1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/sched/clock.h> 6 #include <linux/init.h> 7 #include <linux/export.h> 8 #include <linux/timer.h> 9 #include <linux/acpi_pmtmr.h> 10 #include <linux/cpufreq.h> 11 #include <linux/delay.h> 12 #include <linux/clocksource.h> 13 #include <linux/percpu.h> 14 #include <linux/timex.h> 15 #include <linux/static_key.h> 16 17 #include <asm/hpet.h> 18 #include <asm/timer.h> 19 #include <asm/vgtod.h> 20 #include <asm/time.h> 21 #include <asm/delay.h> 22 #include <asm/hypervisor.h> 23 #include <asm/nmi.h> 24 #include <asm/x86_init.h> 25 #include <asm/geode.h> 26 #include <asm/apic.h> 27 #include <asm/intel-family.h> 28 #include <asm/i8259.h> 29 30 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 31 EXPORT_SYMBOL(cpu_khz); 32 33 unsigned int __read_mostly tsc_khz; 34 EXPORT_SYMBOL(tsc_khz); 35 36 #define KHZ 1000 37 38 /* 39 * TSC can be unstable due to cpufreq or due to unsynced TSCs 40 */ 41 static int __read_mostly tsc_unstable; 42 43 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 44 45 int tsc_clocksource_reliable; 46 47 static u32 art_to_tsc_numerator; 48 static u32 art_to_tsc_denominator; 49 static u64 art_to_tsc_offset; 50 struct clocksource *art_related_clocksource; 51 52 struct cyc2ns { 53 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ 54 seqcount_t seq; /* 32 + 4 = 36 */ 55 56 }; /* fits one cacheline */ 57 58 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 59 60 void cyc2ns_read_begin(struct cyc2ns_data *data) 61 { 62 int seq, idx; 63 64 preempt_disable_notrace(); 65 66 do { 67 seq = this_cpu_read(cyc2ns.seq.sequence); 68 idx = seq & 1; 69 70 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); 71 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); 72 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); 73 74 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence))); 75 } 76 77 void cyc2ns_read_end(void) 78 { 79 preempt_enable_notrace(); 80 } 81 82 /* 83 * Accelerators for sched_clock() 84 * convert from cycles(64bits) => nanoseconds (64bits) 85 * basic equation: 86 * ns = cycles / (freq / ns_per_sec) 87 * ns = cycles * (ns_per_sec / freq) 88 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 89 * ns = cycles * (10^6 / cpu_khz) 90 * 91 * Then we use scaling math (suggested by george@mvista.com) to get: 92 * ns = cycles * (10^6 * SC / cpu_khz) / SC 93 * ns = cycles * cyc2ns_scale / SC 94 * 95 * And since SC is a constant power of two, we can convert the div 96 * into a shift. The larger SC is, the more accurate the conversion, but 97 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 98 * (64-bit result) can be used. 99 * 100 * We can use khz divisor instead of mhz to keep a better precision. 101 * (mathieu.desnoyers@polymtl.ca) 102 * 103 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 104 */ 105 106 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 107 { 108 struct cyc2ns_data data; 109 unsigned long long ns; 110 111 cyc2ns_read_begin(&data); 112 113 ns = data.cyc2ns_offset; 114 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); 115 116 cyc2ns_read_end(); 117 118 return ns; 119 } 120 121 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 122 { 123 unsigned long long ns_now; 124 struct cyc2ns_data data; 125 struct cyc2ns *c2n; 126 127 ns_now = cycles_2_ns(tsc_now); 128 129 /* 130 * Compute a new multiplier as per the above comment and ensure our 131 * time function is continuous; see the comment near struct 132 * cyc2ns_data. 133 */ 134 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, 135 NSEC_PER_MSEC, 0); 136 137 /* 138 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 139 * not expected to be greater than 31 due to the original published 140 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 141 * value) - refer perf_event_mmap_page documentation in perf_event.h. 142 */ 143 if (data.cyc2ns_shift == 32) { 144 data.cyc2ns_shift = 31; 145 data.cyc2ns_mul >>= 1; 146 } 147 148 data.cyc2ns_offset = ns_now - 149 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); 150 151 c2n = per_cpu_ptr(&cyc2ns, cpu); 152 153 raw_write_seqcount_latch(&c2n->seq); 154 c2n->data[0] = data; 155 raw_write_seqcount_latch(&c2n->seq); 156 c2n->data[1] = data; 157 } 158 159 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 160 { 161 unsigned long flags; 162 163 local_irq_save(flags); 164 sched_clock_idle_sleep_event(); 165 166 if (khz) 167 __set_cyc2ns_scale(khz, cpu, tsc_now); 168 169 sched_clock_idle_wakeup_event(); 170 local_irq_restore(flags); 171 } 172 173 /* 174 * Initialize cyc2ns for boot cpu 175 */ 176 static void __init cyc2ns_init_boot_cpu(void) 177 { 178 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 179 180 seqcount_init(&c2n->seq); 181 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); 182 } 183 184 /* 185 * Secondary CPUs do not run through tsc_init(), so set up 186 * all the scale factors for all CPUs, assuming the same 187 * speed as the bootup CPU. (cpufreq notifiers will fix this 188 * up if their speed diverges) 189 */ 190 static void __init cyc2ns_init_secondary_cpus(void) 191 { 192 unsigned int cpu, this_cpu = smp_processor_id(); 193 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 194 struct cyc2ns_data *data = c2n->data; 195 196 for_each_possible_cpu(cpu) { 197 if (cpu != this_cpu) { 198 seqcount_init(&c2n->seq); 199 c2n = per_cpu_ptr(&cyc2ns, cpu); 200 c2n->data[0] = data[0]; 201 c2n->data[1] = data[1]; 202 } 203 } 204 } 205 206 /* 207 * Scheduler clock - returns current time in nanosec units. 208 */ 209 u64 native_sched_clock(void) 210 { 211 if (static_branch_likely(&__use_tsc)) { 212 u64 tsc_now = rdtsc(); 213 214 /* return the value in ns */ 215 return cycles_2_ns(tsc_now); 216 } 217 218 /* 219 * Fall back to jiffies if there's no TSC available: 220 * ( But note that we still use it if the TSC is marked 221 * unstable. We do this because unlike Time Of Day, 222 * the scheduler clock tolerates small errors and it's 223 * very important for it to be as fast as the platform 224 * can achieve it. ) 225 */ 226 227 /* No locking but a rare wrong value is not a big deal: */ 228 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 229 } 230 231 /* 232 * Generate a sched_clock if you already have a TSC value. 233 */ 234 u64 native_sched_clock_from_tsc(u64 tsc) 235 { 236 return cycles_2_ns(tsc); 237 } 238 239 /* We need to define a real function for sched_clock, to override the 240 weak default version */ 241 #ifdef CONFIG_PARAVIRT 242 unsigned long long sched_clock(void) 243 { 244 return paravirt_sched_clock(); 245 } 246 247 bool using_native_sched_clock(void) 248 { 249 return pv_time_ops.sched_clock == native_sched_clock; 250 } 251 #else 252 unsigned long long 253 sched_clock(void) __attribute__((alias("native_sched_clock"))); 254 255 bool using_native_sched_clock(void) { return true; } 256 #endif 257 258 int check_tsc_unstable(void) 259 { 260 return tsc_unstable; 261 } 262 EXPORT_SYMBOL_GPL(check_tsc_unstable); 263 264 #ifdef CONFIG_X86_TSC 265 int __init notsc_setup(char *str) 266 { 267 mark_tsc_unstable("boot parameter notsc"); 268 return 1; 269 } 270 #else 271 /* 272 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 273 * in cpu/common.c 274 */ 275 int __init notsc_setup(char *str) 276 { 277 setup_clear_cpu_cap(X86_FEATURE_TSC); 278 return 1; 279 } 280 #endif 281 282 __setup("notsc", notsc_setup); 283 284 static int no_sched_irq_time; 285 286 static int __init tsc_setup(char *str) 287 { 288 if (!strcmp(str, "reliable")) 289 tsc_clocksource_reliable = 1; 290 if (!strncmp(str, "noirqtime", 9)) 291 no_sched_irq_time = 1; 292 if (!strcmp(str, "unstable")) 293 mark_tsc_unstable("boot parameter"); 294 return 1; 295 } 296 297 __setup("tsc=", tsc_setup); 298 299 #define MAX_RETRIES 5 300 #define SMI_TRESHOLD 50000 301 302 /* 303 * Read TSC and the reference counters. Take care of SMI disturbance 304 */ 305 static u64 tsc_read_refs(u64 *p, int hpet) 306 { 307 u64 t1, t2; 308 int i; 309 310 for (i = 0; i < MAX_RETRIES; i++) { 311 t1 = get_cycles(); 312 if (hpet) 313 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 314 else 315 *p = acpi_pm_read_early(); 316 t2 = get_cycles(); 317 if ((t2 - t1) < SMI_TRESHOLD) 318 return t2; 319 } 320 return ULLONG_MAX; 321 } 322 323 /* 324 * Calculate the TSC frequency from HPET reference 325 */ 326 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 327 { 328 u64 tmp; 329 330 if (hpet2 < hpet1) 331 hpet2 += 0x100000000ULL; 332 hpet2 -= hpet1; 333 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 334 do_div(tmp, 1000000); 335 deltatsc = div64_u64(deltatsc, tmp); 336 337 return (unsigned long) deltatsc; 338 } 339 340 /* 341 * Calculate the TSC frequency from PMTimer reference 342 */ 343 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 344 { 345 u64 tmp; 346 347 if (!pm1 && !pm2) 348 return ULONG_MAX; 349 350 if (pm2 < pm1) 351 pm2 += (u64)ACPI_PM_OVRRUN; 352 pm2 -= pm1; 353 tmp = pm2 * 1000000000LL; 354 do_div(tmp, PMTMR_TICKS_PER_SEC); 355 do_div(deltatsc, tmp); 356 357 return (unsigned long) deltatsc; 358 } 359 360 #define CAL_MS 10 361 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 362 #define CAL_PIT_LOOPS 1000 363 364 #define CAL2_MS 50 365 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 366 #define CAL2_PIT_LOOPS 5000 367 368 369 /* 370 * Try to calibrate the TSC against the Programmable 371 * Interrupt Timer and return the frequency of the TSC 372 * in kHz. 373 * 374 * Return ULONG_MAX on failure to calibrate. 375 */ 376 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 377 { 378 u64 tsc, t1, t2, delta; 379 unsigned long tscmin, tscmax; 380 int pitcnt; 381 382 if (!has_legacy_pic()) { 383 /* 384 * Relies on tsc_early_delay_calibrate() to have given us semi 385 * usable udelay(), wait for the same 50ms we would have with 386 * the PIT loop below. 387 */ 388 udelay(10 * USEC_PER_MSEC); 389 udelay(10 * USEC_PER_MSEC); 390 udelay(10 * USEC_PER_MSEC); 391 udelay(10 * USEC_PER_MSEC); 392 udelay(10 * USEC_PER_MSEC); 393 return ULONG_MAX; 394 } 395 396 /* Set the Gate high, disable speaker */ 397 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 398 399 /* 400 * Setup CTC channel 2* for mode 0, (interrupt on terminal 401 * count mode), binary count. Set the latch register to 50ms 402 * (LSB then MSB) to begin countdown. 403 */ 404 outb(0xb0, 0x43); 405 outb(latch & 0xff, 0x42); 406 outb(latch >> 8, 0x42); 407 408 tsc = t1 = t2 = get_cycles(); 409 410 pitcnt = 0; 411 tscmax = 0; 412 tscmin = ULONG_MAX; 413 while ((inb(0x61) & 0x20) == 0) { 414 t2 = get_cycles(); 415 delta = t2 - tsc; 416 tsc = t2; 417 if ((unsigned long) delta < tscmin) 418 tscmin = (unsigned int) delta; 419 if ((unsigned long) delta > tscmax) 420 tscmax = (unsigned int) delta; 421 pitcnt++; 422 } 423 424 /* 425 * Sanity checks: 426 * 427 * If we were not able to read the PIT more than loopmin 428 * times, then we have been hit by a massive SMI 429 * 430 * If the maximum is 10 times larger than the minimum, 431 * then we got hit by an SMI as well. 432 */ 433 if (pitcnt < loopmin || tscmax > 10 * tscmin) 434 return ULONG_MAX; 435 436 /* Calculate the PIT value */ 437 delta = t2 - t1; 438 do_div(delta, ms); 439 return delta; 440 } 441 442 /* 443 * This reads the current MSB of the PIT counter, and 444 * checks if we are running on sufficiently fast and 445 * non-virtualized hardware. 446 * 447 * Our expectations are: 448 * 449 * - the PIT is running at roughly 1.19MHz 450 * 451 * - each IO is going to take about 1us on real hardware, 452 * but we allow it to be much faster (by a factor of 10) or 453 * _slightly_ slower (ie we allow up to a 2us read+counter 454 * update - anything else implies a unacceptably slow CPU 455 * or PIT for the fast calibration to work. 456 * 457 * - with 256 PIT ticks to read the value, we have 214us to 458 * see the same MSB (and overhead like doing a single TSC 459 * read per MSB value etc). 460 * 461 * - We're doing 2 reads per loop (LSB, MSB), and we expect 462 * them each to take about a microsecond on real hardware. 463 * So we expect a count value of around 100. But we'll be 464 * generous, and accept anything over 50. 465 * 466 * - if the PIT is stuck, and we see *many* more reads, we 467 * return early (and the next caller of pit_expect_msb() 468 * then consider it a failure when they don't see the 469 * next expected value). 470 * 471 * These expectations mean that we know that we have seen the 472 * transition from one expected value to another with a fairly 473 * high accuracy, and we didn't miss any events. We can thus 474 * use the TSC value at the transitions to calculate a pretty 475 * good value for the TSC frequencty. 476 */ 477 static inline int pit_verify_msb(unsigned char val) 478 { 479 /* Ignore LSB */ 480 inb(0x42); 481 return inb(0x42) == val; 482 } 483 484 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 485 { 486 int count; 487 u64 tsc = 0, prev_tsc = 0; 488 489 for (count = 0; count < 50000; count++) { 490 if (!pit_verify_msb(val)) 491 break; 492 prev_tsc = tsc; 493 tsc = get_cycles(); 494 } 495 *deltap = get_cycles() - prev_tsc; 496 *tscp = tsc; 497 498 /* 499 * We require _some_ success, but the quality control 500 * will be based on the error terms on the TSC values. 501 */ 502 return count > 5; 503 } 504 505 /* 506 * How many MSB values do we want to see? We aim for 507 * a maximum error rate of 500ppm (in practice the 508 * real error is much smaller), but refuse to spend 509 * more than 50ms on it. 510 */ 511 #define MAX_QUICK_PIT_MS 50 512 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 513 514 static unsigned long quick_pit_calibrate(void) 515 { 516 int i; 517 u64 tsc, delta; 518 unsigned long d1, d2; 519 520 if (!has_legacy_pic()) 521 return 0; 522 523 /* Set the Gate high, disable speaker */ 524 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 525 526 /* 527 * Counter 2, mode 0 (one-shot), binary count 528 * 529 * NOTE! Mode 2 decrements by two (and then the 530 * output is flipped each time, giving the same 531 * final output frequency as a decrement-by-one), 532 * so mode 0 is much better when looking at the 533 * individual counts. 534 */ 535 outb(0xb0, 0x43); 536 537 /* Start at 0xffff */ 538 outb(0xff, 0x42); 539 outb(0xff, 0x42); 540 541 /* 542 * The PIT starts counting at the next edge, so we 543 * need to delay for a microsecond. The easiest way 544 * to do that is to just read back the 16-bit counter 545 * once from the PIT. 546 */ 547 pit_verify_msb(0); 548 549 if (pit_expect_msb(0xff, &tsc, &d1)) { 550 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 551 if (!pit_expect_msb(0xff-i, &delta, &d2)) 552 break; 553 554 delta -= tsc; 555 556 /* 557 * Extrapolate the error and fail fast if the error will 558 * never be below 500 ppm. 559 */ 560 if (i == 1 && 561 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 562 return 0; 563 564 /* 565 * Iterate until the error is less than 500 ppm 566 */ 567 if (d1+d2 >= delta >> 11) 568 continue; 569 570 /* 571 * Check the PIT one more time to verify that 572 * all TSC reads were stable wrt the PIT. 573 * 574 * This also guarantees serialization of the 575 * last cycle read ('d2') in pit_expect_msb. 576 */ 577 if (!pit_verify_msb(0xfe - i)) 578 break; 579 goto success; 580 } 581 } 582 pr_info("Fast TSC calibration failed\n"); 583 return 0; 584 585 success: 586 /* 587 * Ok, if we get here, then we've seen the 588 * MSB of the PIT decrement 'i' times, and the 589 * error has shrunk to less than 500 ppm. 590 * 591 * As a result, we can depend on there not being 592 * any odd delays anywhere, and the TSC reads are 593 * reliable (within the error). 594 * 595 * kHz = ticks / time-in-seconds / 1000; 596 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 597 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 598 */ 599 delta *= PIT_TICK_RATE; 600 do_div(delta, i*256*1000); 601 pr_info("Fast TSC calibration using PIT\n"); 602 return delta; 603 } 604 605 /** 606 * native_calibrate_tsc 607 * Determine TSC frequency via CPUID, else return 0. 608 */ 609 unsigned long native_calibrate_tsc(void) 610 { 611 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 612 unsigned int crystal_khz; 613 614 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 615 return 0; 616 617 if (boot_cpu_data.cpuid_level < 0x15) 618 return 0; 619 620 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 621 622 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 623 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 624 625 if (ebx_numerator == 0 || eax_denominator == 0) 626 return 0; 627 628 crystal_khz = ecx_hz / 1000; 629 630 if (crystal_khz == 0) { 631 switch (boot_cpu_data.x86_model) { 632 case INTEL_FAM6_SKYLAKE_MOBILE: 633 case INTEL_FAM6_SKYLAKE_DESKTOP: 634 case INTEL_FAM6_KABYLAKE_MOBILE: 635 case INTEL_FAM6_KABYLAKE_DESKTOP: 636 crystal_khz = 24000; /* 24.0 MHz */ 637 break; 638 case INTEL_FAM6_ATOM_DENVERTON: 639 crystal_khz = 25000; /* 25.0 MHz */ 640 break; 641 case INTEL_FAM6_ATOM_GOLDMONT: 642 crystal_khz = 19200; /* 19.2 MHz */ 643 break; 644 } 645 } 646 647 if (crystal_khz == 0) 648 return 0; 649 /* 650 * TSC frequency determined by CPUID is a "hardware reported" 651 * frequency and is the most accurate one so far we have. This 652 * is considered a known frequency. 653 */ 654 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); 655 656 /* 657 * For Atom SoCs TSC is the only reliable clocksource. 658 * Mark TSC reliable so no watchdog on it. 659 */ 660 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) 661 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 662 663 return crystal_khz * ebx_numerator / eax_denominator; 664 } 665 666 static unsigned long cpu_khz_from_cpuid(void) 667 { 668 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 669 670 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 671 return 0; 672 673 if (boot_cpu_data.cpuid_level < 0x16) 674 return 0; 675 676 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 677 678 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 679 680 return eax_base_mhz * 1000; 681 } 682 683 /* 684 * calibrate cpu using pit, hpet, and ptimer methods. They are available 685 * later in boot after acpi is initialized. 686 */ 687 static unsigned long pit_hpet_ptimer_calibrate_cpu(void) 688 { 689 u64 tsc1, tsc2, delta, ref1, ref2; 690 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 691 unsigned long flags, latch, ms; 692 int hpet = is_hpet_enabled(), i, loopmin; 693 694 /* 695 * Run 5 calibration loops to get the lowest frequency value 696 * (the best estimate). We use two different calibration modes 697 * here: 698 * 699 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 700 * load a timeout of 50ms. We read the time right after we 701 * started the timer and wait until the PIT count down reaches 702 * zero. In each wait loop iteration we read the TSC and check 703 * the delta to the previous read. We keep track of the min 704 * and max values of that delta. The delta is mostly defined 705 * by the IO time of the PIT access, so we can detect when a 706 * SMI/SMM disturbance happened between the two reads. If the 707 * maximum time is significantly larger than the minimum time, 708 * then we discard the result and have another try. 709 * 710 * 2) Reference counter. If available we use the HPET or the 711 * PMTIMER as a reference to check the sanity of that value. 712 * We use separate TSC readouts and check inside of the 713 * reference read for a SMI/SMM disturbance. We dicard 714 * disturbed values here as well. We do that around the PIT 715 * calibration delay loop as we have to wait for a certain 716 * amount of time anyway. 717 */ 718 719 /* Preset PIT loop values */ 720 latch = CAL_LATCH; 721 ms = CAL_MS; 722 loopmin = CAL_PIT_LOOPS; 723 724 for (i = 0; i < 3; i++) { 725 unsigned long tsc_pit_khz; 726 727 /* 728 * Read the start value and the reference count of 729 * hpet/pmtimer when available. Then do the PIT 730 * calibration, which will take at least 50ms, and 731 * read the end value. 732 */ 733 local_irq_save(flags); 734 tsc1 = tsc_read_refs(&ref1, hpet); 735 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 736 tsc2 = tsc_read_refs(&ref2, hpet); 737 local_irq_restore(flags); 738 739 /* Pick the lowest PIT TSC calibration so far */ 740 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 741 742 /* hpet or pmtimer available ? */ 743 if (ref1 == ref2) 744 continue; 745 746 /* Check, whether the sampling was disturbed by an SMI */ 747 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 748 continue; 749 750 tsc2 = (tsc2 - tsc1) * 1000000LL; 751 if (hpet) 752 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 753 else 754 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 755 756 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 757 758 /* Check the reference deviation */ 759 delta = ((u64) tsc_pit_min) * 100; 760 do_div(delta, tsc_ref_min); 761 762 /* 763 * If both calibration results are inside a 10% window 764 * then we can be sure, that the calibration 765 * succeeded. We break out of the loop right away. We 766 * use the reference value, as it is more precise. 767 */ 768 if (delta >= 90 && delta <= 110) { 769 pr_info("PIT calibration matches %s. %d loops\n", 770 hpet ? "HPET" : "PMTIMER", i + 1); 771 return tsc_ref_min; 772 } 773 774 /* 775 * Check whether PIT failed more than once. This 776 * happens in virtualized environments. We need to 777 * give the virtual PC a slightly longer timeframe for 778 * the HPET/PMTIMER to make the result precise. 779 */ 780 if (i == 1 && tsc_pit_min == ULONG_MAX) { 781 latch = CAL2_LATCH; 782 ms = CAL2_MS; 783 loopmin = CAL2_PIT_LOOPS; 784 } 785 } 786 787 /* 788 * Now check the results. 789 */ 790 if (tsc_pit_min == ULONG_MAX) { 791 /* PIT gave no useful value */ 792 pr_warn("Unable to calibrate against PIT\n"); 793 794 /* We don't have an alternative source, disable TSC */ 795 if (!hpet && !ref1 && !ref2) { 796 pr_notice("No reference (HPET/PMTIMER) available\n"); 797 return 0; 798 } 799 800 /* The alternative source failed as well, disable TSC */ 801 if (tsc_ref_min == ULONG_MAX) { 802 pr_warn("HPET/PMTIMER calibration failed\n"); 803 return 0; 804 } 805 806 /* Use the alternative source */ 807 pr_info("using %s reference calibration\n", 808 hpet ? "HPET" : "PMTIMER"); 809 810 return tsc_ref_min; 811 } 812 813 /* We don't have an alternative source, use the PIT calibration value */ 814 if (!hpet && !ref1 && !ref2) { 815 pr_info("Using PIT calibration value\n"); 816 return tsc_pit_min; 817 } 818 819 /* The alternative source failed, use the PIT calibration value */ 820 if (tsc_ref_min == ULONG_MAX) { 821 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 822 return tsc_pit_min; 823 } 824 825 /* 826 * The calibration values differ too much. In doubt, we use 827 * the PIT value as we know that there are PMTIMERs around 828 * running at double speed. At least we let the user know: 829 */ 830 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 831 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 832 pr_info("Using PIT calibration value\n"); 833 return tsc_pit_min; 834 } 835 836 /** 837 * native_calibrate_cpu_early - can calibrate the cpu early in boot 838 */ 839 unsigned long native_calibrate_cpu_early(void) 840 { 841 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); 842 843 if (!fast_calibrate) 844 fast_calibrate = cpu_khz_from_msr(); 845 if (!fast_calibrate) { 846 local_irq_save(flags); 847 fast_calibrate = quick_pit_calibrate(); 848 local_irq_restore(flags); 849 } 850 return fast_calibrate; 851 } 852 853 854 /** 855 * native_calibrate_cpu - calibrate the cpu 856 */ 857 static unsigned long native_calibrate_cpu(void) 858 { 859 unsigned long tsc_freq = native_calibrate_cpu_early(); 860 861 if (!tsc_freq) 862 tsc_freq = pit_hpet_ptimer_calibrate_cpu(); 863 864 return tsc_freq; 865 } 866 867 void recalibrate_cpu_khz(void) 868 { 869 #ifndef CONFIG_SMP 870 unsigned long cpu_khz_old = cpu_khz; 871 872 if (!boot_cpu_has(X86_FEATURE_TSC)) 873 return; 874 875 cpu_khz = x86_platform.calibrate_cpu(); 876 tsc_khz = x86_platform.calibrate_tsc(); 877 if (tsc_khz == 0) 878 tsc_khz = cpu_khz; 879 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 880 cpu_khz = tsc_khz; 881 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 882 cpu_khz_old, cpu_khz); 883 #endif 884 } 885 886 EXPORT_SYMBOL(recalibrate_cpu_khz); 887 888 889 static unsigned long long cyc2ns_suspend; 890 891 void tsc_save_sched_clock_state(void) 892 { 893 if (!sched_clock_stable()) 894 return; 895 896 cyc2ns_suspend = sched_clock(); 897 } 898 899 /* 900 * Even on processors with invariant TSC, TSC gets reset in some the 901 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 902 * arbitrary value (still sync'd across cpu's) during resume from such sleep 903 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 904 * that sched_clock() continues from the point where it was left off during 905 * suspend. 906 */ 907 void tsc_restore_sched_clock_state(void) 908 { 909 unsigned long long offset; 910 unsigned long flags; 911 int cpu; 912 913 if (!sched_clock_stable()) 914 return; 915 916 local_irq_save(flags); 917 918 /* 919 * We're coming out of suspend, there's no concurrency yet; don't 920 * bother being nice about the RCU stuff, just write to both 921 * data fields. 922 */ 923 924 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 925 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 926 927 offset = cyc2ns_suspend - sched_clock(); 928 929 for_each_possible_cpu(cpu) { 930 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 931 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 932 } 933 934 local_irq_restore(flags); 935 } 936 937 #ifdef CONFIG_CPU_FREQ 938 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 939 * changes. 940 * 941 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 942 * not that important because current Opteron setups do not support 943 * scaling on SMP anyroads. 944 * 945 * Should fix up last_tsc too. Currently gettimeofday in the 946 * first tick after the change will be slightly wrong. 947 */ 948 949 static unsigned int ref_freq; 950 static unsigned long loops_per_jiffy_ref; 951 static unsigned long tsc_khz_ref; 952 953 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 954 void *data) 955 { 956 struct cpufreq_freqs *freq = data; 957 unsigned long *lpj; 958 959 lpj = &boot_cpu_data.loops_per_jiffy; 960 #ifdef CONFIG_SMP 961 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 962 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 963 #endif 964 965 if (!ref_freq) { 966 ref_freq = freq->old; 967 loops_per_jiffy_ref = *lpj; 968 tsc_khz_ref = tsc_khz; 969 } 970 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 971 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 972 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 973 974 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 975 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 976 mark_tsc_unstable("cpufreq changes"); 977 978 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc()); 979 } 980 981 return 0; 982 } 983 984 static struct notifier_block time_cpufreq_notifier_block = { 985 .notifier_call = time_cpufreq_notifier 986 }; 987 988 static int __init cpufreq_register_tsc_scaling(void) 989 { 990 if (!boot_cpu_has(X86_FEATURE_TSC)) 991 return 0; 992 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 993 return 0; 994 cpufreq_register_notifier(&time_cpufreq_notifier_block, 995 CPUFREQ_TRANSITION_NOTIFIER); 996 return 0; 997 } 998 999 core_initcall(cpufreq_register_tsc_scaling); 1000 1001 #endif /* CONFIG_CPU_FREQ */ 1002 1003 #define ART_CPUID_LEAF (0x15) 1004 #define ART_MIN_DENOMINATOR (1) 1005 1006 1007 /* 1008 * If ART is present detect the numerator:denominator to convert to TSC 1009 */ 1010 static void __init detect_art(void) 1011 { 1012 unsigned int unused[2]; 1013 1014 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 1015 return; 1016 1017 /* 1018 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, 1019 * and the TSC counter resets must not occur asynchronously. 1020 */ 1021 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1022 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1023 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || 1024 tsc_async_resets) 1025 return; 1026 1027 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 1028 &art_to_tsc_numerator, unused, unused+1); 1029 1030 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) 1031 return; 1032 1033 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); 1034 1035 /* Make this sticky over multiple CPU init calls */ 1036 setup_force_cpu_cap(X86_FEATURE_ART); 1037 } 1038 1039 1040 /* clocksource code */ 1041 1042 static void tsc_resume(struct clocksource *cs) 1043 { 1044 tsc_verify_tsc_adjust(true); 1045 } 1046 1047 /* 1048 * We used to compare the TSC to the cycle_last value in the clocksource 1049 * structure to avoid a nasty time-warp. This can be observed in a 1050 * very small window right after one CPU updated cycle_last under 1051 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1052 * is smaller than the cycle_last reference value due to a TSC which 1053 * is slighty behind. This delta is nowhere else observable, but in 1054 * that case it results in a forward time jump in the range of hours 1055 * due to the unsigned delta calculation of the time keeping core 1056 * code, which is necessary to support wrapping clocksources like pm 1057 * timer. 1058 * 1059 * This sanity check is now done in the core timekeeping code. 1060 * checking the result of read_tsc() - cycle_last for being negative. 1061 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1062 */ 1063 static u64 read_tsc(struct clocksource *cs) 1064 { 1065 return (u64)rdtsc_ordered(); 1066 } 1067 1068 static void tsc_cs_mark_unstable(struct clocksource *cs) 1069 { 1070 if (tsc_unstable) 1071 return; 1072 1073 tsc_unstable = 1; 1074 if (using_native_sched_clock()) 1075 clear_sched_clock_stable(); 1076 disable_sched_clock_irqtime(); 1077 pr_info("Marking TSC unstable due to clocksource watchdog\n"); 1078 } 1079 1080 static void tsc_cs_tick_stable(struct clocksource *cs) 1081 { 1082 if (tsc_unstable) 1083 return; 1084 1085 if (using_native_sched_clock()) 1086 sched_clock_tick_stable(); 1087 } 1088 1089 /* 1090 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1091 */ 1092 static struct clocksource clocksource_tsc_early = { 1093 .name = "tsc-early", 1094 .rating = 299, 1095 .read = read_tsc, 1096 .mask = CLOCKSOURCE_MASK(64), 1097 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1098 CLOCK_SOURCE_MUST_VERIFY, 1099 .archdata = { .vclock_mode = VCLOCK_TSC }, 1100 .resume = tsc_resume, 1101 .mark_unstable = tsc_cs_mark_unstable, 1102 .tick_stable = tsc_cs_tick_stable, 1103 .list = LIST_HEAD_INIT(clocksource_tsc_early.list), 1104 }; 1105 1106 /* 1107 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early 1108 * this one will immediately take over. We will only register if TSC has 1109 * been found good. 1110 */ 1111 static struct clocksource clocksource_tsc = { 1112 .name = "tsc", 1113 .rating = 300, 1114 .read = read_tsc, 1115 .mask = CLOCKSOURCE_MASK(64), 1116 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1117 CLOCK_SOURCE_VALID_FOR_HRES | 1118 CLOCK_SOURCE_MUST_VERIFY, 1119 .archdata = { .vclock_mode = VCLOCK_TSC }, 1120 .resume = tsc_resume, 1121 .mark_unstable = tsc_cs_mark_unstable, 1122 .tick_stable = tsc_cs_tick_stable, 1123 .list = LIST_HEAD_INIT(clocksource_tsc.list), 1124 }; 1125 1126 void mark_tsc_unstable(char *reason) 1127 { 1128 if (tsc_unstable) 1129 return; 1130 1131 tsc_unstable = 1; 1132 if (using_native_sched_clock()) 1133 clear_sched_clock_stable(); 1134 disable_sched_clock_irqtime(); 1135 pr_info("Marking TSC unstable due to %s\n", reason); 1136 1137 clocksource_mark_unstable(&clocksource_tsc_early); 1138 clocksource_mark_unstable(&clocksource_tsc); 1139 } 1140 1141 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1142 1143 static void __init check_system_tsc_reliable(void) 1144 { 1145 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1146 if (is_geode_lx()) { 1147 /* RTSC counts during suspend */ 1148 #define RTSC_SUSP 0x100 1149 unsigned long res_low, res_high; 1150 1151 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1152 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1153 if (res_low & RTSC_SUSP) 1154 tsc_clocksource_reliable = 1; 1155 } 1156 #endif 1157 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1158 tsc_clocksource_reliable = 1; 1159 } 1160 1161 /* 1162 * Make an educated guess if the TSC is trustworthy and synchronized 1163 * over all CPUs. 1164 */ 1165 int unsynchronized_tsc(void) 1166 { 1167 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1168 return 1; 1169 1170 #ifdef CONFIG_SMP 1171 if (apic_is_clustered_box()) 1172 return 1; 1173 #endif 1174 1175 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1176 return 0; 1177 1178 if (tsc_clocksource_reliable) 1179 return 0; 1180 /* 1181 * Intel systems are normally all synchronized. 1182 * Exceptions must mark TSC as unstable: 1183 */ 1184 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1185 /* assume multi socket systems are not synchronized: */ 1186 if (num_possible_cpus() > 1) 1187 return 1; 1188 } 1189 1190 return 0; 1191 } 1192 1193 /* 1194 * Convert ART to TSC given numerator/denominator found in detect_art() 1195 */ 1196 struct system_counterval_t convert_art_to_tsc(u64 art) 1197 { 1198 u64 tmp, res, rem; 1199 1200 rem = do_div(art, art_to_tsc_denominator); 1201 1202 res = art * art_to_tsc_numerator; 1203 tmp = rem * art_to_tsc_numerator; 1204 1205 do_div(tmp, art_to_tsc_denominator); 1206 res += tmp + art_to_tsc_offset; 1207 1208 return (struct system_counterval_t) {.cs = art_related_clocksource, 1209 .cycles = res}; 1210 } 1211 EXPORT_SYMBOL(convert_art_to_tsc); 1212 1213 /** 1214 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC. 1215 * @art_ns: ART (Always Running Timer) in unit of nanoseconds 1216 * 1217 * PTM requires all timestamps to be in units of nanoseconds. When user 1218 * software requests a cross-timestamp, this function converts system timestamp 1219 * to TSC. 1220 * 1221 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set 1222 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check 1223 * that this flag is set before conversion to TSC is attempted. 1224 * 1225 * Return: 1226 * struct system_counterval_t - system counter value with the pointer to the 1227 * corresponding clocksource 1228 * @cycles: System counter value 1229 * @cs: Clocksource corresponding to system counter value. Used 1230 * by timekeeping code to verify comparibility of two cycle 1231 * values. 1232 */ 1233 1234 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns) 1235 { 1236 u64 tmp, res, rem; 1237 1238 rem = do_div(art_ns, USEC_PER_SEC); 1239 1240 res = art_ns * tsc_khz; 1241 tmp = rem * tsc_khz; 1242 1243 do_div(tmp, USEC_PER_SEC); 1244 res += tmp; 1245 1246 return (struct system_counterval_t) { .cs = art_related_clocksource, 1247 .cycles = res}; 1248 } 1249 EXPORT_SYMBOL(convert_art_ns_to_tsc); 1250 1251 1252 static void tsc_refine_calibration_work(struct work_struct *work); 1253 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1254 /** 1255 * tsc_refine_calibration_work - Further refine tsc freq calibration 1256 * @work - ignored. 1257 * 1258 * This functions uses delayed work over a period of a 1259 * second to further refine the TSC freq value. Since this is 1260 * timer based, instead of loop based, we don't block the boot 1261 * process while this longer calibration is done. 1262 * 1263 * If there are any calibration anomalies (too many SMIs, etc), 1264 * or the refined calibration is off by 1% of the fast early 1265 * calibration, we throw out the new calibration and use the 1266 * early calibration. 1267 */ 1268 static void tsc_refine_calibration_work(struct work_struct *work) 1269 { 1270 static u64 tsc_start = -1, ref_start; 1271 static int hpet; 1272 u64 tsc_stop, ref_stop, delta; 1273 unsigned long freq; 1274 int cpu; 1275 1276 /* Don't bother refining TSC on unstable systems */ 1277 if (tsc_unstable) 1278 goto unreg; 1279 1280 /* 1281 * Since the work is started early in boot, we may be 1282 * delayed the first time we expire. So set the workqueue 1283 * again once we know timers are working. 1284 */ 1285 if (tsc_start == -1) { 1286 /* 1287 * Only set hpet once, to avoid mixing hardware 1288 * if the hpet becomes enabled later. 1289 */ 1290 hpet = is_hpet_enabled(); 1291 schedule_delayed_work(&tsc_irqwork, HZ); 1292 tsc_start = tsc_read_refs(&ref_start, hpet); 1293 return; 1294 } 1295 1296 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1297 1298 /* hpet or pmtimer available ? */ 1299 if (ref_start == ref_stop) 1300 goto out; 1301 1302 /* Check, whether the sampling was disturbed by an SMI */ 1303 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1304 goto out; 1305 1306 delta = tsc_stop - tsc_start; 1307 delta *= 1000000LL; 1308 if (hpet) 1309 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1310 else 1311 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1312 1313 /* Make sure we're within 1% */ 1314 if (abs(tsc_khz - freq) > tsc_khz/100) 1315 goto out; 1316 1317 tsc_khz = freq; 1318 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1319 (unsigned long)tsc_khz / 1000, 1320 (unsigned long)tsc_khz % 1000); 1321 1322 /* Inform the TSC deadline clockevent devices about the recalibration */ 1323 lapic_update_tsc_freq(); 1324 1325 /* Update the sched_clock() rate to match the clocksource one */ 1326 for_each_possible_cpu(cpu) 1327 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); 1328 1329 out: 1330 if (tsc_unstable) 1331 goto unreg; 1332 1333 if (boot_cpu_has(X86_FEATURE_ART)) 1334 art_related_clocksource = &clocksource_tsc; 1335 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1336 unreg: 1337 clocksource_unregister(&clocksource_tsc_early); 1338 } 1339 1340 1341 static int __init init_tsc_clocksource(void) 1342 { 1343 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) 1344 return 0; 1345 1346 if (tsc_unstable) 1347 goto unreg; 1348 1349 if (tsc_clocksource_reliable) 1350 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1351 1352 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1353 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1354 1355 /* 1356 * When TSC frequency is known (retrieved via MSR or CPUID), we skip 1357 * the refined calibration and directly register it as a clocksource. 1358 */ 1359 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1360 if (boot_cpu_has(X86_FEATURE_ART)) 1361 art_related_clocksource = &clocksource_tsc; 1362 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1363 unreg: 1364 clocksource_unregister(&clocksource_tsc_early); 1365 return 0; 1366 } 1367 1368 schedule_delayed_work(&tsc_irqwork, 0); 1369 return 0; 1370 } 1371 /* 1372 * We use device_initcall here, to ensure we run after the hpet 1373 * is fully initialized, which may occur at fs_initcall time. 1374 */ 1375 device_initcall(init_tsc_clocksource); 1376 1377 static bool __init determine_cpu_tsc_frequencies(bool early) 1378 { 1379 /* Make sure that cpu and tsc are not already calibrated */ 1380 WARN_ON(cpu_khz || tsc_khz); 1381 1382 if (early) { 1383 cpu_khz = x86_platform.calibrate_cpu(); 1384 tsc_khz = x86_platform.calibrate_tsc(); 1385 } else { 1386 /* We should not be here with non-native cpu calibration */ 1387 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); 1388 cpu_khz = pit_hpet_ptimer_calibrate_cpu(); 1389 } 1390 1391 /* 1392 * Trust non-zero tsc_khz as authoritative, 1393 * and use it to sanity check cpu_khz, 1394 * which will be off if system timer is off. 1395 */ 1396 if (tsc_khz == 0) 1397 tsc_khz = cpu_khz; 1398 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1399 cpu_khz = tsc_khz; 1400 1401 if (tsc_khz == 0) 1402 return false; 1403 1404 pr_info("Detected %lu.%03lu MHz processor\n", 1405 (unsigned long)cpu_khz / KHZ, 1406 (unsigned long)cpu_khz % KHZ); 1407 1408 if (cpu_khz != tsc_khz) { 1409 pr_info("Detected %lu.%03lu MHz TSC", 1410 (unsigned long)tsc_khz / KHZ, 1411 (unsigned long)tsc_khz % KHZ); 1412 } 1413 return true; 1414 } 1415 1416 static unsigned long __init get_loops_per_jiffy(void) 1417 { 1418 unsigned long lpj = tsc_khz * KHZ; 1419 1420 do_div(lpj, HZ); 1421 return lpj; 1422 } 1423 1424 static void __init tsc_enable_sched_clock(void) 1425 { 1426 /* Sanitize TSC ADJUST before cyc2ns gets initialized */ 1427 tsc_store_and_check_tsc_adjust(true); 1428 cyc2ns_init_boot_cpu(); 1429 static_branch_enable(&__use_tsc); 1430 } 1431 1432 void __init tsc_early_init(void) 1433 { 1434 if (!boot_cpu_has(X86_FEATURE_TSC)) 1435 return; 1436 if (!determine_cpu_tsc_frequencies(true)) 1437 return; 1438 loops_per_jiffy = get_loops_per_jiffy(); 1439 1440 tsc_enable_sched_clock(); 1441 } 1442 1443 void __init tsc_init(void) 1444 { 1445 /* 1446 * native_calibrate_cpu_early can only calibrate using methods that are 1447 * available early in boot. 1448 */ 1449 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) 1450 x86_platform.calibrate_cpu = native_calibrate_cpu; 1451 1452 if (!boot_cpu_has(X86_FEATURE_TSC)) { 1453 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1454 return; 1455 } 1456 1457 if (!tsc_khz) { 1458 /* We failed to determine frequencies earlier, try again */ 1459 if (!determine_cpu_tsc_frequencies(false)) { 1460 mark_tsc_unstable("could not calculate TSC khz"); 1461 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1462 return; 1463 } 1464 tsc_enable_sched_clock(); 1465 } 1466 1467 cyc2ns_init_secondary_cpus(); 1468 1469 if (!no_sched_irq_time) 1470 enable_sched_clock_irqtime(); 1471 1472 lpj_fine = get_loops_per_jiffy(); 1473 use_tsc_delay(); 1474 1475 check_system_tsc_reliable(); 1476 1477 if (unsynchronized_tsc()) { 1478 mark_tsc_unstable("TSCs unsynchronized"); 1479 return; 1480 } 1481 1482 clocksource_register_khz(&clocksource_tsc_early, tsc_khz); 1483 detect_art(); 1484 } 1485 1486 #ifdef CONFIG_SMP 1487 /* 1488 * If we have a constant TSC and are using the TSC for the delay loop, 1489 * we can skip clock calibration if another cpu in the same socket has already 1490 * been calibrated. This assumes that CONSTANT_TSC applies to all 1491 * cpus in the socket - this should be a safe assumption. 1492 */ 1493 unsigned long calibrate_delay_is_known(void) 1494 { 1495 int sibling, cpu = smp_processor_id(); 1496 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); 1497 const struct cpumask *mask = topology_core_cpumask(cpu); 1498 1499 if (!constant_tsc || !mask) 1500 return 0; 1501 1502 sibling = cpumask_any_but(mask, cpu); 1503 if (sibling < nr_cpu_ids) 1504 return cpu_data(sibling).loops_per_jiffy; 1505 return 0; 1506 } 1507 #endif 1508