1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 #include <linux/static_key.h> 15 16 #include <asm/hpet.h> 17 #include <asm/timer.h> 18 #include <asm/vgtod.h> 19 #include <asm/time.h> 20 #include <asm/delay.h> 21 #include <asm/hypervisor.h> 22 #include <asm/nmi.h> 23 #include <asm/x86_init.h> 24 25 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 26 EXPORT_SYMBOL(cpu_khz); 27 28 unsigned int __read_mostly tsc_khz; 29 EXPORT_SYMBOL(tsc_khz); 30 31 /* 32 * TSC can be unstable due to cpufreq or due to unsynced TSCs 33 */ 34 static int __read_mostly tsc_unstable; 35 36 /* native_sched_clock() is called before tsc_init(), so 37 we must start with the TSC soft disabled to prevent 38 erroneous rdtsc usage on !cpu_has_tsc processors */ 39 static int __read_mostly tsc_disabled = -1; 40 41 static struct static_key __use_tsc = STATIC_KEY_INIT; 42 43 int tsc_clocksource_reliable; 44 45 /* 46 * Use a ring-buffer like data structure, where a writer advances the head by 47 * writing a new data entry and a reader advances the tail when it observes a 48 * new entry. 49 * 50 * Writers are made to wait on readers until there's space to write a new 51 * entry. 52 * 53 * This means that we can always use an {offset, mul} pair to compute a ns 54 * value that is 'roughly' in the right direction, even if we're writing a new 55 * {offset, mul} pair during the clock read. 56 * 57 * The down-side is that we can no longer guarantee strict monotonicity anymore 58 * (assuming the TSC was that to begin with), because while we compute the 59 * intersection point of the two clock slopes and make sure the time is 60 * continuous at the point of switching; we can no longer guarantee a reader is 61 * strictly before or after the switch point. 62 * 63 * It does mean a reader no longer needs to disable IRQs in order to avoid 64 * CPU-Freq updates messing with his times, and similarly an NMI reader will 65 * no longer run the risk of hitting half-written state. 66 */ 67 68 struct cyc2ns { 69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 70 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 72 }; /* exactly fits one cacheline */ 73 74 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 75 76 struct cyc2ns_data *cyc2ns_read_begin(void) 77 { 78 struct cyc2ns_data *head; 79 80 preempt_disable(); 81 82 head = this_cpu_read(cyc2ns.head); 83 /* 84 * Ensure we observe the entry when we observe the pointer to it. 85 * matches the wmb from cyc2ns_write_end(). 86 */ 87 smp_read_barrier_depends(); 88 head->__count++; 89 barrier(); 90 91 return head; 92 } 93 94 void cyc2ns_read_end(struct cyc2ns_data *head) 95 { 96 barrier(); 97 /* 98 * If we're the outer most nested read; update the tail pointer 99 * when we're done. This notifies possible pending writers 100 * that we've observed the head pointer and that the other 101 * entry is now free. 102 */ 103 if (!--head->__count) { 104 /* 105 * x86-TSO does not reorder writes with older reads; 106 * therefore once this write becomes visible to another 107 * cpu, we must be finished reading the cyc2ns_data. 108 * 109 * matches with cyc2ns_write_begin(). 110 */ 111 this_cpu_write(cyc2ns.tail, head); 112 } 113 preempt_enable(); 114 } 115 116 /* 117 * Begin writing a new @data entry for @cpu. 118 * 119 * Assumes some sort of write side lock; currently 'provided' by the assumption 120 * that cpufreq will call its notifiers sequentially. 121 */ 122 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 123 { 124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 125 struct cyc2ns_data *data = c2n->data; 126 127 if (data == c2n->head) 128 data++; 129 130 /* XXX send an IPI to @cpu in order to guarantee a read? */ 131 132 /* 133 * When we observe the tail write from cyc2ns_read_end(), 134 * the cpu must be done with that entry and its safe 135 * to start writing to it. 136 */ 137 while (c2n->tail == data) 138 cpu_relax(); 139 140 return data; 141 } 142 143 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 144 { 145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 146 147 /* 148 * Ensure the @data writes are visible before we publish the 149 * entry. Matches the data-depencency in cyc2ns_read_begin(). 150 */ 151 smp_wmb(); 152 153 ACCESS_ONCE(c2n->head) = data; 154 } 155 156 /* 157 * Accelerators for sched_clock() 158 * convert from cycles(64bits) => nanoseconds (64bits) 159 * basic equation: 160 * ns = cycles / (freq / ns_per_sec) 161 * ns = cycles * (ns_per_sec / freq) 162 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 163 * ns = cycles * (10^6 / cpu_khz) 164 * 165 * Then we use scaling math (suggested by george@mvista.com) to get: 166 * ns = cycles * (10^6 * SC / cpu_khz) / SC 167 * ns = cycles * cyc2ns_scale / SC 168 * 169 * And since SC is a constant power of two, we can convert the div 170 * into a shift. 171 * 172 * We can use khz divisor instead of mhz to keep a better precision, since 173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. 174 * (mathieu.desnoyers@polymtl.ca) 175 * 176 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 177 */ 178 179 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ 180 181 static void cyc2ns_data_init(struct cyc2ns_data *data) 182 { 183 data->cyc2ns_mul = 0; 184 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; 185 data->cyc2ns_offset = 0; 186 data->__count = 0; 187 } 188 189 static void cyc2ns_init(int cpu) 190 { 191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 192 193 cyc2ns_data_init(&c2n->data[0]); 194 cyc2ns_data_init(&c2n->data[1]); 195 196 c2n->head = c2n->data; 197 c2n->tail = c2n->data; 198 } 199 200 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 201 { 202 struct cyc2ns_data *data, *tail; 203 unsigned long long ns; 204 205 /* 206 * See cyc2ns_read_*() for details; replicated in order to avoid 207 * an extra few instructions that came with the abstraction. 208 * Notable, it allows us to only do the __count and tail update 209 * dance when its actually needed. 210 */ 211 212 preempt_disable_notrace(); 213 data = this_cpu_read(cyc2ns.head); 214 tail = this_cpu_read(cyc2ns.tail); 215 216 if (likely(data == tail)) { 217 ns = data->cyc2ns_offset; 218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 219 } else { 220 data->__count++; 221 222 barrier(); 223 224 ns = data->cyc2ns_offset; 225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 226 227 barrier(); 228 229 if (!--data->__count) 230 this_cpu_write(cyc2ns.tail, data); 231 } 232 preempt_enable_notrace(); 233 234 return ns; 235 } 236 237 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 238 { 239 unsigned long long tsc_now, ns_now; 240 struct cyc2ns_data *data; 241 unsigned long flags; 242 243 local_irq_save(flags); 244 sched_clock_idle_sleep_event(); 245 246 if (!cpu_khz) 247 goto done; 248 249 data = cyc2ns_write_begin(cpu); 250 251 rdtscll(tsc_now); 252 ns_now = cycles_2_ns(tsc_now); 253 254 /* 255 * Compute a new multiplier as per the above comment and ensure our 256 * time function is continuous; see the comment near struct 257 * cyc2ns_data. 258 */ 259 data->cyc2ns_mul = 260 DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, 261 cpu_khz); 262 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; 263 data->cyc2ns_offset = ns_now - 264 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 265 266 cyc2ns_write_end(cpu, data); 267 268 done: 269 sched_clock_idle_wakeup_event(0); 270 local_irq_restore(flags); 271 } 272 /* 273 * Scheduler clock - returns current time in nanosec units. 274 */ 275 u64 native_sched_clock(void) 276 { 277 u64 tsc_now; 278 279 /* 280 * Fall back to jiffies if there's no TSC available: 281 * ( But note that we still use it if the TSC is marked 282 * unstable. We do this because unlike Time Of Day, 283 * the scheduler clock tolerates small errors and it's 284 * very important for it to be as fast as the platform 285 * can achieve it. ) 286 */ 287 if (!static_key_false(&__use_tsc)) { 288 /* No locking but a rare wrong value is not a big deal: */ 289 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 290 } 291 292 /* read the Time Stamp Counter: */ 293 rdtscll(tsc_now); 294 295 /* return the value in ns */ 296 return cycles_2_ns(tsc_now); 297 } 298 299 /* 300 * Generate a sched_clock if you already have a TSC value. 301 */ 302 u64 native_sched_clock_from_tsc(u64 tsc) 303 { 304 return cycles_2_ns(tsc); 305 } 306 307 /* We need to define a real function for sched_clock, to override the 308 weak default version */ 309 #ifdef CONFIG_PARAVIRT 310 unsigned long long sched_clock(void) 311 { 312 return paravirt_sched_clock(); 313 } 314 #else 315 unsigned long long 316 sched_clock(void) __attribute__((alias("native_sched_clock"))); 317 #endif 318 319 unsigned long long native_read_tsc(void) 320 { 321 return __native_read_tsc(); 322 } 323 EXPORT_SYMBOL(native_read_tsc); 324 325 int check_tsc_unstable(void) 326 { 327 return tsc_unstable; 328 } 329 EXPORT_SYMBOL_GPL(check_tsc_unstable); 330 331 int check_tsc_disabled(void) 332 { 333 return tsc_disabled; 334 } 335 EXPORT_SYMBOL_GPL(check_tsc_disabled); 336 337 #ifdef CONFIG_X86_TSC 338 int __init notsc_setup(char *str) 339 { 340 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 341 tsc_disabled = 1; 342 return 1; 343 } 344 #else 345 /* 346 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 347 * in cpu/common.c 348 */ 349 int __init notsc_setup(char *str) 350 { 351 setup_clear_cpu_cap(X86_FEATURE_TSC); 352 return 1; 353 } 354 #endif 355 356 __setup("notsc", notsc_setup); 357 358 static int no_sched_irq_time; 359 360 static int __init tsc_setup(char *str) 361 { 362 if (!strcmp(str, "reliable")) 363 tsc_clocksource_reliable = 1; 364 if (!strncmp(str, "noirqtime", 9)) 365 no_sched_irq_time = 1; 366 return 1; 367 } 368 369 __setup("tsc=", tsc_setup); 370 371 #define MAX_RETRIES 5 372 #define SMI_TRESHOLD 50000 373 374 /* 375 * Read TSC and the reference counters. Take care of SMI disturbance 376 */ 377 static u64 tsc_read_refs(u64 *p, int hpet) 378 { 379 u64 t1, t2; 380 int i; 381 382 for (i = 0; i < MAX_RETRIES; i++) { 383 t1 = get_cycles(); 384 if (hpet) 385 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 386 else 387 *p = acpi_pm_read_early(); 388 t2 = get_cycles(); 389 if ((t2 - t1) < SMI_TRESHOLD) 390 return t2; 391 } 392 return ULLONG_MAX; 393 } 394 395 /* 396 * Calculate the TSC frequency from HPET reference 397 */ 398 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 399 { 400 u64 tmp; 401 402 if (hpet2 < hpet1) 403 hpet2 += 0x100000000ULL; 404 hpet2 -= hpet1; 405 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 406 do_div(tmp, 1000000); 407 do_div(deltatsc, tmp); 408 409 return (unsigned long) deltatsc; 410 } 411 412 /* 413 * Calculate the TSC frequency from PMTimer reference 414 */ 415 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 416 { 417 u64 tmp; 418 419 if (!pm1 && !pm2) 420 return ULONG_MAX; 421 422 if (pm2 < pm1) 423 pm2 += (u64)ACPI_PM_OVRRUN; 424 pm2 -= pm1; 425 tmp = pm2 * 1000000000LL; 426 do_div(tmp, PMTMR_TICKS_PER_SEC); 427 do_div(deltatsc, tmp); 428 429 return (unsigned long) deltatsc; 430 } 431 432 #define CAL_MS 10 433 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 434 #define CAL_PIT_LOOPS 1000 435 436 #define CAL2_MS 50 437 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 438 #define CAL2_PIT_LOOPS 5000 439 440 441 /* 442 * Try to calibrate the TSC against the Programmable 443 * Interrupt Timer and return the frequency of the TSC 444 * in kHz. 445 * 446 * Return ULONG_MAX on failure to calibrate. 447 */ 448 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 449 { 450 u64 tsc, t1, t2, delta; 451 unsigned long tscmin, tscmax; 452 int pitcnt; 453 454 /* Set the Gate high, disable speaker */ 455 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 456 457 /* 458 * Setup CTC channel 2* for mode 0, (interrupt on terminal 459 * count mode), binary count. Set the latch register to 50ms 460 * (LSB then MSB) to begin countdown. 461 */ 462 outb(0xb0, 0x43); 463 outb(latch & 0xff, 0x42); 464 outb(latch >> 8, 0x42); 465 466 tsc = t1 = t2 = get_cycles(); 467 468 pitcnt = 0; 469 tscmax = 0; 470 tscmin = ULONG_MAX; 471 while ((inb(0x61) & 0x20) == 0) { 472 t2 = get_cycles(); 473 delta = t2 - tsc; 474 tsc = t2; 475 if ((unsigned long) delta < tscmin) 476 tscmin = (unsigned int) delta; 477 if ((unsigned long) delta > tscmax) 478 tscmax = (unsigned int) delta; 479 pitcnt++; 480 } 481 482 /* 483 * Sanity checks: 484 * 485 * If we were not able to read the PIT more than loopmin 486 * times, then we have been hit by a massive SMI 487 * 488 * If the maximum is 10 times larger than the minimum, 489 * then we got hit by an SMI as well. 490 */ 491 if (pitcnt < loopmin || tscmax > 10 * tscmin) 492 return ULONG_MAX; 493 494 /* Calculate the PIT value */ 495 delta = t2 - t1; 496 do_div(delta, ms); 497 return delta; 498 } 499 500 /* 501 * This reads the current MSB of the PIT counter, and 502 * checks if we are running on sufficiently fast and 503 * non-virtualized hardware. 504 * 505 * Our expectations are: 506 * 507 * - the PIT is running at roughly 1.19MHz 508 * 509 * - each IO is going to take about 1us on real hardware, 510 * but we allow it to be much faster (by a factor of 10) or 511 * _slightly_ slower (ie we allow up to a 2us read+counter 512 * update - anything else implies a unacceptably slow CPU 513 * or PIT for the fast calibration to work. 514 * 515 * - with 256 PIT ticks to read the value, we have 214us to 516 * see the same MSB (and overhead like doing a single TSC 517 * read per MSB value etc). 518 * 519 * - We're doing 2 reads per loop (LSB, MSB), and we expect 520 * them each to take about a microsecond on real hardware. 521 * So we expect a count value of around 100. But we'll be 522 * generous, and accept anything over 50. 523 * 524 * - if the PIT is stuck, and we see *many* more reads, we 525 * return early (and the next caller of pit_expect_msb() 526 * then consider it a failure when they don't see the 527 * next expected value). 528 * 529 * These expectations mean that we know that we have seen the 530 * transition from one expected value to another with a fairly 531 * high accuracy, and we didn't miss any events. We can thus 532 * use the TSC value at the transitions to calculate a pretty 533 * good value for the TSC frequencty. 534 */ 535 static inline int pit_verify_msb(unsigned char val) 536 { 537 /* Ignore LSB */ 538 inb(0x42); 539 return inb(0x42) == val; 540 } 541 542 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 543 { 544 int count; 545 u64 tsc = 0, prev_tsc = 0; 546 547 for (count = 0; count < 50000; count++) { 548 if (!pit_verify_msb(val)) 549 break; 550 prev_tsc = tsc; 551 tsc = get_cycles(); 552 } 553 *deltap = get_cycles() - prev_tsc; 554 *tscp = tsc; 555 556 /* 557 * We require _some_ success, but the quality control 558 * will be based on the error terms on the TSC values. 559 */ 560 return count > 5; 561 } 562 563 /* 564 * How many MSB values do we want to see? We aim for 565 * a maximum error rate of 500ppm (in practice the 566 * real error is much smaller), but refuse to spend 567 * more than 50ms on it. 568 */ 569 #define MAX_QUICK_PIT_MS 50 570 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 571 572 static unsigned long quick_pit_calibrate(void) 573 { 574 int i; 575 u64 tsc, delta; 576 unsigned long d1, d2; 577 578 /* Set the Gate high, disable speaker */ 579 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 580 581 /* 582 * Counter 2, mode 0 (one-shot), binary count 583 * 584 * NOTE! Mode 2 decrements by two (and then the 585 * output is flipped each time, giving the same 586 * final output frequency as a decrement-by-one), 587 * so mode 0 is much better when looking at the 588 * individual counts. 589 */ 590 outb(0xb0, 0x43); 591 592 /* Start at 0xffff */ 593 outb(0xff, 0x42); 594 outb(0xff, 0x42); 595 596 /* 597 * The PIT starts counting at the next edge, so we 598 * need to delay for a microsecond. The easiest way 599 * to do that is to just read back the 16-bit counter 600 * once from the PIT. 601 */ 602 pit_verify_msb(0); 603 604 if (pit_expect_msb(0xff, &tsc, &d1)) { 605 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 606 if (!pit_expect_msb(0xff-i, &delta, &d2)) 607 break; 608 609 delta -= tsc; 610 611 /* 612 * Extrapolate the error and fail fast if the error will 613 * never be below 500 ppm. 614 */ 615 if (i == 1 && 616 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 617 return 0; 618 619 /* 620 * Iterate until the error is less than 500 ppm 621 */ 622 if (d1+d2 >= delta >> 11) 623 continue; 624 625 /* 626 * Check the PIT one more time to verify that 627 * all TSC reads were stable wrt the PIT. 628 * 629 * This also guarantees serialization of the 630 * last cycle read ('d2') in pit_expect_msb. 631 */ 632 if (!pit_verify_msb(0xfe - i)) 633 break; 634 goto success; 635 } 636 } 637 pr_info("Fast TSC calibration failed\n"); 638 return 0; 639 640 success: 641 /* 642 * Ok, if we get here, then we've seen the 643 * MSB of the PIT decrement 'i' times, and the 644 * error has shrunk to less than 500 ppm. 645 * 646 * As a result, we can depend on there not being 647 * any odd delays anywhere, and the TSC reads are 648 * reliable (within the error). 649 * 650 * kHz = ticks / time-in-seconds / 1000; 651 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 652 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 653 */ 654 delta *= PIT_TICK_RATE; 655 do_div(delta, i*256*1000); 656 pr_info("Fast TSC calibration using PIT\n"); 657 return delta; 658 } 659 660 /** 661 * native_calibrate_tsc - calibrate the tsc on boot 662 */ 663 unsigned long native_calibrate_tsc(void) 664 { 665 u64 tsc1, tsc2, delta, ref1, ref2; 666 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 667 unsigned long flags, latch, ms, fast_calibrate; 668 int hpet = is_hpet_enabled(), i, loopmin; 669 670 /* Calibrate TSC using MSR for Intel Atom SoCs */ 671 local_irq_save(flags); 672 fast_calibrate = try_msr_calibrate_tsc(); 673 local_irq_restore(flags); 674 if (fast_calibrate) 675 return fast_calibrate; 676 677 local_irq_save(flags); 678 fast_calibrate = quick_pit_calibrate(); 679 local_irq_restore(flags); 680 if (fast_calibrate) 681 return fast_calibrate; 682 683 /* 684 * Run 5 calibration loops to get the lowest frequency value 685 * (the best estimate). We use two different calibration modes 686 * here: 687 * 688 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 689 * load a timeout of 50ms. We read the time right after we 690 * started the timer and wait until the PIT count down reaches 691 * zero. In each wait loop iteration we read the TSC and check 692 * the delta to the previous read. We keep track of the min 693 * and max values of that delta. The delta is mostly defined 694 * by the IO time of the PIT access, so we can detect when a 695 * SMI/SMM disturbance happened between the two reads. If the 696 * maximum time is significantly larger than the minimum time, 697 * then we discard the result and have another try. 698 * 699 * 2) Reference counter. If available we use the HPET or the 700 * PMTIMER as a reference to check the sanity of that value. 701 * We use separate TSC readouts and check inside of the 702 * reference read for a SMI/SMM disturbance. We dicard 703 * disturbed values here as well. We do that around the PIT 704 * calibration delay loop as we have to wait for a certain 705 * amount of time anyway. 706 */ 707 708 /* Preset PIT loop values */ 709 latch = CAL_LATCH; 710 ms = CAL_MS; 711 loopmin = CAL_PIT_LOOPS; 712 713 for (i = 0; i < 3; i++) { 714 unsigned long tsc_pit_khz; 715 716 /* 717 * Read the start value and the reference count of 718 * hpet/pmtimer when available. Then do the PIT 719 * calibration, which will take at least 50ms, and 720 * read the end value. 721 */ 722 local_irq_save(flags); 723 tsc1 = tsc_read_refs(&ref1, hpet); 724 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 725 tsc2 = tsc_read_refs(&ref2, hpet); 726 local_irq_restore(flags); 727 728 /* Pick the lowest PIT TSC calibration so far */ 729 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 730 731 /* hpet or pmtimer available ? */ 732 if (ref1 == ref2) 733 continue; 734 735 /* Check, whether the sampling was disturbed by an SMI */ 736 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 737 continue; 738 739 tsc2 = (tsc2 - tsc1) * 1000000LL; 740 if (hpet) 741 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 742 else 743 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 744 745 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 746 747 /* Check the reference deviation */ 748 delta = ((u64) tsc_pit_min) * 100; 749 do_div(delta, tsc_ref_min); 750 751 /* 752 * If both calibration results are inside a 10% window 753 * then we can be sure, that the calibration 754 * succeeded. We break out of the loop right away. We 755 * use the reference value, as it is more precise. 756 */ 757 if (delta >= 90 && delta <= 110) { 758 pr_info("PIT calibration matches %s. %d loops\n", 759 hpet ? "HPET" : "PMTIMER", i + 1); 760 return tsc_ref_min; 761 } 762 763 /* 764 * Check whether PIT failed more than once. This 765 * happens in virtualized environments. We need to 766 * give the virtual PC a slightly longer timeframe for 767 * the HPET/PMTIMER to make the result precise. 768 */ 769 if (i == 1 && tsc_pit_min == ULONG_MAX) { 770 latch = CAL2_LATCH; 771 ms = CAL2_MS; 772 loopmin = CAL2_PIT_LOOPS; 773 } 774 } 775 776 /* 777 * Now check the results. 778 */ 779 if (tsc_pit_min == ULONG_MAX) { 780 /* PIT gave no useful value */ 781 pr_warn("Unable to calibrate against PIT\n"); 782 783 /* We don't have an alternative source, disable TSC */ 784 if (!hpet && !ref1 && !ref2) { 785 pr_notice("No reference (HPET/PMTIMER) available\n"); 786 return 0; 787 } 788 789 /* The alternative source failed as well, disable TSC */ 790 if (tsc_ref_min == ULONG_MAX) { 791 pr_warn("HPET/PMTIMER calibration failed\n"); 792 return 0; 793 } 794 795 /* Use the alternative source */ 796 pr_info("using %s reference calibration\n", 797 hpet ? "HPET" : "PMTIMER"); 798 799 return tsc_ref_min; 800 } 801 802 /* We don't have an alternative source, use the PIT calibration value */ 803 if (!hpet && !ref1 && !ref2) { 804 pr_info("Using PIT calibration value\n"); 805 return tsc_pit_min; 806 } 807 808 /* The alternative source failed, use the PIT calibration value */ 809 if (tsc_ref_min == ULONG_MAX) { 810 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 811 return tsc_pit_min; 812 } 813 814 /* 815 * The calibration values differ too much. In doubt, we use 816 * the PIT value as we know that there are PMTIMERs around 817 * running at double speed. At least we let the user know: 818 */ 819 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 820 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 821 pr_info("Using PIT calibration value\n"); 822 return tsc_pit_min; 823 } 824 825 int recalibrate_cpu_khz(void) 826 { 827 #ifndef CONFIG_SMP 828 unsigned long cpu_khz_old = cpu_khz; 829 830 if (cpu_has_tsc) { 831 tsc_khz = x86_platform.calibrate_tsc(); 832 cpu_khz = tsc_khz; 833 cpu_data(0).loops_per_jiffy = 834 cpufreq_scale(cpu_data(0).loops_per_jiffy, 835 cpu_khz_old, cpu_khz); 836 return 0; 837 } else 838 return -ENODEV; 839 #else 840 return -ENODEV; 841 #endif 842 } 843 844 EXPORT_SYMBOL(recalibrate_cpu_khz); 845 846 847 static unsigned long long cyc2ns_suspend; 848 849 void tsc_save_sched_clock_state(void) 850 { 851 if (!sched_clock_stable()) 852 return; 853 854 cyc2ns_suspend = sched_clock(); 855 } 856 857 /* 858 * Even on processors with invariant TSC, TSC gets reset in some the 859 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 860 * arbitrary value (still sync'd across cpu's) during resume from such sleep 861 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 862 * that sched_clock() continues from the point where it was left off during 863 * suspend. 864 */ 865 void tsc_restore_sched_clock_state(void) 866 { 867 unsigned long long offset; 868 unsigned long flags; 869 int cpu; 870 871 if (!sched_clock_stable()) 872 return; 873 874 local_irq_save(flags); 875 876 /* 877 * We're comming out of suspend, there's no concurrency yet; don't 878 * bother being nice about the RCU stuff, just write to both 879 * data fields. 880 */ 881 882 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 883 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 884 885 offset = cyc2ns_suspend - sched_clock(); 886 887 for_each_possible_cpu(cpu) { 888 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 889 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 890 } 891 892 local_irq_restore(flags); 893 } 894 895 #ifdef CONFIG_CPU_FREQ 896 897 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 898 * changes. 899 * 900 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 901 * not that important because current Opteron setups do not support 902 * scaling on SMP anyroads. 903 * 904 * Should fix up last_tsc too. Currently gettimeofday in the 905 * first tick after the change will be slightly wrong. 906 */ 907 908 static unsigned int ref_freq; 909 static unsigned long loops_per_jiffy_ref; 910 static unsigned long tsc_khz_ref; 911 912 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 913 void *data) 914 { 915 struct cpufreq_freqs *freq = data; 916 unsigned long *lpj; 917 918 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) 919 return 0; 920 921 lpj = &boot_cpu_data.loops_per_jiffy; 922 #ifdef CONFIG_SMP 923 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 924 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 925 #endif 926 927 if (!ref_freq) { 928 ref_freq = freq->old; 929 loops_per_jiffy_ref = *lpj; 930 tsc_khz_ref = tsc_khz; 931 } 932 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 933 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 934 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 935 936 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 937 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 938 mark_tsc_unstable("cpufreq changes"); 939 940 set_cyc2ns_scale(tsc_khz, freq->cpu); 941 } 942 943 return 0; 944 } 945 946 static struct notifier_block time_cpufreq_notifier_block = { 947 .notifier_call = time_cpufreq_notifier 948 }; 949 950 static int __init cpufreq_tsc(void) 951 { 952 if (!cpu_has_tsc) 953 return 0; 954 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 955 return 0; 956 cpufreq_register_notifier(&time_cpufreq_notifier_block, 957 CPUFREQ_TRANSITION_NOTIFIER); 958 return 0; 959 } 960 961 core_initcall(cpufreq_tsc); 962 963 #endif /* CONFIG_CPU_FREQ */ 964 965 /* clocksource code */ 966 967 static struct clocksource clocksource_tsc; 968 969 /* 970 * We used to compare the TSC to the cycle_last value in the clocksource 971 * structure to avoid a nasty time-warp. This can be observed in a 972 * very small window right after one CPU updated cycle_last under 973 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 974 * is smaller than the cycle_last reference value due to a TSC which 975 * is slighty behind. This delta is nowhere else observable, but in 976 * that case it results in a forward time jump in the range of hours 977 * due to the unsigned delta calculation of the time keeping core 978 * code, which is necessary to support wrapping clocksources like pm 979 * timer. 980 * 981 * This sanity check is now done in the core timekeeping code. 982 * checking the result of read_tsc() - cycle_last for being negative. 983 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 984 */ 985 static cycle_t read_tsc(struct clocksource *cs) 986 { 987 return (cycle_t)get_cycles(); 988 } 989 990 /* 991 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 992 */ 993 static struct clocksource clocksource_tsc = { 994 .name = "tsc", 995 .rating = 300, 996 .read = read_tsc, 997 .mask = CLOCKSOURCE_MASK(64), 998 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 999 CLOCK_SOURCE_MUST_VERIFY, 1000 .archdata = { .vclock_mode = VCLOCK_TSC }, 1001 }; 1002 1003 void mark_tsc_unstable(char *reason) 1004 { 1005 if (!tsc_unstable) { 1006 tsc_unstable = 1; 1007 clear_sched_clock_stable(); 1008 disable_sched_clock_irqtime(); 1009 pr_info("Marking TSC unstable due to %s\n", reason); 1010 /* Change only the rating, when not registered */ 1011 if (clocksource_tsc.mult) 1012 clocksource_mark_unstable(&clocksource_tsc); 1013 else { 1014 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1015 clocksource_tsc.rating = 0; 1016 } 1017 } 1018 } 1019 1020 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1021 1022 static void __init check_system_tsc_reliable(void) 1023 { 1024 #ifdef CONFIG_MGEODE_LX 1025 /* RTSC counts during suspend */ 1026 #define RTSC_SUSP 0x100 1027 unsigned long res_low, res_high; 1028 1029 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1030 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1031 if (res_low & RTSC_SUSP) 1032 tsc_clocksource_reliable = 1; 1033 #endif 1034 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1035 tsc_clocksource_reliable = 1; 1036 } 1037 1038 /* 1039 * Make an educated guess if the TSC is trustworthy and synchronized 1040 * over all CPUs. 1041 */ 1042 int unsynchronized_tsc(void) 1043 { 1044 if (!cpu_has_tsc || tsc_unstable) 1045 return 1; 1046 1047 #ifdef CONFIG_SMP 1048 if (apic_is_clustered_box()) 1049 return 1; 1050 #endif 1051 1052 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1053 return 0; 1054 1055 if (tsc_clocksource_reliable) 1056 return 0; 1057 /* 1058 * Intel systems are normally all synchronized. 1059 * Exceptions must mark TSC as unstable: 1060 */ 1061 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1062 /* assume multi socket systems are not synchronized: */ 1063 if (num_possible_cpus() > 1) 1064 return 1; 1065 } 1066 1067 return 0; 1068 } 1069 1070 1071 static void tsc_refine_calibration_work(struct work_struct *work); 1072 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1073 /** 1074 * tsc_refine_calibration_work - Further refine tsc freq calibration 1075 * @work - ignored. 1076 * 1077 * This functions uses delayed work over a period of a 1078 * second to further refine the TSC freq value. Since this is 1079 * timer based, instead of loop based, we don't block the boot 1080 * process while this longer calibration is done. 1081 * 1082 * If there are any calibration anomalies (too many SMIs, etc), 1083 * or the refined calibration is off by 1% of the fast early 1084 * calibration, we throw out the new calibration and use the 1085 * early calibration. 1086 */ 1087 static void tsc_refine_calibration_work(struct work_struct *work) 1088 { 1089 static u64 tsc_start = -1, ref_start; 1090 static int hpet; 1091 u64 tsc_stop, ref_stop, delta; 1092 unsigned long freq; 1093 1094 /* Don't bother refining TSC on unstable systems */ 1095 if (check_tsc_unstable()) 1096 goto out; 1097 1098 /* 1099 * Since the work is started early in boot, we may be 1100 * delayed the first time we expire. So set the workqueue 1101 * again once we know timers are working. 1102 */ 1103 if (tsc_start == -1) { 1104 /* 1105 * Only set hpet once, to avoid mixing hardware 1106 * if the hpet becomes enabled later. 1107 */ 1108 hpet = is_hpet_enabled(); 1109 schedule_delayed_work(&tsc_irqwork, HZ); 1110 tsc_start = tsc_read_refs(&ref_start, hpet); 1111 return; 1112 } 1113 1114 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1115 1116 /* hpet or pmtimer available ? */ 1117 if (ref_start == ref_stop) 1118 goto out; 1119 1120 /* Check, whether the sampling was disturbed by an SMI */ 1121 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1122 goto out; 1123 1124 delta = tsc_stop - tsc_start; 1125 delta *= 1000000LL; 1126 if (hpet) 1127 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1128 else 1129 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1130 1131 /* Make sure we're within 1% */ 1132 if (abs(tsc_khz - freq) > tsc_khz/100) 1133 goto out; 1134 1135 tsc_khz = freq; 1136 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1137 (unsigned long)tsc_khz / 1000, 1138 (unsigned long)tsc_khz % 1000); 1139 1140 out: 1141 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1142 } 1143 1144 1145 static int __init init_tsc_clocksource(void) 1146 { 1147 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz) 1148 return 0; 1149 1150 if (tsc_clocksource_reliable) 1151 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1152 /* lower the rating if we already know its unstable: */ 1153 if (check_tsc_unstable()) { 1154 clocksource_tsc.rating = 0; 1155 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1156 } 1157 1158 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1159 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1160 1161 /* 1162 * Trust the results of the earlier calibration on systems 1163 * exporting a reliable TSC. 1164 */ 1165 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 1166 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1167 return 0; 1168 } 1169 1170 schedule_delayed_work(&tsc_irqwork, 0); 1171 return 0; 1172 } 1173 /* 1174 * We use device_initcall here, to ensure we run after the hpet 1175 * is fully initialized, which may occur at fs_initcall time. 1176 */ 1177 device_initcall(init_tsc_clocksource); 1178 1179 void __init tsc_init(void) 1180 { 1181 u64 lpj; 1182 int cpu; 1183 1184 x86_init.timers.tsc_pre_init(); 1185 1186 if (!cpu_has_tsc) { 1187 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1188 return; 1189 } 1190 1191 tsc_khz = x86_platform.calibrate_tsc(); 1192 cpu_khz = tsc_khz; 1193 1194 if (!tsc_khz) { 1195 mark_tsc_unstable("could not calculate TSC khz"); 1196 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1197 return; 1198 } 1199 1200 pr_info("Detected %lu.%03lu MHz processor\n", 1201 (unsigned long)cpu_khz / 1000, 1202 (unsigned long)cpu_khz % 1000); 1203 1204 /* 1205 * Secondary CPUs do not run through tsc_init(), so set up 1206 * all the scale factors for all CPUs, assuming the same 1207 * speed as the bootup CPU. (cpufreq notifiers will fix this 1208 * up if their speed diverges) 1209 */ 1210 for_each_possible_cpu(cpu) { 1211 cyc2ns_init(cpu); 1212 set_cyc2ns_scale(cpu_khz, cpu); 1213 } 1214 1215 if (tsc_disabled > 0) 1216 return; 1217 1218 /* now allow native_sched_clock() to use rdtsc */ 1219 1220 tsc_disabled = 0; 1221 static_key_slow_inc(&__use_tsc); 1222 1223 if (!no_sched_irq_time) 1224 enable_sched_clock_irqtime(); 1225 1226 lpj = ((u64)tsc_khz * 1000); 1227 do_div(lpj, HZ); 1228 lpj_fine = lpj; 1229 1230 use_tsc_delay(); 1231 1232 if (unsynchronized_tsc()) 1233 mark_tsc_unstable("TSCs unsynchronized"); 1234 1235 check_system_tsc_reliable(); 1236 } 1237 1238 #ifdef CONFIG_SMP 1239 /* 1240 * If we have a constant TSC and are using the TSC for the delay loop, 1241 * we can skip clock calibration if another cpu in the same socket has already 1242 * been calibrated. This assumes that CONSTANT_TSC applies to all 1243 * cpus in the socket - this should be a safe assumption. 1244 */ 1245 unsigned long calibrate_delay_is_known(void) 1246 { 1247 int i, cpu = smp_processor_id(); 1248 1249 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1250 return 0; 1251 1252 for_each_online_cpu(i) 1253 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id) 1254 return cpu_data(i).loops_per_jiffy; 1255 return 0; 1256 } 1257 #endif 1258