xref: /linux/arch/x86/kernel/tsc.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15 
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 
25 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
26 EXPORT_SYMBOL(cpu_khz);
27 
28 unsigned int __read_mostly tsc_khz;
29 EXPORT_SYMBOL(tsc_khz);
30 
31 /*
32  * TSC can be unstable due to cpufreq or due to unsynced TSCs
33  */
34 static int __read_mostly tsc_unstable;
35 
36 /* native_sched_clock() is called before tsc_init(), so
37    we must start with the TSC soft disabled to prevent
38    erroneous rdtsc usage on !cpu_has_tsc processors */
39 static int __read_mostly tsc_disabled = -1;
40 
41 static struct static_key __use_tsc = STATIC_KEY_INIT;
42 
43 int tsc_clocksource_reliable;
44 
45 /*
46  * Use a ring-buffer like data structure, where a writer advances the head by
47  * writing a new data entry and a reader advances the tail when it observes a
48  * new entry.
49  *
50  * Writers are made to wait on readers until there's space to write a new
51  * entry.
52  *
53  * This means that we can always use an {offset, mul} pair to compute a ns
54  * value that is 'roughly' in the right direction, even if we're writing a new
55  * {offset, mul} pair during the clock read.
56  *
57  * The down-side is that we can no longer guarantee strict monotonicity anymore
58  * (assuming the TSC was that to begin with), because while we compute the
59  * intersection point of the two clock slopes and make sure the time is
60  * continuous at the point of switching; we can no longer guarantee a reader is
61  * strictly before or after the switch point.
62  *
63  * It does mean a reader no longer needs to disable IRQs in order to avoid
64  * CPU-Freq updates messing with his times, and similarly an NMI reader will
65  * no longer run the risk of hitting half-written state.
66  */
67 
68 struct cyc2ns {
69 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
70 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
71 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
72 }; /* exactly fits one cacheline */
73 
74 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
75 
76 struct cyc2ns_data *cyc2ns_read_begin(void)
77 {
78 	struct cyc2ns_data *head;
79 
80 	preempt_disable();
81 
82 	head = this_cpu_read(cyc2ns.head);
83 	/*
84 	 * Ensure we observe the entry when we observe the pointer to it.
85 	 * matches the wmb from cyc2ns_write_end().
86 	 */
87 	smp_read_barrier_depends();
88 	head->__count++;
89 	barrier();
90 
91 	return head;
92 }
93 
94 void cyc2ns_read_end(struct cyc2ns_data *head)
95 {
96 	barrier();
97 	/*
98 	 * If we're the outer most nested read; update the tail pointer
99 	 * when we're done. This notifies possible pending writers
100 	 * that we've observed the head pointer and that the other
101 	 * entry is now free.
102 	 */
103 	if (!--head->__count) {
104 		/*
105 		 * x86-TSO does not reorder writes with older reads;
106 		 * therefore once this write becomes visible to another
107 		 * cpu, we must be finished reading the cyc2ns_data.
108 		 *
109 		 * matches with cyc2ns_write_begin().
110 		 */
111 		this_cpu_write(cyc2ns.tail, head);
112 	}
113 	preempt_enable();
114 }
115 
116 /*
117  * Begin writing a new @data entry for @cpu.
118  *
119  * Assumes some sort of write side lock; currently 'provided' by the assumption
120  * that cpufreq will call its notifiers sequentially.
121  */
122 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
123 {
124 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
125 	struct cyc2ns_data *data = c2n->data;
126 
127 	if (data == c2n->head)
128 		data++;
129 
130 	/* XXX send an IPI to @cpu in order to guarantee a read? */
131 
132 	/*
133 	 * When we observe the tail write from cyc2ns_read_end(),
134 	 * the cpu must be done with that entry and its safe
135 	 * to start writing to it.
136 	 */
137 	while (c2n->tail == data)
138 		cpu_relax();
139 
140 	return data;
141 }
142 
143 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
144 {
145 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
146 
147 	/*
148 	 * Ensure the @data writes are visible before we publish the
149 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
150 	 */
151 	smp_wmb();
152 
153 	ACCESS_ONCE(c2n->head) = data;
154 }
155 
156 /*
157  * Accelerators for sched_clock()
158  * convert from cycles(64bits) => nanoseconds (64bits)
159  *  basic equation:
160  *              ns = cycles / (freq / ns_per_sec)
161  *              ns = cycles * (ns_per_sec / freq)
162  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
163  *              ns = cycles * (10^6 / cpu_khz)
164  *
165  *      Then we use scaling math (suggested by george@mvista.com) to get:
166  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
167  *              ns = cycles * cyc2ns_scale / SC
168  *
169  *      And since SC is a constant power of two, we can convert the div
170  *  into a shift.
171  *
172  *  We can use khz divisor instead of mhz to keep a better precision, since
173  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
174  *  (mathieu.desnoyers@polymtl.ca)
175  *
176  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
177  */
178 
179 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
180 
181 static void cyc2ns_data_init(struct cyc2ns_data *data)
182 {
183 	data->cyc2ns_mul = 0;
184 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
185 	data->cyc2ns_offset = 0;
186 	data->__count = 0;
187 }
188 
189 static void cyc2ns_init(int cpu)
190 {
191 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192 
193 	cyc2ns_data_init(&c2n->data[0]);
194 	cyc2ns_data_init(&c2n->data[1]);
195 
196 	c2n->head = c2n->data;
197 	c2n->tail = c2n->data;
198 }
199 
200 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201 {
202 	struct cyc2ns_data *data, *tail;
203 	unsigned long long ns;
204 
205 	/*
206 	 * See cyc2ns_read_*() for details; replicated in order to avoid
207 	 * an extra few instructions that came with the abstraction.
208 	 * Notable, it allows us to only do the __count and tail update
209 	 * dance when its actually needed.
210 	 */
211 
212 	preempt_disable_notrace();
213 	data = this_cpu_read(cyc2ns.head);
214 	tail = this_cpu_read(cyc2ns.tail);
215 
216 	if (likely(data == tail)) {
217 		ns = data->cyc2ns_offset;
218 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
219 	} else {
220 		data->__count++;
221 
222 		barrier();
223 
224 		ns = data->cyc2ns_offset;
225 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
226 
227 		barrier();
228 
229 		if (!--data->__count)
230 			this_cpu_write(cyc2ns.tail, data);
231 	}
232 	preempt_enable_notrace();
233 
234 	return ns;
235 }
236 
237 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238 {
239 	unsigned long long tsc_now, ns_now;
240 	struct cyc2ns_data *data;
241 	unsigned long flags;
242 
243 	local_irq_save(flags);
244 	sched_clock_idle_sleep_event();
245 
246 	if (!cpu_khz)
247 		goto done;
248 
249 	data = cyc2ns_write_begin(cpu);
250 
251 	rdtscll(tsc_now);
252 	ns_now = cycles_2_ns(tsc_now);
253 
254 	/*
255 	 * Compute a new multiplier as per the above comment and ensure our
256 	 * time function is continuous; see the comment near struct
257 	 * cyc2ns_data.
258 	 */
259 	data->cyc2ns_mul =
260 		DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
261 				  cpu_khz);
262 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
263 	data->cyc2ns_offset = ns_now -
264 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
265 
266 	cyc2ns_write_end(cpu, data);
267 
268 done:
269 	sched_clock_idle_wakeup_event(0);
270 	local_irq_restore(flags);
271 }
272 /*
273  * Scheduler clock - returns current time in nanosec units.
274  */
275 u64 native_sched_clock(void)
276 {
277 	u64 tsc_now;
278 
279 	/*
280 	 * Fall back to jiffies if there's no TSC available:
281 	 * ( But note that we still use it if the TSC is marked
282 	 *   unstable. We do this because unlike Time Of Day,
283 	 *   the scheduler clock tolerates small errors and it's
284 	 *   very important for it to be as fast as the platform
285 	 *   can achieve it. )
286 	 */
287 	if (!static_key_false(&__use_tsc)) {
288 		/* No locking but a rare wrong value is not a big deal: */
289 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
290 	}
291 
292 	/* read the Time Stamp Counter: */
293 	rdtscll(tsc_now);
294 
295 	/* return the value in ns */
296 	return cycles_2_ns(tsc_now);
297 }
298 
299 /*
300  * Generate a sched_clock if you already have a TSC value.
301  */
302 u64 native_sched_clock_from_tsc(u64 tsc)
303 {
304 	return cycles_2_ns(tsc);
305 }
306 
307 /* We need to define a real function for sched_clock, to override the
308    weak default version */
309 #ifdef CONFIG_PARAVIRT
310 unsigned long long sched_clock(void)
311 {
312 	return paravirt_sched_clock();
313 }
314 #else
315 unsigned long long
316 sched_clock(void) __attribute__((alias("native_sched_clock")));
317 #endif
318 
319 unsigned long long native_read_tsc(void)
320 {
321 	return __native_read_tsc();
322 }
323 EXPORT_SYMBOL(native_read_tsc);
324 
325 int check_tsc_unstable(void)
326 {
327 	return tsc_unstable;
328 }
329 EXPORT_SYMBOL_GPL(check_tsc_unstable);
330 
331 int check_tsc_disabled(void)
332 {
333 	return tsc_disabled;
334 }
335 EXPORT_SYMBOL_GPL(check_tsc_disabled);
336 
337 #ifdef CONFIG_X86_TSC
338 int __init notsc_setup(char *str)
339 {
340 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
341 	tsc_disabled = 1;
342 	return 1;
343 }
344 #else
345 /*
346  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
347  * in cpu/common.c
348  */
349 int __init notsc_setup(char *str)
350 {
351 	setup_clear_cpu_cap(X86_FEATURE_TSC);
352 	return 1;
353 }
354 #endif
355 
356 __setup("notsc", notsc_setup);
357 
358 static int no_sched_irq_time;
359 
360 static int __init tsc_setup(char *str)
361 {
362 	if (!strcmp(str, "reliable"))
363 		tsc_clocksource_reliable = 1;
364 	if (!strncmp(str, "noirqtime", 9))
365 		no_sched_irq_time = 1;
366 	return 1;
367 }
368 
369 __setup("tsc=", tsc_setup);
370 
371 #define MAX_RETRIES     5
372 #define SMI_TRESHOLD    50000
373 
374 /*
375  * Read TSC and the reference counters. Take care of SMI disturbance
376  */
377 static u64 tsc_read_refs(u64 *p, int hpet)
378 {
379 	u64 t1, t2;
380 	int i;
381 
382 	for (i = 0; i < MAX_RETRIES; i++) {
383 		t1 = get_cycles();
384 		if (hpet)
385 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
386 		else
387 			*p = acpi_pm_read_early();
388 		t2 = get_cycles();
389 		if ((t2 - t1) < SMI_TRESHOLD)
390 			return t2;
391 	}
392 	return ULLONG_MAX;
393 }
394 
395 /*
396  * Calculate the TSC frequency from HPET reference
397  */
398 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
399 {
400 	u64 tmp;
401 
402 	if (hpet2 < hpet1)
403 		hpet2 += 0x100000000ULL;
404 	hpet2 -= hpet1;
405 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
406 	do_div(tmp, 1000000);
407 	do_div(deltatsc, tmp);
408 
409 	return (unsigned long) deltatsc;
410 }
411 
412 /*
413  * Calculate the TSC frequency from PMTimer reference
414  */
415 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
416 {
417 	u64 tmp;
418 
419 	if (!pm1 && !pm2)
420 		return ULONG_MAX;
421 
422 	if (pm2 < pm1)
423 		pm2 += (u64)ACPI_PM_OVRRUN;
424 	pm2 -= pm1;
425 	tmp = pm2 * 1000000000LL;
426 	do_div(tmp, PMTMR_TICKS_PER_SEC);
427 	do_div(deltatsc, tmp);
428 
429 	return (unsigned long) deltatsc;
430 }
431 
432 #define CAL_MS		10
433 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
434 #define CAL_PIT_LOOPS	1000
435 
436 #define CAL2_MS		50
437 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
438 #define CAL2_PIT_LOOPS	5000
439 
440 
441 /*
442  * Try to calibrate the TSC against the Programmable
443  * Interrupt Timer and return the frequency of the TSC
444  * in kHz.
445  *
446  * Return ULONG_MAX on failure to calibrate.
447  */
448 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
449 {
450 	u64 tsc, t1, t2, delta;
451 	unsigned long tscmin, tscmax;
452 	int pitcnt;
453 
454 	/* Set the Gate high, disable speaker */
455 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
456 
457 	/*
458 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
459 	 * count mode), binary count. Set the latch register to 50ms
460 	 * (LSB then MSB) to begin countdown.
461 	 */
462 	outb(0xb0, 0x43);
463 	outb(latch & 0xff, 0x42);
464 	outb(latch >> 8, 0x42);
465 
466 	tsc = t1 = t2 = get_cycles();
467 
468 	pitcnt = 0;
469 	tscmax = 0;
470 	tscmin = ULONG_MAX;
471 	while ((inb(0x61) & 0x20) == 0) {
472 		t2 = get_cycles();
473 		delta = t2 - tsc;
474 		tsc = t2;
475 		if ((unsigned long) delta < tscmin)
476 			tscmin = (unsigned int) delta;
477 		if ((unsigned long) delta > tscmax)
478 			tscmax = (unsigned int) delta;
479 		pitcnt++;
480 	}
481 
482 	/*
483 	 * Sanity checks:
484 	 *
485 	 * If we were not able to read the PIT more than loopmin
486 	 * times, then we have been hit by a massive SMI
487 	 *
488 	 * If the maximum is 10 times larger than the minimum,
489 	 * then we got hit by an SMI as well.
490 	 */
491 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
492 		return ULONG_MAX;
493 
494 	/* Calculate the PIT value */
495 	delta = t2 - t1;
496 	do_div(delta, ms);
497 	return delta;
498 }
499 
500 /*
501  * This reads the current MSB of the PIT counter, and
502  * checks if we are running on sufficiently fast and
503  * non-virtualized hardware.
504  *
505  * Our expectations are:
506  *
507  *  - the PIT is running at roughly 1.19MHz
508  *
509  *  - each IO is going to take about 1us on real hardware,
510  *    but we allow it to be much faster (by a factor of 10) or
511  *    _slightly_ slower (ie we allow up to a 2us read+counter
512  *    update - anything else implies a unacceptably slow CPU
513  *    or PIT for the fast calibration to work.
514  *
515  *  - with 256 PIT ticks to read the value, we have 214us to
516  *    see the same MSB (and overhead like doing a single TSC
517  *    read per MSB value etc).
518  *
519  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
520  *    them each to take about a microsecond on real hardware.
521  *    So we expect a count value of around 100. But we'll be
522  *    generous, and accept anything over 50.
523  *
524  *  - if the PIT is stuck, and we see *many* more reads, we
525  *    return early (and the next caller of pit_expect_msb()
526  *    then consider it a failure when they don't see the
527  *    next expected value).
528  *
529  * These expectations mean that we know that we have seen the
530  * transition from one expected value to another with a fairly
531  * high accuracy, and we didn't miss any events. We can thus
532  * use the TSC value at the transitions to calculate a pretty
533  * good value for the TSC frequencty.
534  */
535 static inline int pit_verify_msb(unsigned char val)
536 {
537 	/* Ignore LSB */
538 	inb(0x42);
539 	return inb(0x42) == val;
540 }
541 
542 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
543 {
544 	int count;
545 	u64 tsc = 0, prev_tsc = 0;
546 
547 	for (count = 0; count < 50000; count++) {
548 		if (!pit_verify_msb(val))
549 			break;
550 		prev_tsc = tsc;
551 		tsc = get_cycles();
552 	}
553 	*deltap = get_cycles() - prev_tsc;
554 	*tscp = tsc;
555 
556 	/*
557 	 * We require _some_ success, but the quality control
558 	 * will be based on the error terms on the TSC values.
559 	 */
560 	return count > 5;
561 }
562 
563 /*
564  * How many MSB values do we want to see? We aim for
565  * a maximum error rate of 500ppm (in practice the
566  * real error is much smaller), but refuse to spend
567  * more than 50ms on it.
568  */
569 #define MAX_QUICK_PIT_MS 50
570 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
571 
572 static unsigned long quick_pit_calibrate(void)
573 {
574 	int i;
575 	u64 tsc, delta;
576 	unsigned long d1, d2;
577 
578 	/* Set the Gate high, disable speaker */
579 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
580 
581 	/*
582 	 * Counter 2, mode 0 (one-shot), binary count
583 	 *
584 	 * NOTE! Mode 2 decrements by two (and then the
585 	 * output is flipped each time, giving the same
586 	 * final output frequency as a decrement-by-one),
587 	 * so mode 0 is much better when looking at the
588 	 * individual counts.
589 	 */
590 	outb(0xb0, 0x43);
591 
592 	/* Start at 0xffff */
593 	outb(0xff, 0x42);
594 	outb(0xff, 0x42);
595 
596 	/*
597 	 * The PIT starts counting at the next edge, so we
598 	 * need to delay for a microsecond. The easiest way
599 	 * to do that is to just read back the 16-bit counter
600 	 * once from the PIT.
601 	 */
602 	pit_verify_msb(0);
603 
604 	if (pit_expect_msb(0xff, &tsc, &d1)) {
605 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
606 			if (!pit_expect_msb(0xff-i, &delta, &d2))
607 				break;
608 
609 			delta -= tsc;
610 
611 			/*
612 			 * Extrapolate the error and fail fast if the error will
613 			 * never be below 500 ppm.
614 			 */
615 			if (i == 1 &&
616 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
617 				return 0;
618 
619 			/*
620 			 * Iterate until the error is less than 500 ppm
621 			 */
622 			if (d1+d2 >= delta >> 11)
623 				continue;
624 
625 			/*
626 			 * Check the PIT one more time to verify that
627 			 * all TSC reads were stable wrt the PIT.
628 			 *
629 			 * This also guarantees serialization of the
630 			 * last cycle read ('d2') in pit_expect_msb.
631 			 */
632 			if (!pit_verify_msb(0xfe - i))
633 				break;
634 			goto success;
635 		}
636 	}
637 	pr_info("Fast TSC calibration failed\n");
638 	return 0;
639 
640 success:
641 	/*
642 	 * Ok, if we get here, then we've seen the
643 	 * MSB of the PIT decrement 'i' times, and the
644 	 * error has shrunk to less than 500 ppm.
645 	 *
646 	 * As a result, we can depend on there not being
647 	 * any odd delays anywhere, and the TSC reads are
648 	 * reliable (within the error).
649 	 *
650 	 * kHz = ticks / time-in-seconds / 1000;
651 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
652 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
653 	 */
654 	delta *= PIT_TICK_RATE;
655 	do_div(delta, i*256*1000);
656 	pr_info("Fast TSC calibration using PIT\n");
657 	return delta;
658 }
659 
660 /**
661  * native_calibrate_tsc - calibrate the tsc on boot
662  */
663 unsigned long native_calibrate_tsc(void)
664 {
665 	u64 tsc1, tsc2, delta, ref1, ref2;
666 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
667 	unsigned long flags, latch, ms, fast_calibrate;
668 	int hpet = is_hpet_enabled(), i, loopmin;
669 
670 	/* Calibrate TSC using MSR for Intel Atom SoCs */
671 	local_irq_save(flags);
672 	fast_calibrate = try_msr_calibrate_tsc();
673 	local_irq_restore(flags);
674 	if (fast_calibrate)
675 		return fast_calibrate;
676 
677 	local_irq_save(flags);
678 	fast_calibrate = quick_pit_calibrate();
679 	local_irq_restore(flags);
680 	if (fast_calibrate)
681 		return fast_calibrate;
682 
683 	/*
684 	 * Run 5 calibration loops to get the lowest frequency value
685 	 * (the best estimate). We use two different calibration modes
686 	 * here:
687 	 *
688 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
689 	 * load a timeout of 50ms. We read the time right after we
690 	 * started the timer and wait until the PIT count down reaches
691 	 * zero. In each wait loop iteration we read the TSC and check
692 	 * the delta to the previous read. We keep track of the min
693 	 * and max values of that delta. The delta is mostly defined
694 	 * by the IO time of the PIT access, so we can detect when a
695 	 * SMI/SMM disturbance happened between the two reads. If the
696 	 * maximum time is significantly larger than the minimum time,
697 	 * then we discard the result and have another try.
698 	 *
699 	 * 2) Reference counter. If available we use the HPET or the
700 	 * PMTIMER as a reference to check the sanity of that value.
701 	 * We use separate TSC readouts and check inside of the
702 	 * reference read for a SMI/SMM disturbance. We dicard
703 	 * disturbed values here as well. We do that around the PIT
704 	 * calibration delay loop as we have to wait for a certain
705 	 * amount of time anyway.
706 	 */
707 
708 	/* Preset PIT loop values */
709 	latch = CAL_LATCH;
710 	ms = CAL_MS;
711 	loopmin = CAL_PIT_LOOPS;
712 
713 	for (i = 0; i < 3; i++) {
714 		unsigned long tsc_pit_khz;
715 
716 		/*
717 		 * Read the start value and the reference count of
718 		 * hpet/pmtimer when available. Then do the PIT
719 		 * calibration, which will take at least 50ms, and
720 		 * read the end value.
721 		 */
722 		local_irq_save(flags);
723 		tsc1 = tsc_read_refs(&ref1, hpet);
724 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
725 		tsc2 = tsc_read_refs(&ref2, hpet);
726 		local_irq_restore(flags);
727 
728 		/* Pick the lowest PIT TSC calibration so far */
729 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
730 
731 		/* hpet or pmtimer available ? */
732 		if (ref1 == ref2)
733 			continue;
734 
735 		/* Check, whether the sampling was disturbed by an SMI */
736 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
737 			continue;
738 
739 		tsc2 = (tsc2 - tsc1) * 1000000LL;
740 		if (hpet)
741 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
742 		else
743 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
744 
745 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
746 
747 		/* Check the reference deviation */
748 		delta = ((u64) tsc_pit_min) * 100;
749 		do_div(delta, tsc_ref_min);
750 
751 		/*
752 		 * If both calibration results are inside a 10% window
753 		 * then we can be sure, that the calibration
754 		 * succeeded. We break out of the loop right away. We
755 		 * use the reference value, as it is more precise.
756 		 */
757 		if (delta >= 90 && delta <= 110) {
758 			pr_info("PIT calibration matches %s. %d loops\n",
759 				hpet ? "HPET" : "PMTIMER", i + 1);
760 			return tsc_ref_min;
761 		}
762 
763 		/*
764 		 * Check whether PIT failed more than once. This
765 		 * happens in virtualized environments. We need to
766 		 * give the virtual PC a slightly longer timeframe for
767 		 * the HPET/PMTIMER to make the result precise.
768 		 */
769 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
770 			latch = CAL2_LATCH;
771 			ms = CAL2_MS;
772 			loopmin = CAL2_PIT_LOOPS;
773 		}
774 	}
775 
776 	/*
777 	 * Now check the results.
778 	 */
779 	if (tsc_pit_min == ULONG_MAX) {
780 		/* PIT gave no useful value */
781 		pr_warn("Unable to calibrate against PIT\n");
782 
783 		/* We don't have an alternative source, disable TSC */
784 		if (!hpet && !ref1 && !ref2) {
785 			pr_notice("No reference (HPET/PMTIMER) available\n");
786 			return 0;
787 		}
788 
789 		/* The alternative source failed as well, disable TSC */
790 		if (tsc_ref_min == ULONG_MAX) {
791 			pr_warn("HPET/PMTIMER calibration failed\n");
792 			return 0;
793 		}
794 
795 		/* Use the alternative source */
796 		pr_info("using %s reference calibration\n",
797 			hpet ? "HPET" : "PMTIMER");
798 
799 		return tsc_ref_min;
800 	}
801 
802 	/* We don't have an alternative source, use the PIT calibration value */
803 	if (!hpet && !ref1 && !ref2) {
804 		pr_info("Using PIT calibration value\n");
805 		return tsc_pit_min;
806 	}
807 
808 	/* The alternative source failed, use the PIT calibration value */
809 	if (tsc_ref_min == ULONG_MAX) {
810 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
811 		return tsc_pit_min;
812 	}
813 
814 	/*
815 	 * The calibration values differ too much. In doubt, we use
816 	 * the PIT value as we know that there are PMTIMERs around
817 	 * running at double speed. At least we let the user know:
818 	 */
819 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
820 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
821 	pr_info("Using PIT calibration value\n");
822 	return tsc_pit_min;
823 }
824 
825 int recalibrate_cpu_khz(void)
826 {
827 #ifndef CONFIG_SMP
828 	unsigned long cpu_khz_old = cpu_khz;
829 
830 	if (cpu_has_tsc) {
831 		tsc_khz = x86_platform.calibrate_tsc();
832 		cpu_khz = tsc_khz;
833 		cpu_data(0).loops_per_jiffy =
834 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
835 					cpu_khz_old, cpu_khz);
836 		return 0;
837 	} else
838 		return -ENODEV;
839 #else
840 	return -ENODEV;
841 #endif
842 }
843 
844 EXPORT_SYMBOL(recalibrate_cpu_khz);
845 
846 
847 static unsigned long long cyc2ns_suspend;
848 
849 void tsc_save_sched_clock_state(void)
850 {
851 	if (!sched_clock_stable())
852 		return;
853 
854 	cyc2ns_suspend = sched_clock();
855 }
856 
857 /*
858  * Even on processors with invariant TSC, TSC gets reset in some the
859  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
860  * arbitrary value (still sync'd across cpu's) during resume from such sleep
861  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
862  * that sched_clock() continues from the point where it was left off during
863  * suspend.
864  */
865 void tsc_restore_sched_clock_state(void)
866 {
867 	unsigned long long offset;
868 	unsigned long flags;
869 	int cpu;
870 
871 	if (!sched_clock_stable())
872 		return;
873 
874 	local_irq_save(flags);
875 
876 	/*
877 	 * We're comming out of suspend, there's no concurrency yet; don't
878 	 * bother being nice about the RCU stuff, just write to both
879 	 * data fields.
880 	 */
881 
882 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
883 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
884 
885 	offset = cyc2ns_suspend - sched_clock();
886 
887 	for_each_possible_cpu(cpu) {
888 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
889 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
890 	}
891 
892 	local_irq_restore(flags);
893 }
894 
895 #ifdef CONFIG_CPU_FREQ
896 
897 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
898  * changes.
899  *
900  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
901  * not that important because current Opteron setups do not support
902  * scaling on SMP anyroads.
903  *
904  * Should fix up last_tsc too. Currently gettimeofday in the
905  * first tick after the change will be slightly wrong.
906  */
907 
908 static unsigned int  ref_freq;
909 static unsigned long loops_per_jiffy_ref;
910 static unsigned long tsc_khz_ref;
911 
912 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
913 				void *data)
914 {
915 	struct cpufreq_freqs *freq = data;
916 	unsigned long *lpj;
917 
918 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
919 		return 0;
920 
921 	lpj = &boot_cpu_data.loops_per_jiffy;
922 #ifdef CONFIG_SMP
923 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
924 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
925 #endif
926 
927 	if (!ref_freq) {
928 		ref_freq = freq->old;
929 		loops_per_jiffy_ref = *lpj;
930 		tsc_khz_ref = tsc_khz;
931 	}
932 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
933 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
934 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
935 
936 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
937 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
938 			mark_tsc_unstable("cpufreq changes");
939 
940 		set_cyc2ns_scale(tsc_khz, freq->cpu);
941 	}
942 
943 	return 0;
944 }
945 
946 static struct notifier_block time_cpufreq_notifier_block = {
947 	.notifier_call  = time_cpufreq_notifier
948 };
949 
950 static int __init cpufreq_tsc(void)
951 {
952 	if (!cpu_has_tsc)
953 		return 0;
954 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
955 		return 0;
956 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
957 				CPUFREQ_TRANSITION_NOTIFIER);
958 	return 0;
959 }
960 
961 core_initcall(cpufreq_tsc);
962 
963 #endif /* CONFIG_CPU_FREQ */
964 
965 /* clocksource code */
966 
967 static struct clocksource clocksource_tsc;
968 
969 /*
970  * We used to compare the TSC to the cycle_last value in the clocksource
971  * structure to avoid a nasty time-warp. This can be observed in a
972  * very small window right after one CPU updated cycle_last under
973  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
974  * is smaller than the cycle_last reference value due to a TSC which
975  * is slighty behind. This delta is nowhere else observable, but in
976  * that case it results in a forward time jump in the range of hours
977  * due to the unsigned delta calculation of the time keeping core
978  * code, which is necessary to support wrapping clocksources like pm
979  * timer.
980  *
981  * This sanity check is now done in the core timekeeping code.
982  * checking the result of read_tsc() - cycle_last for being negative.
983  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
984  */
985 static cycle_t read_tsc(struct clocksource *cs)
986 {
987 	return (cycle_t)get_cycles();
988 }
989 
990 /*
991  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
992  */
993 static struct clocksource clocksource_tsc = {
994 	.name                   = "tsc",
995 	.rating                 = 300,
996 	.read                   = read_tsc,
997 	.mask                   = CLOCKSOURCE_MASK(64),
998 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
999 				  CLOCK_SOURCE_MUST_VERIFY,
1000 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1001 };
1002 
1003 void mark_tsc_unstable(char *reason)
1004 {
1005 	if (!tsc_unstable) {
1006 		tsc_unstable = 1;
1007 		clear_sched_clock_stable();
1008 		disable_sched_clock_irqtime();
1009 		pr_info("Marking TSC unstable due to %s\n", reason);
1010 		/* Change only the rating, when not registered */
1011 		if (clocksource_tsc.mult)
1012 			clocksource_mark_unstable(&clocksource_tsc);
1013 		else {
1014 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1015 			clocksource_tsc.rating = 0;
1016 		}
1017 	}
1018 }
1019 
1020 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1021 
1022 static void __init check_system_tsc_reliable(void)
1023 {
1024 #ifdef CONFIG_MGEODE_LX
1025 	/* RTSC counts during suspend */
1026 #define RTSC_SUSP 0x100
1027 	unsigned long res_low, res_high;
1028 
1029 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1030 	/* Geode_LX - the OLPC CPU has a very reliable TSC */
1031 	if (res_low & RTSC_SUSP)
1032 		tsc_clocksource_reliable = 1;
1033 #endif
1034 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1035 		tsc_clocksource_reliable = 1;
1036 }
1037 
1038 /*
1039  * Make an educated guess if the TSC is trustworthy and synchronized
1040  * over all CPUs.
1041  */
1042 int unsynchronized_tsc(void)
1043 {
1044 	if (!cpu_has_tsc || tsc_unstable)
1045 		return 1;
1046 
1047 #ifdef CONFIG_SMP
1048 	if (apic_is_clustered_box())
1049 		return 1;
1050 #endif
1051 
1052 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1053 		return 0;
1054 
1055 	if (tsc_clocksource_reliable)
1056 		return 0;
1057 	/*
1058 	 * Intel systems are normally all synchronized.
1059 	 * Exceptions must mark TSC as unstable:
1060 	 */
1061 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1062 		/* assume multi socket systems are not synchronized: */
1063 		if (num_possible_cpus() > 1)
1064 			return 1;
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 
1071 static void tsc_refine_calibration_work(struct work_struct *work);
1072 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1073 /**
1074  * tsc_refine_calibration_work - Further refine tsc freq calibration
1075  * @work - ignored.
1076  *
1077  * This functions uses delayed work over a period of a
1078  * second to further refine the TSC freq value. Since this is
1079  * timer based, instead of loop based, we don't block the boot
1080  * process while this longer calibration is done.
1081  *
1082  * If there are any calibration anomalies (too many SMIs, etc),
1083  * or the refined calibration is off by 1% of the fast early
1084  * calibration, we throw out the new calibration and use the
1085  * early calibration.
1086  */
1087 static void tsc_refine_calibration_work(struct work_struct *work)
1088 {
1089 	static u64 tsc_start = -1, ref_start;
1090 	static int hpet;
1091 	u64 tsc_stop, ref_stop, delta;
1092 	unsigned long freq;
1093 
1094 	/* Don't bother refining TSC on unstable systems */
1095 	if (check_tsc_unstable())
1096 		goto out;
1097 
1098 	/*
1099 	 * Since the work is started early in boot, we may be
1100 	 * delayed the first time we expire. So set the workqueue
1101 	 * again once we know timers are working.
1102 	 */
1103 	if (tsc_start == -1) {
1104 		/*
1105 		 * Only set hpet once, to avoid mixing hardware
1106 		 * if the hpet becomes enabled later.
1107 		 */
1108 		hpet = is_hpet_enabled();
1109 		schedule_delayed_work(&tsc_irqwork, HZ);
1110 		tsc_start = tsc_read_refs(&ref_start, hpet);
1111 		return;
1112 	}
1113 
1114 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1115 
1116 	/* hpet or pmtimer available ? */
1117 	if (ref_start == ref_stop)
1118 		goto out;
1119 
1120 	/* Check, whether the sampling was disturbed by an SMI */
1121 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1122 		goto out;
1123 
1124 	delta = tsc_stop - tsc_start;
1125 	delta *= 1000000LL;
1126 	if (hpet)
1127 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1128 	else
1129 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1130 
1131 	/* Make sure we're within 1% */
1132 	if (abs(tsc_khz - freq) > tsc_khz/100)
1133 		goto out;
1134 
1135 	tsc_khz = freq;
1136 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1137 		(unsigned long)tsc_khz / 1000,
1138 		(unsigned long)tsc_khz % 1000);
1139 
1140 out:
1141 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1142 }
1143 
1144 
1145 static int __init init_tsc_clocksource(void)
1146 {
1147 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1148 		return 0;
1149 
1150 	if (tsc_clocksource_reliable)
1151 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1152 	/* lower the rating if we already know its unstable: */
1153 	if (check_tsc_unstable()) {
1154 		clocksource_tsc.rating = 0;
1155 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1156 	}
1157 
1158 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1159 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1160 
1161 	/*
1162 	 * Trust the results of the earlier calibration on systems
1163 	 * exporting a reliable TSC.
1164 	 */
1165 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1166 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1167 		return 0;
1168 	}
1169 
1170 	schedule_delayed_work(&tsc_irqwork, 0);
1171 	return 0;
1172 }
1173 /*
1174  * We use device_initcall here, to ensure we run after the hpet
1175  * is fully initialized, which may occur at fs_initcall time.
1176  */
1177 device_initcall(init_tsc_clocksource);
1178 
1179 void __init tsc_init(void)
1180 {
1181 	u64 lpj;
1182 	int cpu;
1183 
1184 	x86_init.timers.tsc_pre_init();
1185 
1186 	if (!cpu_has_tsc) {
1187 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1188 		return;
1189 	}
1190 
1191 	tsc_khz = x86_platform.calibrate_tsc();
1192 	cpu_khz = tsc_khz;
1193 
1194 	if (!tsc_khz) {
1195 		mark_tsc_unstable("could not calculate TSC khz");
1196 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1197 		return;
1198 	}
1199 
1200 	pr_info("Detected %lu.%03lu MHz processor\n",
1201 		(unsigned long)cpu_khz / 1000,
1202 		(unsigned long)cpu_khz % 1000);
1203 
1204 	/*
1205 	 * Secondary CPUs do not run through tsc_init(), so set up
1206 	 * all the scale factors for all CPUs, assuming the same
1207 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1208 	 * up if their speed diverges)
1209 	 */
1210 	for_each_possible_cpu(cpu) {
1211 		cyc2ns_init(cpu);
1212 		set_cyc2ns_scale(cpu_khz, cpu);
1213 	}
1214 
1215 	if (tsc_disabled > 0)
1216 		return;
1217 
1218 	/* now allow native_sched_clock() to use rdtsc */
1219 
1220 	tsc_disabled = 0;
1221 	static_key_slow_inc(&__use_tsc);
1222 
1223 	if (!no_sched_irq_time)
1224 		enable_sched_clock_irqtime();
1225 
1226 	lpj = ((u64)tsc_khz * 1000);
1227 	do_div(lpj, HZ);
1228 	lpj_fine = lpj;
1229 
1230 	use_tsc_delay();
1231 
1232 	if (unsynchronized_tsc())
1233 		mark_tsc_unstable("TSCs unsynchronized");
1234 
1235 	check_system_tsc_reliable();
1236 }
1237 
1238 #ifdef CONFIG_SMP
1239 /*
1240  * If we have a constant TSC and are using the TSC for the delay loop,
1241  * we can skip clock calibration if another cpu in the same socket has already
1242  * been calibrated. This assumes that CONSTANT_TSC applies to all
1243  * cpus in the socket - this should be a safe assumption.
1244  */
1245 unsigned long calibrate_delay_is_known(void)
1246 {
1247 	int i, cpu = smp_processor_id();
1248 
1249 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1250 		return 0;
1251 
1252 	for_each_online_cpu(i)
1253 		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1254 			return cpu_data(i).loops_per_jiffy;
1255 	return 0;
1256 }
1257 #endif
1258