1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 #include <linux/static_key.h> 15 16 #include <asm/hpet.h> 17 #include <asm/timer.h> 18 #include <asm/vgtod.h> 19 #include <asm/time.h> 20 #include <asm/delay.h> 21 #include <asm/hypervisor.h> 22 #include <asm/nmi.h> 23 #include <asm/x86_init.h> 24 25 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 26 EXPORT_SYMBOL(cpu_khz); 27 28 unsigned int __read_mostly tsc_khz; 29 EXPORT_SYMBOL(tsc_khz); 30 31 /* 32 * TSC can be unstable due to cpufreq or due to unsynced TSCs 33 */ 34 static int __read_mostly tsc_unstable; 35 36 /* native_sched_clock() is called before tsc_init(), so 37 we must start with the TSC soft disabled to prevent 38 erroneous rdtsc usage on !cpu_has_tsc processors */ 39 static int __read_mostly tsc_disabled = -1; 40 41 static struct static_key __use_tsc = STATIC_KEY_INIT; 42 43 int tsc_clocksource_reliable; 44 45 /* 46 * Use a ring-buffer like data structure, where a writer advances the head by 47 * writing a new data entry and a reader advances the tail when it observes a 48 * new entry. 49 * 50 * Writers are made to wait on readers until there's space to write a new 51 * entry. 52 * 53 * This means that we can always use an {offset, mul} pair to compute a ns 54 * value that is 'roughly' in the right direction, even if we're writing a new 55 * {offset, mul} pair during the clock read. 56 * 57 * The down-side is that we can no longer guarantee strict monotonicity anymore 58 * (assuming the TSC was that to begin with), because while we compute the 59 * intersection point of the two clock slopes and make sure the time is 60 * continuous at the point of switching; we can no longer guarantee a reader is 61 * strictly before or after the switch point. 62 * 63 * It does mean a reader no longer needs to disable IRQs in order to avoid 64 * CPU-Freq updates messing with his times, and similarly an NMI reader will 65 * no longer run the risk of hitting half-written state. 66 */ 67 68 struct cyc2ns { 69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 70 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 72 }; /* exactly fits one cacheline */ 73 74 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 75 76 struct cyc2ns_data *cyc2ns_read_begin(void) 77 { 78 struct cyc2ns_data *head; 79 80 preempt_disable(); 81 82 head = this_cpu_read(cyc2ns.head); 83 /* 84 * Ensure we observe the entry when we observe the pointer to it. 85 * matches the wmb from cyc2ns_write_end(). 86 */ 87 smp_read_barrier_depends(); 88 head->__count++; 89 barrier(); 90 91 return head; 92 } 93 94 void cyc2ns_read_end(struct cyc2ns_data *head) 95 { 96 barrier(); 97 /* 98 * If we're the outer most nested read; update the tail pointer 99 * when we're done. This notifies possible pending writers 100 * that we've observed the head pointer and that the other 101 * entry is now free. 102 */ 103 if (!--head->__count) { 104 /* 105 * x86-TSO does not reorder writes with older reads; 106 * therefore once this write becomes visible to another 107 * cpu, we must be finished reading the cyc2ns_data. 108 * 109 * matches with cyc2ns_write_begin(). 110 */ 111 this_cpu_write(cyc2ns.tail, head); 112 } 113 preempt_enable(); 114 } 115 116 /* 117 * Begin writing a new @data entry for @cpu. 118 * 119 * Assumes some sort of write side lock; currently 'provided' by the assumption 120 * that cpufreq will call its notifiers sequentially. 121 */ 122 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 123 { 124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 125 struct cyc2ns_data *data = c2n->data; 126 127 if (data == c2n->head) 128 data++; 129 130 /* XXX send an IPI to @cpu in order to guarantee a read? */ 131 132 /* 133 * When we observe the tail write from cyc2ns_read_end(), 134 * the cpu must be done with that entry and its safe 135 * to start writing to it. 136 */ 137 while (c2n->tail == data) 138 cpu_relax(); 139 140 return data; 141 } 142 143 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 144 { 145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 146 147 /* 148 * Ensure the @data writes are visible before we publish the 149 * entry. Matches the data-depencency in cyc2ns_read_begin(). 150 */ 151 smp_wmb(); 152 153 ACCESS_ONCE(c2n->head) = data; 154 } 155 156 /* 157 * Accelerators for sched_clock() 158 * convert from cycles(64bits) => nanoseconds (64bits) 159 * basic equation: 160 * ns = cycles / (freq / ns_per_sec) 161 * ns = cycles * (ns_per_sec / freq) 162 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 163 * ns = cycles * (10^6 / cpu_khz) 164 * 165 * Then we use scaling math (suggested by george@mvista.com) to get: 166 * ns = cycles * (10^6 * SC / cpu_khz) / SC 167 * ns = cycles * cyc2ns_scale / SC 168 * 169 * And since SC is a constant power of two, we can convert the div 170 * into a shift. 171 * 172 * We can use khz divisor instead of mhz to keep a better precision, since 173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. 174 * (mathieu.desnoyers@polymtl.ca) 175 * 176 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 177 */ 178 179 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ 180 181 static void cyc2ns_data_init(struct cyc2ns_data *data) 182 { 183 data->cyc2ns_mul = 0; 184 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; 185 data->cyc2ns_offset = 0; 186 data->__count = 0; 187 } 188 189 static void cyc2ns_init(int cpu) 190 { 191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 192 193 cyc2ns_data_init(&c2n->data[0]); 194 cyc2ns_data_init(&c2n->data[1]); 195 196 c2n->head = c2n->data; 197 c2n->tail = c2n->data; 198 } 199 200 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 201 { 202 struct cyc2ns_data *data, *tail; 203 unsigned long long ns; 204 205 /* 206 * See cyc2ns_read_*() for details; replicated in order to avoid 207 * an extra few instructions that came with the abstraction. 208 * Notable, it allows us to only do the __count and tail update 209 * dance when its actually needed. 210 */ 211 212 preempt_disable_notrace(); 213 data = this_cpu_read(cyc2ns.head); 214 tail = this_cpu_read(cyc2ns.tail); 215 216 if (likely(data == tail)) { 217 ns = data->cyc2ns_offset; 218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 219 } else { 220 data->__count++; 221 222 barrier(); 223 224 ns = data->cyc2ns_offset; 225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 226 227 barrier(); 228 229 if (!--data->__count) 230 this_cpu_write(cyc2ns.tail, data); 231 } 232 preempt_enable_notrace(); 233 234 return ns; 235 } 236 237 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 238 { 239 unsigned long long tsc_now, ns_now; 240 struct cyc2ns_data *data; 241 unsigned long flags; 242 243 local_irq_save(flags); 244 sched_clock_idle_sleep_event(); 245 246 if (!cpu_khz) 247 goto done; 248 249 data = cyc2ns_write_begin(cpu); 250 251 rdtscll(tsc_now); 252 ns_now = cycles_2_ns(tsc_now); 253 254 /* 255 * Compute a new multiplier as per the above comment and ensure our 256 * time function is continuous; see the comment near struct 257 * cyc2ns_data. 258 */ 259 data->cyc2ns_mul = 260 DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, 261 cpu_khz); 262 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; 263 data->cyc2ns_offset = ns_now - 264 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); 265 266 cyc2ns_write_end(cpu, data); 267 268 done: 269 sched_clock_idle_wakeup_event(0); 270 local_irq_restore(flags); 271 } 272 /* 273 * Scheduler clock - returns current time in nanosec units. 274 */ 275 u64 native_sched_clock(void) 276 { 277 u64 tsc_now; 278 279 /* 280 * Fall back to jiffies if there's no TSC available: 281 * ( But note that we still use it if the TSC is marked 282 * unstable. We do this because unlike Time Of Day, 283 * the scheduler clock tolerates small errors and it's 284 * very important for it to be as fast as the platform 285 * can achieve it. ) 286 */ 287 if (!static_key_false(&__use_tsc)) { 288 /* No locking but a rare wrong value is not a big deal: */ 289 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 290 } 291 292 /* read the Time Stamp Counter: */ 293 rdtscll(tsc_now); 294 295 /* return the value in ns */ 296 return cycles_2_ns(tsc_now); 297 } 298 299 /* We need to define a real function for sched_clock, to override the 300 weak default version */ 301 #ifdef CONFIG_PARAVIRT 302 unsigned long long sched_clock(void) 303 { 304 return paravirt_sched_clock(); 305 } 306 #else 307 unsigned long long 308 sched_clock(void) __attribute__((alias("native_sched_clock"))); 309 #endif 310 311 unsigned long long native_read_tsc(void) 312 { 313 return __native_read_tsc(); 314 } 315 EXPORT_SYMBOL(native_read_tsc); 316 317 int check_tsc_unstable(void) 318 { 319 return tsc_unstable; 320 } 321 EXPORT_SYMBOL_GPL(check_tsc_unstable); 322 323 int check_tsc_disabled(void) 324 { 325 return tsc_disabled; 326 } 327 EXPORT_SYMBOL_GPL(check_tsc_disabled); 328 329 #ifdef CONFIG_X86_TSC 330 int __init notsc_setup(char *str) 331 { 332 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 333 tsc_disabled = 1; 334 return 1; 335 } 336 #else 337 /* 338 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 339 * in cpu/common.c 340 */ 341 int __init notsc_setup(char *str) 342 { 343 setup_clear_cpu_cap(X86_FEATURE_TSC); 344 return 1; 345 } 346 #endif 347 348 __setup("notsc", notsc_setup); 349 350 static int no_sched_irq_time; 351 352 static int __init tsc_setup(char *str) 353 { 354 if (!strcmp(str, "reliable")) 355 tsc_clocksource_reliable = 1; 356 if (!strncmp(str, "noirqtime", 9)) 357 no_sched_irq_time = 1; 358 return 1; 359 } 360 361 __setup("tsc=", tsc_setup); 362 363 #define MAX_RETRIES 5 364 #define SMI_TRESHOLD 50000 365 366 /* 367 * Read TSC and the reference counters. Take care of SMI disturbance 368 */ 369 static u64 tsc_read_refs(u64 *p, int hpet) 370 { 371 u64 t1, t2; 372 int i; 373 374 for (i = 0; i < MAX_RETRIES; i++) { 375 t1 = get_cycles(); 376 if (hpet) 377 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 378 else 379 *p = acpi_pm_read_early(); 380 t2 = get_cycles(); 381 if ((t2 - t1) < SMI_TRESHOLD) 382 return t2; 383 } 384 return ULLONG_MAX; 385 } 386 387 /* 388 * Calculate the TSC frequency from HPET reference 389 */ 390 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 391 { 392 u64 tmp; 393 394 if (hpet2 < hpet1) 395 hpet2 += 0x100000000ULL; 396 hpet2 -= hpet1; 397 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 398 do_div(tmp, 1000000); 399 do_div(deltatsc, tmp); 400 401 return (unsigned long) deltatsc; 402 } 403 404 /* 405 * Calculate the TSC frequency from PMTimer reference 406 */ 407 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 408 { 409 u64 tmp; 410 411 if (!pm1 && !pm2) 412 return ULONG_MAX; 413 414 if (pm2 < pm1) 415 pm2 += (u64)ACPI_PM_OVRRUN; 416 pm2 -= pm1; 417 tmp = pm2 * 1000000000LL; 418 do_div(tmp, PMTMR_TICKS_PER_SEC); 419 do_div(deltatsc, tmp); 420 421 return (unsigned long) deltatsc; 422 } 423 424 #define CAL_MS 10 425 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 426 #define CAL_PIT_LOOPS 1000 427 428 #define CAL2_MS 50 429 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 430 #define CAL2_PIT_LOOPS 5000 431 432 433 /* 434 * Try to calibrate the TSC against the Programmable 435 * Interrupt Timer and return the frequency of the TSC 436 * in kHz. 437 * 438 * Return ULONG_MAX on failure to calibrate. 439 */ 440 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 441 { 442 u64 tsc, t1, t2, delta; 443 unsigned long tscmin, tscmax; 444 int pitcnt; 445 446 /* Set the Gate high, disable speaker */ 447 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 448 449 /* 450 * Setup CTC channel 2* for mode 0, (interrupt on terminal 451 * count mode), binary count. Set the latch register to 50ms 452 * (LSB then MSB) to begin countdown. 453 */ 454 outb(0xb0, 0x43); 455 outb(latch & 0xff, 0x42); 456 outb(latch >> 8, 0x42); 457 458 tsc = t1 = t2 = get_cycles(); 459 460 pitcnt = 0; 461 tscmax = 0; 462 tscmin = ULONG_MAX; 463 while ((inb(0x61) & 0x20) == 0) { 464 t2 = get_cycles(); 465 delta = t2 - tsc; 466 tsc = t2; 467 if ((unsigned long) delta < tscmin) 468 tscmin = (unsigned int) delta; 469 if ((unsigned long) delta > tscmax) 470 tscmax = (unsigned int) delta; 471 pitcnt++; 472 } 473 474 /* 475 * Sanity checks: 476 * 477 * If we were not able to read the PIT more than loopmin 478 * times, then we have been hit by a massive SMI 479 * 480 * If the maximum is 10 times larger than the minimum, 481 * then we got hit by an SMI as well. 482 */ 483 if (pitcnt < loopmin || tscmax > 10 * tscmin) 484 return ULONG_MAX; 485 486 /* Calculate the PIT value */ 487 delta = t2 - t1; 488 do_div(delta, ms); 489 return delta; 490 } 491 492 /* 493 * This reads the current MSB of the PIT counter, and 494 * checks if we are running on sufficiently fast and 495 * non-virtualized hardware. 496 * 497 * Our expectations are: 498 * 499 * - the PIT is running at roughly 1.19MHz 500 * 501 * - each IO is going to take about 1us on real hardware, 502 * but we allow it to be much faster (by a factor of 10) or 503 * _slightly_ slower (ie we allow up to a 2us read+counter 504 * update - anything else implies a unacceptably slow CPU 505 * or PIT for the fast calibration to work. 506 * 507 * - with 256 PIT ticks to read the value, we have 214us to 508 * see the same MSB (and overhead like doing a single TSC 509 * read per MSB value etc). 510 * 511 * - We're doing 2 reads per loop (LSB, MSB), and we expect 512 * them each to take about a microsecond on real hardware. 513 * So we expect a count value of around 100. But we'll be 514 * generous, and accept anything over 50. 515 * 516 * - if the PIT is stuck, and we see *many* more reads, we 517 * return early (and the next caller of pit_expect_msb() 518 * then consider it a failure when they don't see the 519 * next expected value). 520 * 521 * These expectations mean that we know that we have seen the 522 * transition from one expected value to another with a fairly 523 * high accuracy, and we didn't miss any events. We can thus 524 * use the TSC value at the transitions to calculate a pretty 525 * good value for the TSC frequencty. 526 */ 527 static inline int pit_verify_msb(unsigned char val) 528 { 529 /* Ignore LSB */ 530 inb(0x42); 531 return inb(0x42) == val; 532 } 533 534 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 535 { 536 int count; 537 u64 tsc = 0, prev_tsc = 0; 538 539 for (count = 0; count < 50000; count++) { 540 if (!pit_verify_msb(val)) 541 break; 542 prev_tsc = tsc; 543 tsc = get_cycles(); 544 } 545 *deltap = get_cycles() - prev_tsc; 546 *tscp = tsc; 547 548 /* 549 * We require _some_ success, but the quality control 550 * will be based on the error terms on the TSC values. 551 */ 552 return count > 5; 553 } 554 555 /* 556 * How many MSB values do we want to see? We aim for 557 * a maximum error rate of 500ppm (in practice the 558 * real error is much smaller), but refuse to spend 559 * more than 50ms on it. 560 */ 561 #define MAX_QUICK_PIT_MS 50 562 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 563 564 static unsigned long quick_pit_calibrate(void) 565 { 566 int i; 567 u64 tsc, delta; 568 unsigned long d1, d2; 569 570 /* Set the Gate high, disable speaker */ 571 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 572 573 /* 574 * Counter 2, mode 0 (one-shot), binary count 575 * 576 * NOTE! Mode 2 decrements by two (and then the 577 * output is flipped each time, giving the same 578 * final output frequency as a decrement-by-one), 579 * so mode 0 is much better when looking at the 580 * individual counts. 581 */ 582 outb(0xb0, 0x43); 583 584 /* Start at 0xffff */ 585 outb(0xff, 0x42); 586 outb(0xff, 0x42); 587 588 /* 589 * The PIT starts counting at the next edge, so we 590 * need to delay for a microsecond. The easiest way 591 * to do that is to just read back the 16-bit counter 592 * once from the PIT. 593 */ 594 pit_verify_msb(0); 595 596 if (pit_expect_msb(0xff, &tsc, &d1)) { 597 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 598 if (!pit_expect_msb(0xff-i, &delta, &d2)) 599 break; 600 601 delta -= tsc; 602 603 /* 604 * Extrapolate the error and fail fast if the error will 605 * never be below 500 ppm. 606 */ 607 if (i == 1 && 608 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 609 return 0; 610 611 /* 612 * Iterate until the error is less than 500 ppm 613 */ 614 if (d1+d2 >= delta >> 11) 615 continue; 616 617 /* 618 * Check the PIT one more time to verify that 619 * all TSC reads were stable wrt the PIT. 620 * 621 * This also guarantees serialization of the 622 * last cycle read ('d2') in pit_expect_msb. 623 */ 624 if (!pit_verify_msb(0xfe - i)) 625 break; 626 goto success; 627 } 628 } 629 pr_info("Fast TSC calibration failed\n"); 630 return 0; 631 632 success: 633 /* 634 * Ok, if we get here, then we've seen the 635 * MSB of the PIT decrement 'i' times, and the 636 * error has shrunk to less than 500 ppm. 637 * 638 * As a result, we can depend on there not being 639 * any odd delays anywhere, and the TSC reads are 640 * reliable (within the error). 641 * 642 * kHz = ticks / time-in-seconds / 1000; 643 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 644 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 645 */ 646 delta *= PIT_TICK_RATE; 647 do_div(delta, i*256*1000); 648 pr_info("Fast TSC calibration using PIT\n"); 649 return delta; 650 } 651 652 /** 653 * native_calibrate_tsc - calibrate the tsc on boot 654 */ 655 unsigned long native_calibrate_tsc(void) 656 { 657 u64 tsc1, tsc2, delta, ref1, ref2; 658 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 659 unsigned long flags, latch, ms, fast_calibrate; 660 int hpet = is_hpet_enabled(), i, loopmin; 661 662 /* Calibrate TSC using MSR for Intel Atom SoCs */ 663 local_irq_save(flags); 664 fast_calibrate = try_msr_calibrate_tsc(); 665 local_irq_restore(flags); 666 if (fast_calibrate) 667 return fast_calibrate; 668 669 local_irq_save(flags); 670 fast_calibrate = quick_pit_calibrate(); 671 local_irq_restore(flags); 672 if (fast_calibrate) 673 return fast_calibrate; 674 675 /* 676 * Run 5 calibration loops to get the lowest frequency value 677 * (the best estimate). We use two different calibration modes 678 * here: 679 * 680 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 681 * load a timeout of 50ms. We read the time right after we 682 * started the timer and wait until the PIT count down reaches 683 * zero. In each wait loop iteration we read the TSC and check 684 * the delta to the previous read. We keep track of the min 685 * and max values of that delta. The delta is mostly defined 686 * by the IO time of the PIT access, so we can detect when a 687 * SMI/SMM disturbance happened between the two reads. If the 688 * maximum time is significantly larger than the minimum time, 689 * then we discard the result and have another try. 690 * 691 * 2) Reference counter. If available we use the HPET or the 692 * PMTIMER as a reference to check the sanity of that value. 693 * We use separate TSC readouts and check inside of the 694 * reference read for a SMI/SMM disturbance. We dicard 695 * disturbed values here as well. We do that around the PIT 696 * calibration delay loop as we have to wait for a certain 697 * amount of time anyway. 698 */ 699 700 /* Preset PIT loop values */ 701 latch = CAL_LATCH; 702 ms = CAL_MS; 703 loopmin = CAL_PIT_LOOPS; 704 705 for (i = 0; i < 3; i++) { 706 unsigned long tsc_pit_khz; 707 708 /* 709 * Read the start value and the reference count of 710 * hpet/pmtimer when available. Then do the PIT 711 * calibration, which will take at least 50ms, and 712 * read the end value. 713 */ 714 local_irq_save(flags); 715 tsc1 = tsc_read_refs(&ref1, hpet); 716 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 717 tsc2 = tsc_read_refs(&ref2, hpet); 718 local_irq_restore(flags); 719 720 /* Pick the lowest PIT TSC calibration so far */ 721 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 722 723 /* hpet or pmtimer available ? */ 724 if (ref1 == ref2) 725 continue; 726 727 /* Check, whether the sampling was disturbed by an SMI */ 728 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 729 continue; 730 731 tsc2 = (tsc2 - tsc1) * 1000000LL; 732 if (hpet) 733 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 734 else 735 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 736 737 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 738 739 /* Check the reference deviation */ 740 delta = ((u64) tsc_pit_min) * 100; 741 do_div(delta, tsc_ref_min); 742 743 /* 744 * If both calibration results are inside a 10% window 745 * then we can be sure, that the calibration 746 * succeeded. We break out of the loop right away. We 747 * use the reference value, as it is more precise. 748 */ 749 if (delta >= 90 && delta <= 110) { 750 pr_info("PIT calibration matches %s. %d loops\n", 751 hpet ? "HPET" : "PMTIMER", i + 1); 752 return tsc_ref_min; 753 } 754 755 /* 756 * Check whether PIT failed more than once. This 757 * happens in virtualized environments. We need to 758 * give the virtual PC a slightly longer timeframe for 759 * the HPET/PMTIMER to make the result precise. 760 */ 761 if (i == 1 && tsc_pit_min == ULONG_MAX) { 762 latch = CAL2_LATCH; 763 ms = CAL2_MS; 764 loopmin = CAL2_PIT_LOOPS; 765 } 766 } 767 768 /* 769 * Now check the results. 770 */ 771 if (tsc_pit_min == ULONG_MAX) { 772 /* PIT gave no useful value */ 773 pr_warn("Unable to calibrate against PIT\n"); 774 775 /* We don't have an alternative source, disable TSC */ 776 if (!hpet && !ref1 && !ref2) { 777 pr_notice("No reference (HPET/PMTIMER) available\n"); 778 return 0; 779 } 780 781 /* The alternative source failed as well, disable TSC */ 782 if (tsc_ref_min == ULONG_MAX) { 783 pr_warn("HPET/PMTIMER calibration failed\n"); 784 return 0; 785 } 786 787 /* Use the alternative source */ 788 pr_info("using %s reference calibration\n", 789 hpet ? "HPET" : "PMTIMER"); 790 791 return tsc_ref_min; 792 } 793 794 /* We don't have an alternative source, use the PIT calibration value */ 795 if (!hpet && !ref1 && !ref2) { 796 pr_info("Using PIT calibration value\n"); 797 return tsc_pit_min; 798 } 799 800 /* The alternative source failed, use the PIT calibration value */ 801 if (tsc_ref_min == ULONG_MAX) { 802 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 803 return tsc_pit_min; 804 } 805 806 /* 807 * The calibration values differ too much. In doubt, we use 808 * the PIT value as we know that there are PMTIMERs around 809 * running at double speed. At least we let the user know: 810 */ 811 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 812 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 813 pr_info("Using PIT calibration value\n"); 814 return tsc_pit_min; 815 } 816 817 int recalibrate_cpu_khz(void) 818 { 819 #ifndef CONFIG_SMP 820 unsigned long cpu_khz_old = cpu_khz; 821 822 if (cpu_has_tsc) { 823 tsc_khz = x86_platform.calibrate_tsc(); 824 cpu_khz = tsc_khz; 825 cpu_data(0).loops_per_jiffy = 826 cpufreq_scale(cpu_data(0).loops_per_jiffy, 827 cpu_khz_old, cpu_khz); 828 return 0; 829 } else 830 return -ENODEV; 831 #else 832 return -ENODEV; 833 #endif 834 } 835 836 EXPORT_SYMBOL(recalibrate_cpu_khz); 837 838 839 static unsigned long long cyc2ns_suspend; 840 841 void tsc_save_sched_clock_state(void) 842 { 843 if (!sched_clock_stable()) 844 return; 845 846 cyc2ns_suspend = sched_clock(); 847 } 848 849 /* 850 * Even on processors with invariant TSC, TSC gets reset in some the 851 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 852 * arbitrary value (still sync'd across cpu's) during resume from such sleep 853 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 854 * that sched_clock() continues from the point where it was left off during 855 * suspend. 856 */ 857 void tsc_restore_sched_clock_state(void) 858 { 859 unsigned long long offset; 860 unsigned long flags; 861 int cpu; 862 863 if (!sched_clock_stable()) 864 return; 865 866 local_irq_save(flags); 867 868 /* 869 * We're comming out of suspend, there's no concurrency yet; don't 870 * bother being nice about the RCU stuff, just write to both 871 * data fields. 872 */ 873 874 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 875 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 876 877 offset = cyc2ns_suspend - sched_clock(); 878 879 for_each_possible_cpu(cpu) { 880 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 881 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 882 } 883 884 local_irq_restore(flags); 885 } 886 887 #ifdef CONFIG_CPU_FREQ 888 889 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 890 * changes. 891 * 892 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 893 * not that important because current Opteron setups do not support 894 * scaling on SMP anyroads. 895 * 896 * Should fix up last_tsc too. Currently gettimeofday in the 897 * first tick after the change will be slightly wrong. 898 */ 899 900 static unsigned int ref_freq; 901 static unsigned long loops_per_jiffy_ref; 902 static unsigned long tsc_khz_ref; 903 904 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 905 void *data) 906 { 907 struct cpufreq_freqs *freq = data; 908 unsigned long *lpj; 909 910 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) 911 return 0; 912 913 lpj = &boot_cpu_data.loops_per_jiffy; 914 #ifdef CONFIG_SMP 915 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 916 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 917 #endif 918 919 if (!ref_freq) { 920 ref_freq = freq->old; 921 loops_per_jiffy_ref = *lpj; 922 tsc_khz_ref = tsc_khz; 923 } 924 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 925 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 926 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 927 928 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 929 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 930 mark_tsc_unstable("cpufreq changes"); 931 932 set_cyc2ns_scale(tsc_khz, freq->cpu); 933 } 934 935 return 0; 936 } 937 938 static struct notifier_block time_cpufreq_notifier_block = { 939 .notifier_call = time_cpufreq_notifier 940 }; 941 942 static int __init cpufreq_tsc(void) 943 { 944 if (!cpu_has_tsc) 945 return 0; 946 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 947 return 0; 948 cpufreq_register_notifier(&time_cpufreq_notifier_block, 949 CPUFREQ_TRANSITION_NOTIFIER); 950 return 0; 951 } 952 953 core_initcall(cpufreq_tsc); 954 955 #endif /* CONFIG_CPU_FREQ */ 956 957 /* clocksource code */ 958 959 static struct clocksource clocksource_tsc; 960 961 /* 962 * We used to compare the TSC to the cycle_last value in the clocksource 963 * structure to avoid a nasty time-warp. This can be observed in a 964 * very small window right after one CPU updated cycle_last under 965 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 966 * is smaller than the cycle_last reference value due to a TSC which 967 * is slighty behind. This delta is nowhere else observable, but in 968 * that case it results in a forward time jump in the range of hours 969 * due to the unsigned delta calculation of the time keeping core 970 * code, which is necessary to support wrapping clocksources like pm 971 * timer. 972 * 973 * This sanity check is now done in the core timekeeping code. 974 * checking the result of read_tsc() - cycle_last for being negative. 975 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 976 */ 977 static cycle_t read_tsc(struct clocksource *cs) 978 { 979 return (cycle_t)get_cycles(); 980 } 981 982 /* 983 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 984 */ 985 static struct clocksource clocksource_tsc = { 986 .name = "tsc", 987 .rating = 300, 988 .read = read_tsc, 989 .mask = CLOCKSOURCE_MASK(64), 990 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 991 CLOCK_SOURCE_MUST_VERIFY, 992 .archdata = { .vclock_mode = VCLOCK_TSC }, 993 }; 994 995 void mark_tsc_unstable(char *reason) 996 { 997 if (!tsc_unstable) { 998 tsc_unstable = 1; 999 clear_sched_clock_stable(); 1000 disable_sched_clock_irqtime(); 1001 pr_info("Marking TSC unstable due to %s\n", reason); 1002 /* Change only the rating, when not registered */ 1003 if (clocksource_tsc.mult) 1004 clocksource_mark_unstable(&clocksource_tsc); 1005 else { 1006 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1007 clocksource_tsc.rating = 0; 1008 } 1009 } 1010 } 1011 1012 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1013 1014 static void __init check_system_tsc_reliable(void) 1015 { 1016 #ifdef CONFIG_MGEODE_LX 1017 /* RTSC counts during suspend */ 1018 #define RTSC_SUSP 0x100 1019 unsigned long res_low, res_high; 1020 1021 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1022 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1023 if (res_low & RTSC_SUSP) 1024 tsc_clocksource_reliable = 1; 1025 #endif 1026 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1027 tsc_clocksource_reliable = 1; 1028 } 1029 1030 /* 1031 * Make an educated guess if the TSC is trustworthy and synchronized 1032 * over all CPUs. 1033 */ 1034 int unsynchronized_tsc(void) 1035 { 1036 if (!cpu_has_tsc || tsc_unstable) 1037 return 1; 1038 1039 #ifdef CONFIG_SMP 1040 if (apic_is_clustered_box()) 1041 return 1; 1042 #endif 1043 1044 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1045 return 0; 1046 1047 if (tsc_clocksource_reliable) 1048 return 0; 1049 /* 1050 * Intel systems are normally all synchronized. 1051 * Exceptions must mark TSC as unstable: 1052 */ 1053 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1054 /* assume multi socket systems are not synchronized: */ 1055 if (num_possible_cpus() > 1) 1056 return 1; 1057 } 1058 1059 return 0; 1060 } 1061 1062 1063 static void tsc_refine_calibration_work(struct work_struct *work); 1064 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1065 /** 1066 * tsc_refine_calibration_work - Further refine tsc freq calibration 1067 * @work - ignored. 1068 * 1069 * This functions uses delayed work over a period of a 1070 * second to further refine the TSC freq value. Since this is 1071 * timer based, instead of loop based, we don't block the boot 1072 * process while this longer calibration is done. 1073 * 1074 * If there are any calibration anomalies (too many SMIs, etc), 1075 * or the refined calibration is off by 1% of the fast early 1076 * calibration, we throw out the new calibration and use the 1077 * early calibration. 1078 */ 1079 static void tsc_refine_calibration_work(struct work_struct *work) 1080 { 1081 static u64 tsc_start = -1, ref_start; 1082 static int hpet; 1083 u64 tsc_stop, ref_stop, delta; 1084 unsigned long freq; 1085 1086 /* Don't bother refining TSC on unstable systems */ 1087 if (check_tsc_unstable()) 1088 goto out; 1089 1090 /* 1091 * Since the work is started early in boot, we may be 1092 * delayed the first time we expire. So set the workqueue 1093 * again once we know timers are working. 1094 */ 1095 if (tsc_start == -1) { 1096 /* 1097 * Only set hpet once, to avoid mixing hardware 1098 * if the hpet becomes enabled later. 1099 */ 1100 hpet = is_hpet_enabled(); 1101 schedule_delayed_work(&tsc_irqwork, HZ); 1102 tsc_start = tsc_read_refs(&ref_start, hpet); 1103 return; 1104 } 1105 1106 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1107 1108 /* hpet or pmtimer available ? */ 1109 if (ref_start == ref_stop) 1110 goto out; 1111 1112 /* Check, whether the sampling was disturbed by an SMI */ 1113 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1114 goto out; 1115 1116 delta = tsc_stop - tsc_start; 1117 delta *= 1000000LL; 1118 if (hpet) 1119 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1120 else 1121 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1122 1123 /* Make sure we're within 1% */ 1124 if (abs(tsc_khz - freq) > tsc_khz/100) 1125 goto out; 1126 1127 tsc_khz = freq; 1128 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1129 (unsigned long)tsc_khz / 1000, 1130 (unsigned long)tsc_khz % 1000); 1131 1132 out: 1133 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1134 } 1135 1136 1137 static int __init init_tsc_clocksource(void) 1138 { 1139 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz) 1140 return 0; 1141 1142 if (tsc_clocksource_reliable) 1143 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1144 /* lower the rating if we already know its unstable: */ 1145 if (check_tsc_unstable()) { 1146 clocksource_tsc.rating = 0; 1147 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1148 } 1149 1150 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1151 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1152 1153 /* 1154 * Trust the results of the earlier calibration on systems 1155 * exporting a reliable TSC. 1156 */ 1157 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 1158 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1159 return 0; 1160 } 1161 1162 schedule_delayed_work(&tsc_irqwork, 0); 1163 return 0; 1164 } 1165 /* 1166 * We use device_initcall here, to ensure we run after the hpet 1167 * is fully initialized, which may occur at fs_initcall time. 1168 */ 1169 device_initcall(init_tsc_clocksource); 1170 1171 void __init tsc_init(void) 1172 { 1173 u64 lpj; 1174 int cpu; 1175 1176 x86_init.timers.tsc_pre_init(); 1177 1178 if (!cpu_has_tsc) { 1179 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1180 return; 1181 } 1182 1183 tsc_khz = x86_platform.calibrate_tsc(); 1184 cpu_khz = tsc_khz; 1185 1186 if (!tsc_khz) { 1187 mark_tsc_unstable("could not calculate TSC khz"); 1188 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1189 return; 1190 } 1191 1192 pr_info("Detected %lu.%03lu MHz processor\n", 1193 (unsigned long)cpu_khz / 1000, 1194 (unsigned long)cpu_khz % 1000); 1195 1196 /* 1197 * Secondary CPUs do not run through tsc_init(), so set up 1198 * all the scale factors for all CPUs, assuming the same 1199 * speed as the bootup CPU. (cpufreq notifiers will fix this 1200 * up if their speed diverges) 1201 */ 1202 for_each_possible_cpu(cpu) { 1203 cyc2ns_init(cpu); 1204 set_cyc2ns_scale(cpu_khz, cpu); 1205 } 1206 1207 if (tsc_disabled > 0) 1208 return; 1209 1210 /* now allow native_sched_clock() to use rdtsc */ 1211 1212 tsc_disabled = 0; 1213 static_key_slow_inc(&__use_tsc); 1214 1215 if (!no_sched_irq_time) 1216 enable_sched_clock_irqtime(); 1217 1218 lpj = ((u64)tsc_khz * 1000); 1219 do_div(lpj, HZ); 1220 lpj_fine = lpj; 1221 1222 use_tsc_delay(); 1223 1224 if (unsynchronized_tsc()) 1225 mark_tsc_unstable("TSCs unsynchronized"); 1226 1227 check_system_tsc_reliable(); 1228 } 1229 1230 #ifdef CONFIG_SMP 1231 /* 1232 * If we have a constant TSC and are using the TSC for the delay loop, 1233 * we can skip clock calibration if another cpu in the same socket has already 1234 * been calibrated. This assumes that CONSTANT_TSC applies to all 1235 * cpus in the socket - this should be a safe assumption. 1236 */ 1237 unsigned long calibrate_delay_is_known(void) 1238 { 1239 int i, cpu = smp_processor_id(); 1240 1241 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1242 return 0; 1243 1244 for_each_online_cpu(i) 1245 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id) 1246 return cpu_data(i).loops_per_jiffy; 1247 return 0; 1248 } 1249 #endif 1250