1% */ 1438 if (abs(tsc_khz - freq) > tsc_khz/100) 1439 goto out; 1440 1441 tsc_khz = freq; 1442 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1443 (unsigned long)tsc_khz / 1000, 1444 (unsigned long)tsc_khz % 1000); 1445 1446 /* Inform the TSC deadline clockevent devices about the recalibration */ 1447 lapic_update_tsc_freq(); 1448 1449 /* Update the sched_clock() rate to match the clocksource one */ 1450 for_each_possible_cpu(cpu) 1451 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); 1452 1453 out: 1454 if (tsc_unstable) 1455 goto unreg; 1456 1457 if (boot_cpu_has(X86_FEATURE_ART)) 1458 art_related_clocksource = &clocksource_tsc; 1459 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1460 unreg: 1461 clocksource_unregister(&clocksource_tsc_early); 1462 } 1463 1464 1465 static int __init init_tsc_clocksource(void) 1466 { 1467 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) 1468 return 0; 1469 1470 if (tsc_unstable) { 1471 clocksource_unregister(&clocksource_tsc_early); 1472 return 0; 1473 } 1474 1475 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1476 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1477 1478 /* 1479 * When TSC frequency is known (retrieved via MSR or CPUID), we skip 1480 * the refined calibration and directly register it as a clocksource. 1481 */ 1482 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1483 if (boot_cpu_has(X86_FEATURE_ART)) 1484 art_related_clocksource = &clocksource_tsc; 1485 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1486 clocksource_unregister(&clocksource_tsc_early); 1487 1488 if (!tsc_force_recalibrate) 1489 return 0; 1490 } 1491 1492 schedule_delayed_work(&tsc_irqwork, 0); 1493 return 0; 1494 } 1495 /* 1496 * We use device_initcall here, to ensure we run after the hpet 1497 * is fully initialized, which may occur at fs_initcall time. 1498 */ 1499 device_initcall(init_tsc_clocksource); 1500 1501 static bool __init determine_cpu_tsc_frequencies(bool early) 1502 { 1503 /* Make sure that cpu and tsc are not already calibrated */ 1504 WARN_ON(cpu_khz || tsc_khz); 1505 1506 if (early) { 1507 cpu_khz = x86_platform.calibrate_cpu(); 1508 if (tsc_early_khz) 1509 tsc_khz = tsc_early_khz; 1510 else 1511 tsc_khz = x86_platform.calibrate_tsc(); 1512 } else { 1513 /* We should not be here with non-native cpu calibration */ 1514 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); 1515 cpu_khz = pit_hpet_ptimer_calibrate_cpu(); 1516 } 1517 1518 /* 1519 * Trust non-zero tsc_khz as authoritative, 1520 * and use it to sanity check cpu_khz, 1521 * which will be off if system timer is off. 1522 */ 1523 if (tsc_khz == 0) 1524 tsc_khz = cpu_khz; 1525 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1526 cpu_khz = tsc_khz; 1527 1528 if (tsc_khz == 0) 1529 return false; 1530 1531 pr_info("Detected %lu.%03lu MHz processor\n", 1532 (unsigned long)cpu_khz / KHZ, 1533 (unsigned long)cpu_khz % KHZ); 1534 1535 if (cpu_khz != tsc_khz) { 1536 pr_info("Detected %lu.%03lu MHz TSC", 1537 (unsigned long)tsc_khz / KHZ, 1538 (unsigned long)tsc_khz % KHZ); 1539 } 1540 return true; 1541 } 1542 1543 static unsigned long __init get_loops_per_jiffy(void) 1544 { 1545 u64 lpj = (u64)tsc_khz * KHZ; 1546 1547 do_div(lpj, HZ); 1548 return lpj; 1549 } 1550 1551 static void __init tsc_enable_sched_clock(void) 1552 { 1553 loops_per_jiffy = get_loops_per_jiffy(); 1554 use_tsc_delay(); 1555 1556 /* Sanitize TSC ADJUST before cyc2ns gets initialized */ 1557 tsc_store_and_check_tsc_adjust(true); 1558 cyc2ns_init_boot_cpu(); 1559 static_branch_enable(&__use_tsc); 1560 } 1561 1562 void __init tsc_early_init(void) 1563 { 1564 if (!boot_cpu_has(X86_FEATURE_TSC)) 1565 return; 1566 /* Don't change UV TSC multi-chassis synchronization */ 1567 if (is_early_uv_system()) 1568 return; 1569 if (!determine_cpu_tsc_frequencies(true)) 1570 return; 1571 tsc_enable_sched_clock(); 1572 } 1573 1574 void __init tsc_init(void) 1575 { 1576 if (!cpu_feature_enabled(X86_FEATURE_TSC)) { 1577 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1578 return; 1579 } 1580 1581 /* 1582 * native_calibrate_cpu_early can only calibrate using methods that are 1583 * available early in boot. 1584 */ 1585 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) 1586 x86_platform.calibrate_cpu = native_calibrate_cpu; 1587 1588 if (!tsc_khz) { 1589 /* We failed to determine frequencies earlier, try again */ 1590 if (!determine_cpu_tsc_frequencies(false)) { 1591 mark_tsc_unstable("could not calculate TSC khz"); 1592 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1593 return; 1594 } 1595 tsc_enable_sched_clock(); 1596 } 1597 1598 cyc2ns_init_secondary_cpus(); 1599 1600 if (!no_sched_irq_time) 1601 enable_sched_clock_irqtime(); 1602 1603 lpj_fine = get_loops_per_jiffy(); 1604 1605 check_system_tsc_reliable(); 1606 1607 if (unsynchronized_tsc()) { 1608 mark_tsc_unstable("TSCs unsynchronized"); 1609 return; 1610 } 1611 1612 if (tsc_clocksource_reliable || no_tsc_watchdog) 1613 tsc_disable_clocksource_watchdog(); 1614 1615 clocksource_register_khz(&clocksource_tsc_early, tsc_khz); 1616 detect_art(); 1617 } 1618 1619 #ifdef CONFIG_SMP 1620 /* 1621 * Check whether existing calibration data can be reused. 1622 */ 1623 unsigned long calibrate_delay_is_known(void) 1624 { 1625 int sibling, cpu = smp_processor_id(); 1626 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); 1627 const struct cpumask *mask = topology_core_cpumask(cpu); 1628 1629 /* 1630 * If TSC has constant frequency and TSC is synchronized across 1631 * sockets then reuse CPU0 calibration. 1632 */ 1633 if (constant_tsc && !tsc_unstable) 1634 return cpu_data(0).loops_per_jiffy; 1635 1636 /* 1637 * If TSC has constant frequency and TSC is not synchronized across 1638 * sockets and this is not the first CPU in the socket, then reuse 1639 * the calibration value of an already online CPU on that socket. 1640 * 1641 * This assumes that CONSTANT_TSC is consistent for all CPUs in a 1642 * socket. 1643 */ 1644 if (!constant_tsc || !mask) 1645 return 0; 1646 1647 sibling = cpumask_any_but(mask, cpu); 1648 if (sibling < nr_cpu_ids) 1649 return cpu_data(sibling).loops_per_jiffy; 1650 return 0; 1651 } 1652 #endif 1653