xref: /linux/arch/x86/kernel/tsc.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15 
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 
26 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
27 EXPORT_SYMBOL(cpu_khz);
28 
29 unsigned int __read_mostly tsc_khz;
30 EXPORT_SYMBOL(tsc_khz);
31 
32 /*
33  * TSC can be unstable due to cpufreq or due to unsynced TSCs
34  */
35 static int __read_mostly tsc_unstable;
36 
37 /* native_sched_clock() is called before tsc_init(), so
38    we must start with the TSC soft disabled to prevent
39    erroneous rdtsc usage on !cpu_has_tsc processors */
40 static int __read_mostly tsc_disabled = -1;
41 
42 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
43 
44 int tsc_clocksource_reliable;
45 
46 /*
47  * Use a ring-buffer like data structure, where a writer advances the head by
48  * writing a new data entry and a reader advances the tail when it observes a
49  * new entry.
50  *
51  * Writers are made to wait on readers until there's space to write a new
52  * entry.
53  *
54  * This means that we can always use an {offset, mul} pair to compute a ns
55  * value that is 'roughly' in the right direction, even if we're writing a new
56  * {offset, mul} pair during the clock read.
57  *
58  * The down-side is that we can no longer guarantee strict monotonicity anymore
59  * (assuming the TSC was that to begin with), because while we compute the
60  * intersection point of the two clock slopes and make sure the time is
61  * continuous at the point of switching; we can no longer guarantee a reader is
62  * strictly before or after the switch point.
63  *
64  * It does mean a reader no longer needs to disable IRQs in order to avoid
65  * CPU-Freq updates messing with his times, and similarly an NMI reader will
66  * no longer run the risk of hitting half-written state.
67  */
68 
69 struct cyc2ns {
70 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
71 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
72 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
73 }; /* exactly fits one cacheline */
74 
75 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
76 
77 struct cyc2ns_data *cyc2ns_read_begin(void)
78 {
79 	struct cyc2ns_data *head;
80 
81 	preempt_disable();
82 
83 	head = this_cpu_read(cyc2ns.head);
84 	/*
85 	 * Ensure we observe the entry when we observe the pointer to it.
86 	 * matches the wmb from cyc2ns_write_end().
87 	 */
88 	smp_read_barrier_depends();
89 	head->__count++;
90 	barrier();
91 
92 	return head;
93 }
94 
95 void cyc2ns_read_end(struct cyc2ns_data *head)
96 {
97 	barrier();
98 	/*
99 	 * If we're the outer most nested read; update the tail pointer
100 	 * when we're done. This notifies possible pending writers
101 	 * that we've observed the head pointer and that the other
102 	 * entry is now free.
103 	 */
104 	if (!--head->__count) {
105 		/*
106 		 * x86-TSO does not reorder writes with older reads;
107 		 * therefore once this write becomes visible to another
108 		 * cpu, we must be finished reading the cyc2ns_data.
109 		 *
110 		 * matches with cyc2ns_write_begin().
111 		 */
112 		this_cpu_write(cyc2ns.tail, head);
113 	}
114 	preempt_enable();
115 }
116 
117 /*
118  * Begin writing a new @data entry for @cpu.
119  *
120  * Assumes some sort of write side lock; currently 'provided' by the assumption
121  * that cpufreq will call its notifiers sequentially.
122  */
123 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
124 {
125 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
126 	struct cyc2ns_data *data = c2n->data;
127 
128 	if (data == c2n->head)
129 		data++;
130 
131 	/* XXX send an IPI to @cpu in order to guarantee a read? */
132 
133 	/*
134 	 * When we observe the tail write from cyc2ns_read_end(),
135 	 * the cpu must be done with that entry and its safe
136 	 * to start writing to it.
137 	 */
138 	while (c2n->tail == data)
139 		cpu_relax();
140 
141 	return data;
142 }
143 
144 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
145 {
146 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
147 
148 	/*
149 	 * Ensure the @data writes are visible before we publish the
150 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
151 	 */
152 	smp_wmb();
153 
154 	ACCESS_ONCE(c2n->head) = data;
155 }
156 
157 /*
158  * Accelerators for sched_clock()
159  * convert from cycles(64bits) => nanoseconds (64bits)
160  *  basic equation:
161  *              ns = cycles / (freq / ns_per_sec)
162  *              ns = cycles * (ns_per_sec / freq)
163  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
164  *              ns = cycles * (10^6 / cpu_khz)
165  *
166  *      Then we use scaling math (suggested by george@mvista.com) to get:
167  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
168  *              ns = cycles * cyc2ns_scale / SC
169  *
170  *      And since SC is a constant power of two, we can convert the div
171  *  into a shift. The larger SC is, the more accurate the conversion, but
172  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
173  *  (64-bit result) can be used.
174  *
175  *  We can use khz divisor instead of mhz to keep a better precision.
176  *  (mathieu.desnoyers@polymtl.ca)
177  *
178  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
179  */
180 
181 static void cyc2ns_data_init(struct cyc2ns_data *data)
182 {
183 	data->cyc2ns_mul = 0;
184 	data->cyc2ns_shift = 0;
185 	data->cyc2ns_offset = 0;
186 	data->__count = 0;
187 }
188 
189 static void cyc2ns_init(int cpu)
190 {
191 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192 
193 	cyc2ns_data_init(&c2n->data[0]);
194 	cyc2ns_data_init(&c2n->data[1]);
195 
196 	c2n->head = c2n->data;
197 	c2n->tail = c2n->data;
198 }
199 
200 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201 {
202 	struct cyc2ns_data *data, *tail;
203 	unsigned long long ns;
204 
205 	/*
206 	 * See cyc2ns_read_*() for details; replicated in order to avoid
207 	 * an extra few instructions that came with the abstraction.
208 	 * Notable, it allows us to only do the __count and tail update
209 	 * dance when its actually needed.
210 	 */
211 
212 	preempt_disable_notrace();
213 	data = this_cpu_read(cyc2ns.head);
214 	tail = this_cpu_read(cyc2ns.tail);
215 
216 	if (likely(data == tail)) {
217 		ns = data->cyc2ns_offset;
218 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
219 	} else {
220 		data->__count++;
221 
222 		barrier();
223 
224 		ns = data->cyc2ns_offset;
225 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
226 
227 		barrier();
228 
229 		if (!--data->__count)
230 			this_cpu_write(cyc2ns.tail, data);
231 	}
232 	preempt_enable_notrace();
233 
234 	return ns;
235 }
236 
237 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238 {
239 	unsigned long long tsc_now, ns_now;
240 	struct cyc2ns_data *data;
241 	unsigned long flags;
242 
243 	local_irq_save(flags);
244 	sched_clock_idle_sleep_event();
245 
246 	if (!cpu_khz)
247 		goto done;
248 
249 	data = cyc2ns_write_begin(cpu);
250 
251 	tsc_now = rdtsc();
252 	ns_now = cycles_2_ns(tsc_now);
253 
254 	/*
255 	 * Compute a new multiplier as per the above comment and ensure our
256 	 * time function is continuous; see the comment near struct
257 	 * cyc2ns_data.
258 	 */
259 	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
260 			       NSEC_PER_MSEC, 0);
261 
262 	/*
263 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
264 	 * not expected to be greater than 31 due to the original published
265 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
266 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
267 	 */
268 	if (data->cyc2ns_shift == 32) {
269 		data->cyc2ns_shift = 31;
270 		data->cyc2ns_mul >>= 1;
271 	}
272 
273 	data->cyc2ns_offset = ns_now -
274 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
275 
276 	cyc2ns_write_end(cpu, data);
277 
278 done:
279 	sched_clock_idle_wakeup_event(0);
280 	local_irq_restore(flags);
281 }
282 /*
283  * Scheduler clock - returns current time in nanosec units.
284  */
285 u64 native_sched_clock(void)
286 {
287 	if (static_branch_likely(&__use_tsc)) {
288 		u64 tsc_now = rdtsc();
289 
290 		/* return the value in ns */
291 		return cycles_2_ns(tsc_now);
292 	}
293 
294 	/*
295 	 * Fall back to jiffies if there's no TSC available:
296 	 * ( But note that we still use it if the TSC is marked
297 	 *   unstable. We do this because unlike Time Of Day,
298 	 *   the scheduler clock tolerates small errors and it's
299 	 *   very important for it to be as fast as the platform
300 	 *   can achieve it. )
301 	 */
302 
303 	/* No locking but a rare wrong value is not a big deal: */
304 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
305 }
306 
307 /*
308  * Generate a sched_clock if you already have a TSC value.
309  */
310 u64 native_sched_clock_from_tsc(u64 tsc)
311 {
312 	return cycles_2_ns(tsc);
313 }
314 
315 /* We need to define a real function for sched_clock, to override the
316    weak default version */
317 #ifdef CONFIG_PARAVIRT
318 unsigned long long sched_clock(void)
319 {
320 	return paravirt_sched_clock();
321 }
322 #else
323 unsigned long long
324 sched_clock(void) __attribute__((alias("native_sched_clock")));
325 #endif
326 
327 int check_tsc_unstable(void)
328 {
329 	return tsc_unstable;
330 }
331 EXPORT_SYMBOL_GPL(check_tsc_unstable);
332 
333 int check_tsc_disabled(void)
334 {
335 	return tsc_disabled;
336 }
337 EXPORT_SYMBOL_GPL(check_tsc_disabled);
338 
339 #ifdef CONFIG_X86_TSC
340 int __init notsc_setup(char *str)
341 {
342 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
343 	tsc_disabled = 1;
344 	return 1;
345 }
346 #else
347 /*
348  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
349  * in cpu/common.c
350  */
351 int __init notsc_setup(char *str)
352 {
353 	setup_clear_cpu_cap(X86_FEATURE_TSC);
354 	return 1;
355 }
356 #endif
357 
358 __setup("notsc", notsc_setup);
359 
360 static int no_sched_irq_time;
361 
362 static int __init tsc_setup(char *str)
363 {
364 	if (!strcmp(str, "reliable"))
365 		tsc_clocksource_reliable = 1;
366 	if (!strncmp(str, "noirqtime", 9))
367 		no_sched_irq_time = 1;
368 	return 1;
369 }
370 
371 __setup("tsc=", tsc_setup);
372 
373 #define MAX_RETRIES     5
374 #define SMI_TRESHOLD    50000
375 
376 /*
377  * Read TSC and the reference counters. Take care of SMI disturbance
378  */
379 static u64 tsc_read_refs(u64 *p, int hpet)
380 {
381 	u64 t1, t2;
382 	int i;
383 
384 	for (i = 0; i < MAX_RETRIES; i++) {
385 		t1 = get_cycles();
386 		if (hpet)
387 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
388 		else
389 			*p = acpi_pm_read_early();
390 		t2 = get_cycles();
391 		if ((t2 - t1) < SMI_TRESHOLD)
392 			return t2;
393 	}
394 	return ULLONG_MAX;
395 }
396 
397 /*
398  * Calculate the TSC frequency from HPET reference
399  */
400 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
401 {
402 	u64 tmp;
403 
404 	if (hpet2 < hpet1)
405 		hpet2 += 0x100000000ULL;
406 	hpet2 -= hpet1;
407 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
408 	do_div(tmp, 1000000);
409 	do_div(deltatsc, tmp);
410 
411 	return (unsigned long) deltatsc;
412 }
413 
414 /*
415  * Calculate the TSC frequency from PMTimer reference
416  */
417 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
418 {
419 	u64 tmp;
420 
421 	if (!pm1 && !pm2)
422 		return ULONG_MAX;
423 
424 	if (pm2 < pm1)
425 		pm2 += (u64)ACPI_PM_OVRRUN;
426 	pm2 -= pm1;
427 	tmp = pm2 * 1000000000LL;
428 	do_div(tmp, PMTMR_TICKS_PER_SEC);
429 	do_div(deltatsc, tmp);
430 
431 	return (unsigned long) deltatsc;
432 }
433 
434 #define CAL_MS		10
435 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
436 #define CAL_PIT_LOOPS	1000
437 
438 #define CAL2_MS		50
439 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
440 #define CAL2_PIT_LOOPS	5000
441 
442 
443 /*
444  * Try to calibrate the TSC against the Programmable
445  * Interrupt Timer and return the frequency of the TSC
446  * in kHz.
447  *
448  * Return ULONG_MAX on failure to calibrate.
449  */
450 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
451 {
452 	u64 tsc, t1, t2, delta;
453 	unsigned long tscmin, tscmax;
454 	int pitcnt;
455 
456 	/* Set the Gate high, disable speaker */
457 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
458 
459 	/*
460 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
461 	 * count mode), binary count. Set the latch register to 50ms
462 	 * (LSB then MSB) to begin countdown.
463 	 */
464 	outb(0xb0, 0x43);
465 	outb(latch & 0xff, 0x42);
466 	outb(latch >> 8, 0x42);
467 
468 	tsc = t1 = t2 = get_cycles();
469 
470 	pitcnt = 0;
471 	tscmax = 0;
472 	tscmin = ULONG_MAX;
473 	while ((inb(0x61) & 0x20) == 0) {
474 		t2 = get_cycles();
475 		delta = t2 - tsc;
476 		tsc = t2;
477 		if ((unsigned long) delta < tscmin)
478 			tscmin = (unsigned int) delta;
479 		if ((unsigned long) delta > tscmax)
480 			tscmax = (unsigned int) delta;
481 		pitcnt++;
482 	}
483 
484 	/*
485 	 * Sanity checks:
486 	 *
487 	 * If we were not able to read the PIT more than loopmin
488 	 * times, then we have been hit by a massive SMI
489 	 *
490 	 * If the maximum is 10 times larger than the minimum,
491 	 * then we got hit by an SMI as well.
492 	 */
493 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
494 		return ULONG_MAX;
495 
496 	/* Calculate the PIT value */
497 	delta = t2 - t1;
498 	do_div(delta, ms);
499 	return delta;
500 }
501 
502 /*
503  * This reads the current MSB of the PIT counter, and
504  * checks if we are running on sufficiently fast and
505  * non-virtualized hardware.
506  *
507  * Our expectations are:
508  *
509  *  - the PIT is running at roughly 1.19MHz
510  *
511  *  - each IO is going to take about 1us on real hardware,
512  *    but we allow it to be much faster (by a factor of 10) or
513  *    _slightly_ slower (ie we allow up to a 2us read+counter
514  *    update - anything else implies a unacceptably slow CPU
515  *    or PIT for the fast calibration to work.
516  *
517  *  - with 256 PIT ticks to read the value, we have 214us to
518  *    see the same MSB (and overhead like doing a single TSC
519  *    read per MSB value etc).
520  *
521  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
522  *    them each to take about a microsecond on real hardware.
523  *    So we expect a count value of around 100. But we'll be
524  *    generous, and accept anything over 50.
525  *
526  *  - if the PIT is stuck, and we see *many* more reads, we
527  *    return early (and the next caller of pit_expect_msb()
528  *    then consider it a failure when they don't see the
529  *    next expected value).
530  *
531  * These expectations mean that we know that we have seen the
532  * transition from one expected value to another with a fairly
533  * high accuracy, and we didn't miss any events. We can thus
534  * use the TSC value at the transitions to calculate a pretty
535  * good value for the TSC frequencty.
536  */
537 static inline int pit_verify_msb(unsigned char val)
538 {
539 	/* Ignore LSB */
540 	inb(0x42);
541 	return inb(0x42) == val;
542 }
543 
544 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
545 {
546 	int count;
547 	u64 tsc = 0, prev_tsc = 0;
548 
549 	for (count = 0; count < 50000; count++) {
550 		if (!pit_verify_msb(val))
551 			break;
552 		prev_tsc = tsc;
553 		tsc = get_cycles();
554 	}
555 	*deltap = get_cycles() - prev_tsc;
556 	*tscp = tsc;
557 
558 	/*
559 	 * We require _some_ success, but the quality control
560 	 * will be based on the error terms on the TSC values.
561 	 */
562 	return count > 5;
563 }
564 
565 /*
566  * How many MSB values do we want to see? We aim for
567  * a maximum error rate of 500ppm (in practice the
568  * real error is much smaller), but refuse to spend
569  * more than 50ms on it.
570  */
571 #define MAX_QUICK_PIT_MS 50
572 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
573 
574 static unsigned long quick_pit_calibrate(void)
575 {
576 	int i;
577 	u64 tsc, delta;
578 	unsigned long d1, d2;
579 
580 	/* Set the Gate high, disable speaker */
581 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
582 
583 	/*
584 	 * Counter 2, mode 0 (one-shot), binary count
585 	 *
586 	 * NOTE! Mode 2 decrements by two (and then the
587 	 * output is flipped each time, giving the same
588 	 * final output frequency as a decrement-by-one),
589 	 * so mode 0 is much better when looking at the
590 	 * individual counts.
591 	 */
592 	outb(0xb0, 0x43);
593 
594 	/* Start at 0xffff */
595 	outb(0xff, 0x42);
596 	outb(0xff, 0x42);
597 
598 	/*
599 	 * The PIT starts counting at the next edge, so we
600 	 * need to delay for a microsecond. The easiest way
601 	 * to do that is to just read back the 16-bit counter
602 	 * once from the PIT.
603 	 */
604 	pit_verify_msb(0);
605 
606 	if (pit_expect_msb(0xff, &tsc, &d1)) {
607 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
608 			if (!pit_expect_msb(0xff-i, &delta, &d2))
609 				break;
610 
611 			delta -= tsc;
612 
613 			/*
614 			 * Extrapolate the error and fail fast if the error will
615 			 * never be below 500 ppm.
616 			 */
617 			if (i == 1 &&
618 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
619 				return 0;
620 
621 			/*
622 			 * Iterate until the error is less than 500 ppm
623 			 */
624 			if (d1+d2 >= delta >> 11)
625 				continue;
626 
627 			/*
628 			 * Check the PIT one more time to verify that
629 			 * all TSC reads were stable wrt the PIT.
630 			 *
631 			 * This also guarantees serialization of the
632 			 * last cycle read ('d2') in pit_expect_msb.
633 			 */
634 			if (!pit_verify_msb(0xfe - i))
635 				break;
636 			goto success;
637 		}
638 	}
639 	pr_info("Fast TSC calibration failed\n");
640 	return 0;
641 
642 success:
643 	/*
644 	 * Ok, if we get here, then we've seen the
645 	 * MSB of the PIT decrement 'i' times, and the
646 	 * error has shrunk to less than 500 ppm.
647 	 *
648 	 * As a result, we can depend on there not being
649 	 * any odd delays anywhere, and the TSC reads are
650 	 * reliable (within the error).
651 	 *
652 	 * kHz = ticks / time-in-seconds / 1000;
653 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
654 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
655 	 */
656 	delta *= PIT_TICK_RATE;
657 	do_div(delta, i*256*1000);
658 	pr_info("Fast TSC calibration using PIT\n");
659 	return delta;
660 }
661 
662 /**
663  * native_calibrate_tsc - calibrate the tsc on boot
664  */
665 unsigned long native_calibrate_tsc(void)
666 {
667 	u64 tsc1, tsc2, delta, ref1, ref2;
668 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
669 	unsigned long flags, latch, ms, fast_calibrate;
670 	int hpet = is_hpet_enabled(), i, loopmin;
671 
672 	/* Calibrate TSC using MSR for Intel Atom SoCs */
673 	local_irq_save(flags);
674 	fast_calibrate = try_msr_calibrate_tsc();
675 	local_irq_restore(flags);
676 	if (fast_calibrate)
677 		return fast_calibrate;
678 
679 	local_irq_save(flags);
680 	fast_calibrate = quick_pit_calibrate();
681 	local_irq_restore(flags);
682 	if (fast_calibrate)
683 		return fast_calibrate;
684 
685 	/*
686 	 * Run 5 calibration loops to get the lowest frequency value
687 	 * (the best estimate). We use two different calibration modes
688 	 * here:
689 	 *
690 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
691 	 * load a timeout of 50ms. We read the time right after we
692 	 * started the timer and wait until the PIT count down reaches
693 	 * zero. In each wait loop iteration we read the TSC and check
694 	 * the delta to the previous read. We keep track of the min
695 	 * and max values of that delta. The delta is mostly defined
696 	 * by the IO time of the PIT access, so we can detect when a
697 	 * SMI/SMM disturbance happened between the two reads. If the
698 	 * maximum time is significantly larger than the minimum time,
699 	 * then we discard the result and have another try.
700 	 *
701 	 * 2) Reference counter. If available we use the HPET or the
702 	 * PMTIMER as a reference to check the sanity of that value.
703 	 * We use separate TSC readouts and check inside of the
704 	 * reference read for a SMI/SMM disturbance. We dicard
705 	 * disturbed values here as well. We do that around the PIT
706 	 * calibration delay loop as we have to wait for a certain
707 	 * amount of time anyway.
708 	 */
709 
710 	/* Preset PIT loop values */
711 	latch = CAL_LATCH;
712 	ms = CAL_MS;
713 	loopmin = CAL_PIT_LOOPS;
714 
715 	for (i = 0; i < 3; i++) {
716 		unsigned long tsc_pit_khz;
717 
718 		/*
719 		 * Read the start value and the reference count of
720 		 * hpet/pmtimer when available. Then do the PIT
721 		 * calibration, which will take at least 50ms, and
722 		 * read the end value.
723 		 */
724 		local_irq_save(flags);
725 		tsc1 = tsc_read_refs(&ref1, hpet);
726 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
727 		tsc2 = tsc_read_refs(&ref2, hpet);
728 		local_irq_restore(flags);
729 
730 		/* Pick the lowest PIT TSC calibration so far */
731 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
732 
733 		/* hpet or pmtimer available ? */
734 		if (ref1 == ref2)
735 			continue;
736 
737 		/* Check, whether the sampling was disturbed by an SMI */
738 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
739 			continue;
740 
741 		tsc2 = (tsc2 - tsc1) * 1000000LL;
742 		if (hpet)
743 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
744 		else
745 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
746 
747 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
748 
749 		/* Check the reference deviation */
750 		delta = ((u64) tsc_pit_min) * 100;
751 		do_div(delta, tsc_ref_min);
752 
753 		/*
754 		 * If both calibration results are inside a 10% window
755 		 * then we can be sure, that the calibration
756 		 * succeeded. We break out of the loop right away. We
757 		 * use the reference value, as it is more precise.
758 		 */
759 		if (delta >= 90 && delta <= 110) {
760 			pr_info("PIT calibration matches %s. %d loops\n",
761 				hpet ? "HPET" : "PMTIMER", i + 1);
762 			return tsc_ref_min;
763 		}
764 
765 		/*
766 		 * Check whether PIT failed more than once. This
767 		 * happens in virtualized environments. We need to
768 		 * give the virtual PC a slightly longer timeframe for
769 		 * the HPET/PMTIMER to make the result precise.
770 		 */
771 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
772 			latch = CAL2_LATCH;
773 			ms = CAL2_MS;
774 			loopmin = CAL2_PIT_LOOPS;
775 		}
776 	}
777 
778 	/*
779 	 * Now check the results.
780 	 */
781 	if (tsc_pit_min == ULONG_MAX) {
782 		/* PIT gave no useful value */
783 		pr_warn("Unable to calibrate against PIT\n");
784 
785 		/* We don't have an alternative source, disable TSC */
786 		if (!hpet && !ref1 && !ref2) {
787 			pr_notice("No reference (HPET/PMTIMER) available\n");
788 			return 0;
789 		}
790 
791 		/* The alternative source failed as well, disable TSC */
792 		if (tsc_ref_min == ULONG_MAX) {
793 			pr_warn("HPET/PMTIMER calibration failed\n");
794 			return 0;
795 		}
796 
797 		/* Use the alternative source */
798 		pr_info("using %s reference calibration\n",
799 			hpet ? "HPET" : "PMTIMER");
800 
801 		return tsc_ref_min;
802 	}
803 
804 	/* We don't have an alternative source, use the PIT calibration value */
805 	if (!hpet && !ref1 && !ref2) {
806 		pr_info("Using PIT calibration value\n");
807 		return tsc_pit_min;
808 	}
809 
810 	/* The alternative source failed, use the PIT calibration value */
811 	if (tsc_ref_min == ULONG_MAX) {
812 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
813 		return tsc_pit_min;
814 	}
815 
816 	/*
817 	 * The calibration values differ too much. In doubt, we use
818 	 * the PIT value as we know that there are PMTIMERs around
819 	 * running at double speed. At least we let the user know:
820 	 */
821 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
822 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
823 	pr_info("Using PIT calibration value\n");
824 	return tsc_pit_min;
825 }
826 
827 int recalibrate_cpu_khz(void)
828 {
829 #ifndef CONFIG_SMP
830 	unsigned long cpu_khz_old = cpu_khz;
831 
832 	if (cpu_has_tsc) {
833 		tsc_khz = x86_platform.calibrate_tsc();
834 		cpu_khz = tsc_khz;
835 		cpu_data(0).loops_per_jiffy =
836 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
837 					cpu_khz_old, cpu_khz);
838 		return 0;
839 	} else
840 		return -ENODEV;
841 #else
842 	return -ENODEV;
843 #endif
844 }
845 
846 EXPORT_SYMBOL(recalibrate_cpu_khz);
847 
848 
849 static unsigned long long cyc2ns_suspend;
850 
851 void tsc_save_sched_clock_state(void)
852 {
853 	if (!sched_clock_stable())
854 		return;
855 
856 	cyc2ns_suspend = sched_clock();
857 }
858 
859 /*
860  * Even on processors with invariant TSC, TSC gets reset in some the
861  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
862  * arbitrary value (still sync'd across cpu's) during resume from such sleep
863  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
864  * that sched_clock() continues from the point where it was left off during
865  * suspend.
866  */
867 void tsc_restore_sched_clock_state(void)
868 {
869 	unsigned long long offset;
870 	unsigned long flags;
871 	int cpu;
872 
873 	if (!sched_clock_stable())
874 		return;
875 
876 	local_irq_save(flags);
877 
878 	/*
879 	 * We're comming out of suspend, there's no concurrency yet; don't
880 	 * bother being nice about the RCU stuff, just write to both
881 	 * data fields.
882 	 */
883 
884 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
885 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
886 
887 	offset = cyc2ns_suspend - sched_clock();
888 
889 	for_each_possible_cpu(cpu) {
890 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
891 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
892 	}
893 
894 	local_irq_restore(flags);
895 }
896 
897 #ifdef CONFIG_CPU_FREQ
898 
899 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
900  * changes.
901  *
902  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
903  * not that important because current Opteron setups do not support
904  * scaling on SMP anyroads.
905  *
906  * Should fix up last_tsc too. Currently gettimeofday in the
907  * first tick after the change will be slightly wrong.
908  */
909 
910 static unsigned int  ref_freq;
911 static unsigned long loops_per_jiffy_ref;
912 static unsigned long tsc_khz_ref;
913 
914 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
915 				void *data)
916 {
917 	struct cpufreq_freqs *freq = data;
918 	unsigned long *lpj;
919 
920 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
921 		return 0;
922 
923 	lpj = &boot_cpu_data.loops_per_jiffy;
924 #ifdef CONFIG_SMP
925 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
926 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
927 #endif
928 
929 	if (!ref_freq) {
930 		ref_freq = freq->old;
931 		loops_per_jiffy_ref = *lpj;
932 		tsc_khz_ref = tsc_khz;
933 	}
934 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
935 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
936 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
937 
938 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
939 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
940 			mark_tsc_unstable("cpufreq changes");
941 
942 		set_cyc2ns_scale(tsc_khz, freq->cpu);
943 	}
944 
945 	return 0;
946 }
947 
948 static struct notifier_block time_cpufreq_notifier_block = {
949 	.notifier_call  = time_cpufreq_notifier
950 };
951 
952 static int __init cpufreq_tsc(void)
953 {
954 	if (!cpu_has_tsc)
955 		return 0;
956 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
957 		return 0;
958 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
959 				CPUFREQ_TRANSITION_NOTIFIER);
960 	return 0;
961 }
962 
963 core_initcall(cpufreq_tsc);
964 
965 #endif /* CONFIG_CPU_FREQ */
966 
967 /* clocksource code */
968 
969 static struct clocksource clocksource_tsc;
970 
971 /*
972  * We used to compare the TSC to the cycle_last value in the clocksource
973  * structure to avoid a nasty time-warp. This can be observed in a
974  * very small window right after one CPU updated cycle_last under
975  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
976  * is smaller than the cycle_last reference value due to a TSC which
977  * is slighty behind. This delta is nowhere else observable, but in
978  * that case it results in a forward time jump in the range of hours
979  * due to the unsigned delta calculation of the time keeping core
980  * code, which is necessary to support wrapping clocksources like pm
981  * timer.
982  *
983  * This sanity check is now done in the core timekeeping code.
984  * checking the result of read_tsc() - cycle_last for being negative.
985  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
986  */
987 static cycle_t read_tsc(struct clocksource *cs)
988 {
989 	return (cycle_t)rdtsc_ordered();
990 }
991 
992 /*
993  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
994  */
995 static struct clocksource clocksource_tsc = {
996 	.name                   = "tsc",
997 	.rating                 = 300,
998 	.read                   = read_tsc,
999 	.mask                   = CLOCKSOURCE_MASK(64),
1000 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1001 				  CLOCK_SOURCE_MUST_VERIFY,
1002 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1003 };
1004 
1005 void mark_tsc_unstable(char *reason)
1006 {
1007 	if (!tsc_unstable) {
1008 		tsc_unstable = 1;
1009 		clear_sched_clock_stable();
1010 		disable_sched_clock_irqtime();
1011 		pr_info("Marking TSC unstable due to %s\n", reason);
1012 		/* Change only the rating, when not registered */
1013 		if (clocksource_tsc.mult)
1014 			clocksource_mark_unstable(&clocksource_tsc);
1015 		else {
1016 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1017 			clocksource_tsc.rating = 0;
1018 		}
1019 	}
1020 }
1021 
1022 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1023 
1024 static void __init check_system_tsc_reliable(void)
1025 {
1026 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1027 	if (is_geode_lx()) {
1028 		/* RTSC counts during suspend */
1029 #define RTSC_SUSP 0x100
1030 		unsigned long res_low, res_high;
1031 
1032 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1033 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1034 		if (res_low & RTSC_SUSP)
1035 			tsc_clocksource_reliable = 1;
1036 	}
1037 #endif
1038 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1039 		tsc_clocksource_reliable = 1;
1040 }
1041 
1042 /*
1043  * Make an educated guess if the TSC is trustworthy and synchronized
1044  * over all CPUs.
1045  */
1046 int unsynchronized_tsc(void)
1047 {
1048 	if (!cpu_has_tsc || tsc_unstable)
1049 		return 1;
1050 
1051 #ifdef CONFIG_SMP
1052 	if (apic_is_clustered_box())
1053 		return 1;
1054 #endif
1055 
1056 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1057 		return 0;
1058 
1059 	if (tsc_clocksource_reliable)
1060 		return 0;
1061 	/*
1062 	 * Intel systems are normally all synchronized.
1063 	 * Exceptions must mark TSC as unstable:
1064 	 */
1065 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1066 		/* assume multi socket systems are not synchronized: */
1067 		if (num_possible_cpus() > 1)
1068 			return 1;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 
1075 static void tsc_refine_calibration_work(struct work_struct *work);
1076 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1077 /**
1078  * tsc_refine_calibration_work - Further refine tsc freq calibration
1079  * @work - ignored.
1080  *
1081  * This functions uses delayed work over a period of a
1082  * second to further refine the TSC freq value. Since this is
1083  * timer based, instead of loop based, we don't block the boot
1084  * process while this longer calibration is done.
1085  *
1086  * If there are any calibration anomalies (too many SMIs, etc),
1087  * or the refined calibration is off by 1% of the fast early
1088  * calibration, we throw out the new calibration and use the
1089  * early calibration.
1090  */
1091 static void tsc_refine_calibration_work(struct work_struct *work)
1092 {
1093 	static u64 tsc_start = -1, ref_start;
1094 	static int hpet;
1095 	u64 tsc_stop, ref_stop, delta;
1096 	unsigned long freq;
1097 
1098 	/* Don't bother refining TSC on unstable systems */
1099 	if (check_tsc_unstable())
1100 		goto out;
1101 
1102 	/*
1103 	 * Since the work is started early in boot, we may be
1104 	 * delayed the first time we expire. So set the workqueue
1105 	 * again once we know timers are working.
1106 	 */
1107 	if (tsc_start == -1) {
1108 		/*
1109 		 * Only set hpet once, to avoid mixing hardware
1110 		 * if the hpet becomes enabled later.
1111 		 */
1112 		hpet = is_hpet_enabled();
1113 		schedule_delayed_work(&tsc_irqwork, HZ);
1114 		tsc_start = tsc_read_refs(&ref_start, hpet);
1115 		return;
1116 	}
1117 
1118 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1119 
1120 	/* hpet or pmtimer available ? */
1121 	if (ref_start == ref_stop)
1122 		goto out;
1123 
1124 	/* Check, whether the sampling was disturbed by an SMI */
1125 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1126 		goto out;
1127 
1128 	delta = tsc_stop - tsc_start;
1129 	delta *= 1000000LL;
1130 	if (hpet)
1131 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1132 	else
1133 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1134 
1135 	/* Make sure we're within 1% */
1136 	if (abs(tsc_khz - freq) > tsc_khz/100)
1137 		goto out;
1138 
1139 	tsc_khz = freq;
1140 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1141 		(unsigned long)tsc_khz / 1000,
1142 		(unsigned long)tsc_khz % 1000);
1143 
1144 out:
1145 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1146 }
1147 
1148 
1149 static int __init init_tsc_clocksource(void)
1150 {
1151 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1152 		return 0;
1153 
1154 	if (tsc_clocksource_reliable)
1155 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1156 	/* lower the rating if we already know its unstable: */
1157 	if (check_tsc_unstable()) {
1158 		clocksource_tsc.rating = 0;
1159 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1160 	}
1161 
1162 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1163 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1164 
1165 	/*
1166 	 * Trust the results of the earlier calibration on systems
1167 	 * exporting a reliable TSC.
1168 	 */
1169 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1170 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1171 		return 0;
1172 	}
1173 
1174 	schedule_delayed_work(&tsc_irqwork, 0);
1175 	return 0;
1176 }
1177 /*
1178  * We use device_initcall here, to ensure we run after the hpet
1179  * is fully initialized, which may occur at fs_initcall time.
1180  */
1181 device_initcall(init_tsc_clocksource);
1182 
1183 void __init tsc_init(void)
1184 {
1185 	u64 lpj;
1186 	int cpu;
1187 
1188 	if (!cpu_has_tsc) {
1189 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1190 		return;
1191 	}
1192 
1193 	tsc_khz = x86_platform.calibrate_tsc();
1194 	cpu_khz = tsc_khz;
1195 
1196 	if (!tsc_khz) {
1197 		mark_tsc_unstable("could not calculate TSC khz");
1198 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1199 		return;
1200 	}
1201 
1202 	pr_info("Detected %lu.%03lu MHz processor\n",
1203 		(unsigned long)cpu_khz / 1000,
1204 		(unsigned long)cpu_khz % 1000);
1205 
1206 	/*
1207 	 * Secondary CPUs do not run through tsc_init(), so set up
1208 	 * all the scale factors for all CPUs, assuming the same
1209 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1210 	 * up if their speed diverges)
1211 	 */
1212 	for_each_possible_cpu(cpu) {
1213 		cyc2ns_init(cpu);
1214 		set_cyc2ns_scale(cpu_khz, cpu);
1215 	}
1216 
1217 	if (tsc_disabled > 0)
1218 		return;
1219 
1220 	/* now allow native_sched_clock() to use rdtsc */
1221 
1222 	tsc_disabled = 0;
1223 	static_branch_enable(&__use_tsc);
1224 
1225 	if (!no_sched_irq_time)
1226 		enable_sched_clock_irqtime();
1227 
1228 	lpj = ((u64)tsc_khz * 1000);
1229 	do_div(lpj, HZ);
1230 	lpj_fine = lpj;
1231 
1232 	use_tsc_delay();
1233 
1234 	if (unsynchronized_tsc())
1235 		mark_tsc_unstable("TSCs unsynchronized");
1236 
1237 	check_system_tsc_reliable();
1238 }
1239 
1240 #ifdef CONFIG_SMP
1241 /*
1242  * If we have a constant TSC and are using the TSC for the delay loop,
1243  * we can skip clock calibration if another cpu in the same socket has already
1244  * been calibrated. This assumes that CONSTANT_TSC applies to all
1245  * cpus in the socket - this should be a safe assumption.
1246  */
1247 unsigned long calibrate_delay_is_known(void)
1248 {
1249 	int i, cpu = smp_processor_id();
1250 
1251 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1252 		return 0;
1253 
1254 	for_each_online_cpu(i)
1255 		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1256 			return cpu_data(i).loops_per_jiffy;
1257 	return 0;
1258 }
1259 #endif
1260