1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/init.h> 8 #include <linux/export.h> 9 #include <linux/timer.h> 10 #include <linux/acpi_pmtmr.h> 11 #include <linux/cpufreq.h> 12 #include <linux/delay.h> 13 #include <linux/clocksource.h> 14 #include <linux/kvm_types.h> 15 #include <linux/percpu.h> 16 #include <linux/timex.h> 17 #include <linux/static_key.h> 18 #include <linux/static_call.h> 19 20 #include <asm/cpuid/api.h> 21 #include <asm/hpet.h> 22 #include <asm/timer.h> 23 #include <asm/vgtod.h> 24 #include <asm/time.h> 25 #include <asm/delay.h> 26 #include <asm/hypervisor.h> 27 #include <asm/nmi.h> 28 #include <asm/x86_init.h> 29 #include <asm/geode.h> 30 #include <asm/apic.h> 31 #include <asm/cpu_device_id.h> 32 #include <asm/i8259.h> 33 #include <asm/msr.h> 34 #include <asm/topology.h> 35 #include <asm/uv/uv.h> 36 #include <asm/sev.h> 37 38 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 39 EXPORT_SYMBOL(cpu_khz); 40 41 unsigned int __read_mostly tsc_khz; 42 EXPORT_SYMBOL(tsc_khz); 43 44 #define KHZ 1000 45 46 /* 47 * TSC can be unstable due to cpufreq or due to unsynced TSCs 48 */ 49 static int __read_mostly tsc_unstable; 50 static unsigned int __initdata tsc_early_khz; 51 52 static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc); 53 54 int tsc_clocksource_reliable; 55 56 static int __read_mostly tsc_force_recalibrate; 57 58 static struct clocksource_base art_base_clk = { 59 .id = CSID_X86_ART, 60 }; 61 static bool have_art; 62 63 struct cyc2ns { 64 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ 65 seqcount_latch_t seq; /* 32 + 4 = 36 */ 66 67 }; /* fits one cacheline */ 68 69 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 70 71 static int __init tsc_early_khz_setup(char *buf) 72 { 73 return kstrtouint(buf, 0, &tsc_early_khz); 74 } 75 early_param("tsc_early_khz", tsc_early_khz_setup); 76 77 __always_inline void __cyc2ns_read(struct cyc2ns_data *data) 78 { 79 int seq, idx; 80 81 do { 82 seq = this_cpu_read(cyc2ns.seq.seqcount.sequence); 83 idx = seq & 1; 84 85 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); 86 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); 87 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); 88 89 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence))); 90 } 91 92 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) 93 { 94 preempt_disable_notrace(); 95 __cyc2ns_read(data); 96 } 97 98 __always_inline void cyc2ns_read_end(void) 99 { 100 preempt_enable_notrace(); 101 } 102 103 /* 104 * Accelerators for sched_clock() 105 * convert from cycles(64bits) => nanoseconds (64bits) 106 * basic equation: 107 * ns = cycles / (freq / ns_per_sec) 108 * ns = cycles * (ns_per_sec / freq) 109 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 110 * ns = cycles * (10^6 / cpu_khz) 111 * 112 * Then we use scaling math (suggested by george@mvista.com) to get: 113 * ns = cycles * (10^6 * SC / cpu_khz) / SC 114 * ns = cycles * cyc2ns_scale / SC 115 * 116 * And since SC is a constant power of two, we can convert the div 117 * into a shift. The larger SC is, the more accurate the conversion, but 118 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 119 * (64-bit result) can be used. 120 * 121 * We can use khz divisor instead of mhz to keep a better precision. 122 * (mathieu.desnoyers@polymtl.ca) 123 * 124 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 125 */ 126 127 static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc) 128 { 129 struct cyc2ns_data data; 130 unsigned long long ns; 131 132 __cyc2ns_read(&data); 133 134 ns = data.cyc2ns_offset; 135 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); 136 137 return ns; 138 } 139 140 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) 141 { 142 unsigned long long ns; 143 preempt_disable_notrace(); 144 ns = __cycles_2_ns(cyc); 145 preempt_enable_notrace(); 146 return ns; 147 } 148 149 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 150 { 151 unsigned long long ns_now; 152 struct cyc2ns_data data; 153 struct cyc2ns *c2n; 154 155 ns_now = cycles_2_ns(tsc_now); 156 157 /* 158 * Compute a new multiplier as per the above comment and ensure our 159 * time function is continuous; see the comment near struct 160 * cyc2ns_data. 161 */ 162 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, 163 NSEC_PER_MSEC, 0); 164 165 /* 166 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 167 * not expected to be greater than 31 due to the original published 168 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 169 * value) - refer perf_event_mmap_page documentation in perf_event.h. 170 */ 171 if (data.cyc2ns_shift == 32) { 172 data.cyc2ns_shift = 31; 173 data.cyc2ns_mul >>= 1; 174 } 175 176 data.cyc2ns_offset = ns_now - 177 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); 178 179 c2n = per_cpu_ptr(&cyc2ns, cpu); 180 181 write_seqcount_latch_begin(&c2n->seq); 182 c2n->data[0] = data; 183 write_seqcount_latch(&c2n->seq); 184 c2n->data[1] = data; 185 write_seqcount_latch_end(&c2n->seq); 186 } 187 188 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 189 { 190 unsigned long flags; 191 192 local_irq_save(flags); 193 sched_clock_idle_sleep_event(); 194 195 if (khz) 196 __set_cyc2ns_scale(khz, cpu, tsc_now); 197 198 sched_clock_idle_wakeup_event(); 199 local_irq_restore(flags); 200 } 201 202 /* 203 * Initialize cyc2ns for boot cpu 204 */ 205 static void __init cyc2ns_init_boot_cpu(void) 206 { 207 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 208 209 seqcount_latch_init(&c2n->seq); 210 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); 211 } 212 213 /* 214 * Secondary CPUs do not run through tsc_init(), so set up 215 * all the scale factors for all CPUs, assuming the same 216 * speed as the bootup CPU. 217 */ 218 static void __init cyc2ns_init_secondary_cpus(void) 219 { 220 unsigned int cpu, this_cpu = smp_processor_id(); 221 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 222 struct cyc2ns_data *data = c2n->data; 223 224 for_each_possible_cpu(cpu) { 225 if (cpu != this_cpu) { 226 seqcount_latch_init(&c2n->seq); 227 c2n = per_cpu_ptr(&cyc2ns, cpu); 228 c2n->data[0] = data[0]; 229 c2n->data[1] = data[1]; 230 } 231 } 232 } 233 234 /* 235 * Scheduler clock - returns current time in nanosec units. 236 */ 237 noinstr u64 native_sched_clock(void) 238 { 239 if (static_branch_likely(&__use_tsc)) { 240 u64 tsc_now = rdtsc(); 241 242 /* return the value in ns */ 243 return __cycles_2_ns(tsc_now); 244 } 245 246 /* 247 * Fall back to jiffies if there's no TSC available: 248 * ( But note that we still use it if the TSC is marked 249 * unstable. We do this because unlike Time Of Day, 250 * the scheduler clock tolerates small errors and it's 251 * very important for it to be as fast as the platform 252 * can achieve it. ) 253 */ 254 255 /* No locking but a rare wrong value is not a big deal: */ 256 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 257 } 258 259 /* 260 * Generate a sched_clock if you already have a TSC value. 261 */ 262 u64 native_sched_clock_from_tsc(u64 tsc) 263 { 264 return cycles_2_ns(tsc); 265 } 266 267 /* We need to define a real function for sched_clock, to override the 268 weak default version */ 269 #ifdef CONFIG_PARAVIRT 270 noinstr u64 sched_clock_noinstr(void) 271 { 272 return paravirt_sched_clock(); 273 } 274 275 bool using_native_sched_clock(void) 276 { 277 return static_call_query(pv_sched_clock) == native_sched_clock; 278 } 279 #else 280 u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock"))); 281 282 bool using_native_sched_clock(void) { return true; } 283 #endif 284 285 notrace u64 sched_clock(void) 286 { 287 u64 now; 288 preempt_disable_notrace(); 289 now = sched_clock_noinstr(); 290 preempt_enable_notrace(); 291 return now; 292 } 293 294 int check_tsc_unstable(void) 295 { 296 return tsc_unstable; 297 } 298 EXPORT_SYMBOL_GPL(check_tsc_unstable); 299 300 #ifdef CONFIG_X86_TSC 301 int __init notsc_setup(char *str) 302 { 303 mark_tsc_unstable("boot parameter notsc"); 304 return 1; 305 } 306 #else 307 /* 308 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 309 * in cpu/common.c 310 */ 311 int __init notsc_setup(char *str) 312 { 313 setup_clear_cpu_cap(X86_FEATURE_TSC); 314 return 1; 315 } 316 #endif 317 318 __setup("notsc", notsc_setup); 319 320 static int no_sched_irq_time; 321 static int no_tsc_watchdog; 322 static int tsc_as_watchdog; 323 324 static int __init tsc_setup(char *str) 325 { 326 if (!strcmp(str, "reliable")) 327 tsc_clocksource_reliable = 1; 328 if (!strncmp(str, "noirqtime", 9)) 329 no_sched_irq_time = 1; 330 if (!strcmp(str, "unstable")) 331 mark_tsc_unstable("boot parameter"); 332 if (!strcmp(str, "nowatchdog")) { 333 no_tsc_watchdog = 1; 334 if (tsc_as_watchdog) 335 pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n", 336 __func__); 337 tsc_as_watchdog = 0; 338 } 339 if (!strcmp(str, "recalibrate")) 340 tsc_force_recalibrate = 1; 341 if (!strcmp(str, "watchdog")) { 342 if (no_tsc_watchdog) 343 pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n", 344 __func__); 345 else 346 tsc_as_watchdog = 1; 347 } 348 return 1; 349 } 350 351 __setup("tsc=", tsc_setup); 352 353 #define MAX_RETRIES 5 354 #define TSC_DEFAULT_THRESHOLD 0x20000 355 356 /* 357 * Read TSC and the reference counters. Take care of any disturbances 358 */ 359 static u64 tsc_read_refs(u64 *p, int hpet) 360 { 361 u64 t1, t2; 362 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; 363 int i; 364 365 for (i = 0; i < MAX_RETRIES; i++) { 366 t1 = get_cycles(); 367 if (hpet) 368 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 369 else 370 *p = acpi_pm_read_early(); 371 t2 = get_cycles(); 372 if ((t2 - t1) < thresh) 373 return t2; 374 } 375 return ULLONG_MAX; 376 } 377 378 /* 379 * Calculate the TSC frequency from HPET reference 380 */ 381 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 382 { 383 u64 tmp; 384 385 if (hpet2 < hpet1) 386 hpet2 += 0x100000000ULL; 387 hpet2 -= hpet1; 388 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 389 do_div(tmp, 1000000); 390 deltatsc = div64_u64(deltatsc, tmp); 391 392 return (unsigned long) deltatsc; 393 } 394 395 /* 396 * Calculate the TSC frequency from PMTimer reference 397 */ 398 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 399 { 400 u64 tmp; 401 402 if (!pm1 && !pm2) 403 return ULONG_MAX; 404 405 if (pm2 < pm1) 406 pm2 += (u64)ACPI_PM_OVRRUN; 407 pm2 -= pm1; 408 tmp = pm2 * 1000000000LL; 409 do_div(tmp, PMTMR_TICKS_PER_SEC); 410 do_div(deltatsc, tmp); 411 412 return (unsigned long) deltatsc; 413 } 414 415 #define CAL_MS 10 416 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 417 #define CAL_PIT_LOOPS 1000 418 419 #define CAL2_MS 50 420 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 421 #define CAL2_PIT_LOOPS 5000 422 423 424 /* 425 * Try to calibrate the TSC against the Programmable 426 * Interrupt Timer and return the frequency of the TSC 427 * in kHz. 428 * 429 * Return ULONG_MAX on failure to calibrate. 430 */ 431 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 432 { 433 u64 tsc, t1, t2, delta; 434 unsigned long tscmin, tscmax; 435 int pitcnt; 436 437 if (!has_legacy_pic()) { 438 /* 439 * Relies on tsc_early_delay_calibrate() to have given us semi 440 * usable udelay(), wait for the same 50ms we would have with 441 * the PIT loop below. 442 */ 443 udelay(10 * USEC_PER_MSEC); 444 udelay(10 * USEC_PER_MSEC); 445 udelay(10 * USEC_PER_MSEC); 446 udelay(10 * USEC_PER_MSEC); 447 udelay(10 * USEC_PER_MSEC); 448 return ULONG_MAX; 449 } 450 451 /* Set the Gate high, disable speaker */ 452 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 453 454 /* 455 * Setup CTC channel 2* for mode 0, (interrupt on terminal 456 * count mode), binary count. Set the latch register to 50ms 457 * (LSB then MSB) to begin countdown. 458 */ 459 outb(0xb0, 0x43); 460 outb(latch & 0xff, 0x42); 461 outb(latch >> 8, 0x42); 462 463 tsc = t1 = t2 = get_cycles(); 464 465 pitcnt = 0; 466 tscmax = 0; 467 tscmin = ULONG_MAX; 468 while ((inb(0x61) & 0x20) == 0) { 469 t2 = get_cycles(); 470 delta = t2 - tsc; 471 tsc = t2; 472 if ((unsigned long) delta < tscmin) 473 tscmin = (unsigned int) delta; 474 if ((unsigned long) delta > tscmax) 475 tscmax = (unsigned int) delta; 476 pitcnt++; 477 } 478 479 /* 480 * Sanity checks: 481 * 482 * If we were not able to read the PIT more than loopmin 483 * times, then we have been hit by a massive SMI 484 * 485 * If the maximum is 10 times larger than the minimum, 486 * then we got hit by an SMI as well. 487 */ 488 if (pitcnt < loopmin || tscmax > 10 * tscmin) 489 return ULONG_MAX; 490 491 /* Calculate the PIT value */ 492 delta = t2 - t1; 493 do_div(delta, ms); 494 return delta; 495 } 496 497 /* 498 * This reads the current MSB of the PIT counter, and 499 * checks if we are running on sufficiently fast and 500 * non-virtualized hardware. 501 * 502 * Our expectations are: 503 * 504 * - the PIT is running at roughly 1.19MHz 505 * 506 * - each IO is going to take about 1us on real hardware, 507 * but we allow it to be much faster (by a factor of 10) or 508 * _slightly_ slower (ie we allow up to a 2us read+counter 509 * update - anything else implies a unacceptably slow CPU 510 * or PIT for the fast calibration to work. 511 * 512 * - with 256 PIT ticks to read the value, we have 214us to 513 * see the same MSB (and overhead like doing a single TSC 514 * read per MSB value etc). 515 * 516 * - We're doing 2 reads per loop (LSB, MSB), and we expect 517 * them each to take about a microsecond on real hardware. 518 * So we expect a count value of around 100. But we'll be 519 * generous, and accept anything over 50. 520 * 521 * - if the PIT is stuck, and we see *many* more reads, we 522 * return early (and the next caller of pit_expect_msb() 523 * then consider it a failure when they don't see the 524 * next expected value). 525 * 526 * These expectations mean that we know that we have seen the 527 * transition from one expected value to another with a fairly 528 * high accuracy, and we didn't miss any events. We can thus 529 * use the TSC value at the transitions to calculate a pretty 530 * good value for the TSC frequency. 531 */ 532 static inline int pit_verify_msb(unsigned char val) 533 { 534 /* Ignore LSB */ 535 inb(0x42); 536 return inb(0x42) == val; 537 } 538 539 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 540 { 541 int count; 542 u64 tsc = 0, prev_tsc = 0; 543 544 for (count = 0; count < 50000; count++) { 545 if (!pit_verify_msb(val)) 546 break; 547 prev_tsc = tsc; 548 tsc = get_cycles(); 549 } 550 *deltap = get_cycles() - prev_tsc; 551 *tscp = tsc; 552 553 /* 554 * We require _some_ success, but the quality control 555 * will be based on the error terms on the TSC values. 556 */ 557 return count > 5; 558 } 559 560 /* 561 * How many MSB values do we want to see? We aim for 562 * a maximum error rate of 500ppm (in practice the 563 * real error is much smaller), but refuse to spend 564 * more than 50ms on it. 565 */ 566 #define MAX_QUICK_PIT_MS 50 567 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 568 569 static unsigned long quick_pit_calibrate(void) 570 { 571 int i; 572 u64 tsc, delta; 573 unsigned long d1, d2; 574 575 if (!has_legacy_pic()) 576 return 0; 577 578 /* Set the Gate high, disable speaker */ 579 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 580 581 /* 582 * Counter 2, mode 0 (one-shot), binary count 583 * 584 * NOTE! Mode 2 decrements by two (and then the 585 * output is flipped each time, giving the same 586 * final output frequency as a decrement-by-one), 587 * so mode 0 is much better when looking at the 588 * individual counts. 589 */ 590 outb(0xb0, 0x43); 591 592 /* Start at 0xffff */ 593 outb(0xff, 0x42); 594 outb(0xff, 0x42); 595 596 /* 597 * The PIT starts counting at the next edge, so we 598 * need to delay for a microsecond. The easiest way 599 * to do that is to just read back the 16-bit counter 600 * once from the PIT. 601 */ 602 pit_verify_msb(0); 603 604 if (pit_expect_msb(0xff, &tsc, &d1)) { 605 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 606 if (!pit_expect_msb(0xff-i, &delta, &d2)) 607 break; 608 609 delta -= tsc; 610 611 /* 612 * Extrapolate the error and fail fast if the error will 613 * never be below 500 ppm. 614 */ 615 if (i == 1 && 616 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 617 return 0; 618 619 /* 620 * Iterate until the error is less than 500 ppm 621 */ 622 if (d1+d2 >= delta >> 11) 623 continue; 624 625 /* 626 * Check the PIT one more time to verify that 627 * all TSC reads were stable wrt the PIT. 628 * 629 * This also guarantees serialization of the 630 * last cycle read ('d2') in pit_expect_msb. 631 */ 632 if (!pit_verify_msb(0xfe - i)) 633 break; 634 goto success; 635 } 636 } 637 pr_info("Fast TSC calibration failed\n"); 638 return 0; 639 640 success: 641 /* 642 * Ok, if we get here, then we've seen the 643 * MSB of the PIT decrement 'i' times, and the 644 * error has shrunk to less than 500 ppm. 645 * 646 * As a result, we can depend on there not being 647 * any odd delays anywhere, and the TSC reads are 648 * reliable (within the error). 649 * 650 * kHz = ticks / time-in-seconds / 1000; 651 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 652 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 653 */ 654 delta *= PIT_TICK_RATE; 655 do_div(delta, i*256*1000); 656 pr_info("Fast TSC calibration using PIT\n"); 657 return delta; 658 } 659 660 /** 661 * native_calibrate_tsc - determine TSC frequency 662 * Determine TSC frequency via CPUID, else return 0. 663 */ 664 unsigned long native_calibrate_tsc(void) 665 { 666 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 667 unsigned int crystal_khz; 668 669 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 670 return 0; 671 672 if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC) 673 return 0; 674 675 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 676 677 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 678 cpuid(CPUID_LEAF_TSC, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 679 680 if (ebx_numerator == 0 || eax_denominator == 0) 681 return 0; 682 683 crystal_khz = ecx_hz / 1000; 684 685 /* 686 * Denverton SoCs don't report crystal clock, and also don't support 687 * CPUID_LEAF_FREQ for the calculation below, so hardcode the 25MHz 688 * crystal clock. 689 */ 690 if (crystal_khz == 0 && 691 boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D) 692 crystal_khz = 25000; 693 694 /* 695 * TSC frequency reported directly by CPUID is a "hardware reported" 696 * frequency and is the most accurate one so far we have. This 697 * is considered a known frequency. 698 */ 699 if (crystal_khz != 0) 700 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); 701 702 /* 703 * Some Intel SoCs like Skylake and Kabylake don't report the crystal 704 * clock, but we can easily calculate it to a high degree of accuracy 705 * by considering the crystal ratio and the CPU speed. 706 */ 707 if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= CPUID_LEAF_FREQ) { 708 unsigned int eax_base_mhz, ebx, ecx, edx; 709 710 cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx, &ecx, &edx); 711 crystal_khz = eax_base_mhz * 1000 * 712 eax_denominator / ebx_numerator; 713 } 714 715 if (crystal_khz == 0) 716 return 0; 717 718 /* 719 * For Atom SoCs TSC is the only reliable clocksource. 720 * Mark TSC reliable so no watchdog on it. 721 */ 722 if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT) 723 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 724 725 #ifdef CONFIG_X86_LOCAL_APIC 726 /* 727 * The local APIC appears to be fed by the core crystal clock 728 * (which sounds entirely sensible). We can set the global 729 * lapic_timer_period here to avoid having to calibrate the APIC 730 * timer later. 731 */ 732 lapic_timer_period = crystal_khz * 1000 / HZ; 733 #endif 734 735 return crystal_khz * ebx_numerator / eax_denominator; 736 } 737 738 static unsigned long cpu_khz_from_cpuid(void) 739 { 740 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 741 742 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 743 return 0; 744 745 if (boot_cpu_data.cpuid_level < CPUID_LEAF_FREQ) 746 return 0; 747 748 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 749 750 cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 751 752 return eax_base_mhz * 1000; 753 } 754 755 /* 756 * calibrate cpu using pit, hpet, and ptimer methods. They are available 757 * later in boot after acpi is initialized. 758 */ 759 static unsigned long pit_hpet_ptimer_calibrate_cpu(void) 760 { 761 u64 tsc1, tsc2, delta, ref1, ref2; 762 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 763 unsigned long flags, latch, ms; 764 int hpet = is_hpet_enabled(), i, loopmin; 765 766 /* 767 * Run 5 calibration loops to get the lowest frequency value 768 * (the best estimate). We use two different calibration modes 769 * here: 770 * 771 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 772 * load a timeout of 50ms. We read the time right after we 773 * started the timer and wait until the PIT count down reaches 774 * zero. In each wait loop iteration we read the TSC and check 775 * the delta to the previous read. We keep track of the min 776 * and max values of that delta. The delta is mostly defined 777 * by the IO time of the PIT access, so we can detect when 778 * any disturbance happened between the two reads. If the 779 * maximum time is significantly larger than the minimum time, 780 * then we discard the result and have another try. 781 * 782 * 2) Reference counter. If available we use the HPET or the 783 * PMTIMER as a reference to check the sanity of that value. 784 * We use separate TSC readouts and check inside of the 785 * reference read for any possible disturbance. We discard 786 * disturbed values here as well. We do that around the PIT 787 * calibration delay loop as we have to wait for a certain 788 * amount of time anyway. 789 */ 790 791 /* Preset PIT loop values */ 792 latch = CAL_LATCH; 793 ms = CAL_MS; 794 loopmin = CAL_PIT_LOOPS; 795 796 for (i = 0; i < 3; i++) { 797 unsigned long tsc_pit_khz; 798 799 /* 800 * Read the start value and the reference count of 801 * hpet/pmtimer when available. Then do the PIT 802 * calibration, which will take at least 50ms, and 803 * read the end value. 804 */ 805 local_irq_save(flags); 806 tsc1 = tsc_read_refs(&ref1, hpet); 807 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 808 tsc2 = tsc_read_refs(&ref2, hpet); 809 local_irq_restore(flags); 810 811 /* Pick the lowest PIT TSC calibration so far */ 812 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 813 814 /* hpet or pmtimer available ? */ 815 if (ref1 == ref2) 816 continue; 817 818 /* Check, whether the sampling was disturbed */ 819 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 820 continue; 821 822 tsc2 = (tsc2 - tsc1) * 1000000LL; 823 if (hpet) 824 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 825 else 826 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 827 828 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 829 830 /* Check the reference deviation */ 831 delta = ((u64) tsc_pit_min) * 100; 832 do_div(delta, tsc_ref_min); 833 834 /* 835 * If both calibration results are inside a 10% window 836 * then we can be sure, that the calibration 837 * succeeded. We break out of the loop right away. We 838 * use the reference value, as it is more precise. 839 */ 840 if (delta >= 90 && delta <= 110) { 841 pr_info("PIT calibration matches %s. %d loops\n", 842 hpet ? "HPET" : "PMTIMER", i + 1); 843 return tsc_ref_min; 844 } 845 846 /* 847 * Check whether PIT failed more than once. This 848 * happens in virtualized environments. We need to 849 * give the virtual PC a slightly longer timeframe for 850 * the HPET/PMTIMER to make the result precise. 851 */ 852 if (i == 1 && tsc_pit_min == ULONG_MAX) { 853 latch = CAL2_LATCH; 854 ms = CAL2_MS; 855 loopmin = CAL2_PIT_LOOPS; 856 } 857 } 858 859 /* 860 * Now check the results. 861 */ 862 if (tsc_pit_min == ULONG_MAX) { 863 /* PIT gave no useful value */ 864 pr_warn("Unable to calibrate against PIT\n"); 865 866 /* We don't have an alternative source, disable TSC */ 867 if (!hpet && !ref1 && !ref2) { 868 pr_notice("No reference (HPET/PMTIMER) available\n"); 869 return 0; 870 } 871 872 /* The alternative source failed as well, disable TSC */ 873 if (tsc_ref_min == ULONG_MAX) { 874 pr_warn("HPET/PMTIMER calibration failed\n"); 875 return 0; 876 } 877 878 /* Use the alternative source */ 879 pr_info("using %s reference calibration\n", 880 hpet ? "HPET" : "PMTIMER"); 881 882 return tsc_ref_min; 883 } 884 885 /* We don't have an alternative source, use the PIT calibration value */ 886 if (!hpet && !ref1 && !ref2) { 887 pr_info("Using PIT calibration value\n"); 888 return tsc_pit_min; 889 } 890 891 /* The alternative source failed, use the PIT calibration value */ 892 if (tsc_ref_min == ULONG_MAX) { 893 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 894 return tsc_pit_min; 895 } 896 897 /* 898 * The calibration values differ too much. In doubt, we use 899 * the PIT value as we know that there are PMTIMERs around 900 * running at double speed. At least we let the user know: 901 */ 902 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 903 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 904 pr_info("Using PIT calibration value\n"); 905 return tsc_pit_min; 906 } 907 908 /** 909 * native_calibrate_cpu_early - can calibrate the cpu early in boot 910 */ 911 unsigned long native_calibrate_cpu_early(void) 912 { 913 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); 914 915 if (!fast_calibrate) 916 fast_calibrate = cpu_khz_from_msr(); 917 if (!fast_calibrate) { 918 local_irq_save(flags); 919 fast_calibrate = quick_pit_calibrate(); 920 local_irq_restore(flags); 921 } 922 return fast_calibrate; 923 } 924 925 926 /** 927 * native_calibrate_cpu - calibrate the cpu 928 */ 929 static unsigned long native_calibrate_cpu(void) 930 { 931 unsigned long tsc_freq = native_calibrate_cpu_early(); 932 933 if (!tsc_freq) 934 tsc_freq = pit_hpet_ptimer_calibrate_cpu(); 935 936 return tsc_freq; 937 } 938 939 void recalibrate_cpu_khz(void) 940 { 941 #ifndef CONFIG_SMP 942 unsigned long cpu_khz_old = cpu_khz; 943 944 if (!boot_cpu_has(X86_FEATURE_TSC)) 945 return; 946 947 cpu_khz = x86_platform.calibrate_cpu(); 948 tsc_khz = x86_platform.calibrate_tsc(); 949 if (tsc_khz == 0) 950 tsc_khz = cpu_khz; 951 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 952 cpu_khz = tsc_khz; 953 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 954 cpu_khz_old, cpu_khz); 955 #endif 956 } 957 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz); 958 959 960 static unsigned long long cyc2ns_suspend; 961 962 void tsc_save_sched_clock_state(void) 963 { 964 if (!static_branch_likely(&__use_tsc) && !sched_clock_stable()) 965 return; 966 967 cyc2ns_suspend = sched_clock(); 968 } 969 970 /* 971 * Even on processors with invariant TSC, TSC gets reset in some the 972 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 973 * arbitrary value (still sync'd across cpu's) during resume from such sleep 974 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 975 * that sched_clock() continues from the point where it was left off during 976 * suspend. 977 */ 978 void tsc_restore_sched_clock_state(void) 979 { 980 unsigned long long offset; 981 unsigned long flags; 982 int cpu; 983 984 if (!static_branch_likely(&__use_tsc) && !sched_clock_stable()) 985 return; 986 987 local_irq_save(flags); 988 989 /* 990 * We're coming out of suspend, there's no concurrency yet; don't 991 * bother being nice about the RCU stuff, just write to both 992 * data fields. 993 */ 994 995 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 996 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 997 998 offset = cyc2ns_suspend - sched_clock(); 999 1000 for_each_possible_cpu(cpu) { 1001 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 1002 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 1003 } 1004 1005 local_irq_restore(flags); 1006 } 1007 1008 #ifdef CONFIG_CPU_FREQ 1009 /* 1010 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency 1011 * changes. 1012 * 1013 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC 1014 * as unstable and give up in those cases. 1015 * 1016 * Should fix up last_tsc too. Currently gettimeofday in the 1017 * first tick after the change will be slightly wrong. 1018 */ 1019 1020 static unsigned int ref_freq; 1021 static unsigned long loops_per_jiffy_ref; 1022 static unsigned long tsc_khz_ref; 1023 1024 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 1025 void *data) 1026 { 1027 struct cpufreq_freqs *freq = data; 1028 1029 if (num_online_cpus() > 1) { 1030 mark_tsc_unstable("cpufreq changes on SMP"); 1031 return 0; 1032 } 1033 1034 if (!ref_freq) { 1035 ref_freq = freq->old; 1036 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; 1037 tsc_khz_ref = tsc_khz; 1038 } 1039 1040 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 1041 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 1042 boot_cpu_data.loops_per_jiffy = 1043 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 1044 1045 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 1046 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 1047 mark_tsc_unstable("cpufreq changes"); 1048 1049 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); 1050 } 1051 1052 return 0; 1053 } 1054 1055 static struct notifier_block time_cpufreq_notifier_block = { 1056 .notifier_call = time_cpufreq_notifier 1057 }; 1058 1059 static int __init cpufreq_register_tsc_scaling(void) 1060 { 1061 if (!boot_cpu_has(X86_FEATURE_TSC)) 1062 return 0; 1063 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1064 return 0; 1065 cpufreq_register_notifier(&time_cpufreq_notifier_block, 1066 CPUFREQ_TRANSITION_NOTIFIER); 1067 return 0; 1068 } 1069 1070 core_initcall(cpufreq_register_tsc_scaling); 1071 1072 #endif /* CONFIG_CPU_FREQ */ 1073 1074 #define ART_MIN_DENOMINATOR (1) 1075 1076 /* 1077 * If ART is present detect the numerator:denominator to convert to TSC 1078 */ 1079 static void __init detect_art(void) 1080 { 1081 unsigned int unused; 1082 1083 if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC) 1084 return; 1085 1086 /* 1087 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, 1088 * and the TSC counter resets must not occur asynchronously. 1089 */ 1090 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1091 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1092 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || 1093 tsc_async_resets) 1094 return; 1095 1096 cpuid(CPUID_LEAF_TSC, &art_base_clk.denominator, 1097 &art_base_clk.numerator, &art_base_clk.freq_khz, &unused); 1098 1099 art_base_clk.freq_khz /= KHZ; 1100 if (art_base_clk.denominator < ART_MIN_DENOMINATOR) 1101 return; 1102 1103 rdmsrq(MSR_IA32_TSC_ADJUST, art_base_clk.offset); 1104 1105 /* Make this sticky over multiple CPU init calls */ 1106 setup_force_cpu_cap(X86_FEATURE_ART); 1107 } 1108 1109 1110 /* clocksource code */ 1111 1112 static void tsc_resume(struct clocksource *cs) 1113 { 1114 tsc_verify_tsc_adjust(true); 1115 } 1116 1117 /* 1118 * We used to compare the TSC to the cycle_last value in the clocksource 1119 * structure to avoid a nasty time-warp. This can be observed in a 1120 * very small window right after one CPU updated cycle_last under 1121 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1122 * is smaller than the cycle_last reference value due to a TSC which 1123 * is slightly behind. This delta is nowhere else observable, but in 1124 * that case it results in a forward time jump in the range of hours 1125 * due to the unsigned delta calculation of the time keeping core 1126 * code, which is necessary to support wrapping clocksources like pm 1127 * timer. 1128 * 1129 * This sanity check is now done in the core timekeeping code. 1130 * checking the result of read_tsc() - cycle_last for being negative. 1131 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1132 */ 1133 static u64 read_tsc(struct clocksource *cs) 1134 { 1135 return (u64)rdtsc_ordered(); 1136 } 1137 1138 static void tsc_cs_mark_unstable(struct clocksource *cs) 1139 { 1140 if (tsc_unstable) 1141 return; 1142 1143 tsc_unstable = 1; 1144 if (using_native_sched_clock()) 1145 clear_sched_clock_stable(); 1146 disable_sched_clock_irqtime(); 1147 pr_info("Marking TSC unstable due to clocksource watchdog\n"); 1148 } 1149 1150 static void tsc_cs_tick_stable(struct clocksource *cs) 1151 { 1152 if (tsc_unstable) 1153 return; 1154 1155 if (using_native_sched_clock()) 1156 sched_clock_tick_stable(); 1157 } 1158 1159 static int tsc_cs_enable(struct clocksource *cs) 1160 { 1161 vclocks_set_used(VDSO_CLOCKMODE_TSC); 1162 return 0; 1163 } 1164 1165 /* 1166 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1167 */ 1168 static struct clocksource clocksource_tsc_early = { 1169 .name = "tsc-early", 1170 .rating = 299, 1171 .uncertainty_margin = 32 * NSEC_PER_MSEC, 1172 .read = read_tsc, 1173 .mask = CLOCKSOURCE_MASK(64), 1174 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1175 CLOCK_SOURCE_MUST_VERIFY, 1176 .id = CSID_X86_TSC_EARLY, 1177 .vdso_clock_mode = VDSO_CLOCKMODE_TSC, 1178 .enable = tsc_cs_enable, 1179 .resume = tsc_resume, 1180 .mark_unstable = tsc_cs_mark_unstable, 1181 .tick_stable = tsc_cs_tick_stable, 1182 .list = LIST_HEAD_INIT(clocksource_tsc_early.list), 1183 }; 1184 1185 /* 1186 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early 1187 * this one will immediately take over. We will only register if TSC has 1188 * been found good. 1189 */ 1190 static struct clocksource clocksource_tsc = { 1191 .name = "tsc", 1192 .rating = 300, 1193 .read = read_tsc, 1194 .mask = CLOCKSOURCE_MASK(64), 1195 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1196 CLOCK_SOURCE_VALID_FOR_HRES | 1197 CLOCK_SOURCE_MUST_VERIFY | 1198 CLOCK_SOURCE_VERIFY_PERCPU, 1199 .id = CSID_X86_TSC, 1200 .vdso_clock_mode = VDSO_CLOCKMODE_TSC, 1201 .enable = tsc_cs_enable, 1202 .resume = tsc_resume, 1203 .mark_unstable = tsc_cs_mark_unstable, 1204 .tick_stable = tsc_cs_tick_stable, 1205 .list = LIST_HEAD_INIT(clocksource_tsc.list), 1206 }; 1207 1208 void mark_tsc_unstable(char *reason) 1209 { 1210 if (tsc_unstable) 1211 return; 1212 1213 tsc_unstable = 1; 1214 if (using_native_sched_clock()) 1215 clear_sched_clock_stable(); 1216 disable_sched_clock_irqtime(); 1217 pr_info("Marking TSC unstable due to %s\n", reason); 1218 1219 clocksource_mark_unstable(&clocksource_tsc_early); 1220 clocksource_mark_unstable(&clocksource_tsc); 1221 } 1222 1223 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1224 1225 static void __init tsc_disable_clocksource_watchdog(void) 1226 { 1227 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1228 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1229 } 1230 1231 bool tsc_clocksource_watchdog_disabled(void) 1232 { 1233 return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) && 1234 tsc_as_watchdog && !no_tsc_watchdog; 1235 } 1236 1237 static void __init check_system_tsc_reliable(void) 1238 { 1239 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1240 if (is_geode_lx()) { 1241 /* RTSC counts during suspend */ 1242 #define RTSC_SUSP 0x100 1243 unsigned long res_low, res_high; 1244 1245 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1246 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1247 if (res_low & RTSC_SUSP) 1248 tsc_clocksource_reliable = 1; 1249 } 1250 #endif 1251 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1252 tsc_clocksource_reliable = 1; 1253 1254 /* 1255 * Disable the clocksource watchdog when the system has: 1256 * - TSC running at constant frequency 1257 * - TSC which does not stop in C-States 1258 * - the TSC_ADJUST register which allows to detect even minimal 1259 * modifications 1260 * - not more than four packages 1261 */ 1262 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && 1263 boot_cpu_has(X86_FEATURE_NONSTOP_TSC) && 1264 boot_cpu_has(X86_FEATURE_TSC_ADJUST) && 1265 topology_max_packages() <= 4) 1266 tsc_disable_clocksource_watchdog(); 1267 } 1268 1269 /* 1270 * Make an educated guess if the TSC is trustworthy and synchronized 1271 * over all CPUs. 1272 */ 1273 int unsynchronized_tsc(void) 1274 { 1275 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1276 return 1; 1277 1278 #ifdef CONFIG_SMP 1279 if (apic_is_clustered_box()) 1280 return 1; 1281 #endif 1282 1283 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1284 return 0; 1285 1286 if (tsc_clocksource_reliable) 1287 return 0; 1288 /* 1289 * Intel systems are normally all synchronized. 1290 * Exceptions must mark TSC as unstable: 1291 */ 1292 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1293 /* assume multi socket systems are not synchronized: */ 1294 if (topology_max_packages() > 1) 1295 return 1; 1296 } 1297 1298 return 0; 1299 } 1300 1301 static void tsc_refine_calibration_work(struct work_struct *work); 1302 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1303 /** 1304 * tsc_refine_calibration_work - Further refine tsc freq calibration 1305 * @work: ignored. 1306 * 1307 * This functions uses delayed work over a period of a 1308 * second to further refine the TSC freq value. Since this is 1309 * timer based, instead of loop based, we don't block the boot 1310 * process while this longer calibration is done. 1311 * 1312 * If there are any calibration anomalies (too many SMIs, etc), 1313 * or the refined calibration is off by 1% of the fast early 1314 * calibration, we throw out the new calibration and use the 1315 * early calibration. 1316 */ 1317 static void tsc_refine_calibration_work(struct work_struct *work) 1318 { 1319 static u64 tsc_start = ULLONG_MAX, ref_start; 1320 static int hpet; 1321 u64 tsc_stop, ref_stop, delta; 1322 unsigned long freq; 1323 int cpu; 1324 1325 /* Don't bother refining TSC on unstable systems */ 1326 if (tsc_unstable) 1327 goto unreg; 1328 1329 /* 1330 * Since the work is started early in boot, we may be 1331 * delayed the first time we expire. So set the workqueue 1332 * again once we know timers are working. 1333 */ 1334 if (tsc_start == ULLONG_MAX) { 1335 restart: 1336 /* 1337 * Only set hpet once, to avoid mixing hardware 1338 * if the hpet becomes enabled later. 1339 */ 1340 hpet = is_hpet_enabled(); 1341 tsc_start = tsc_read_refs(&ref_start, hpet); 1342 schedule_delayed_work(&tsc_irqwork, HZ); 1343 return; 1344 } 1345 1346 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1347 1348 /* hpet or pmtimer available ? */ 1349 if (ref_start == ref_stop) 1350 goto out; 1351 1352 /* Check, whether the sampling was disturbed */ 1353 if (tsc_stop == ULLONG_MAX) 1354 goto restart; 1355 1356 delta = tsc_stop - tsc_start; 1357 delta *= 1000000LL; 1358 if (hpet) 1359 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1360 else 1361 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1362 1363 /* Will hit this only if tsc_force_recalibrate has been set */ 1364 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1365 1366 /* Warn if the deviation exceeds 500 ppm */ 1367 if (abs(tsc_khz - freq) > (tsc_khz >> 11)) { 1368 pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n"); 1369 pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n", 1370 (unsigned long)tsc_khz / 1000, 1371 (unsigned long)tsc_khz % 1000); 1372 } 1373 1374 pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n", 1375 hpet ? "HPET" : "PM_TIMER", 1376 (unsigned long)freq / 1000, 1377 (unsigned long)freq % 1000); 1378 1379 return; 1380 } 1381 1382 /* Make sure we're within 1% */ 1383 if (abs(tsc_khz - freq) > tsc_khz/100) 1384 goto out; 1385 1386 tsc_khz = freq; 1387 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1388 (unsigned long)tsc_khz / 1000, 1389 (unsigned long)tsc_khz % 1000); 1390 1391 /* Inform the TSC deadline clockevent devices about the recalibration */ 1392 lapic_update_tsc_freq(); 1393 1394 /* Update the sched_clock() rate to match the clocksource one */ 1395 for_each_possible_cpu(cpu) 1396 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); 1397 1398 out: 1399 if (tsc_unstable) 1400 goto unreg; 1401 1402 if (boot_cpu_has(X86_FEATURE_ART)) { 1403 have_art = true; 1404 clocksource_tsc.base = &art_base_clk; 1405 } 1406 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1407 unreg: 1408 clocksource_unregister(&clocksource_tsc_early); 1409 } 1410 1411 1412 static int __init init_tsc_clocksource(void) 1413 { 1414 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) 1415 return 0; 1416 1417 if (tsc_unstable) { 1418 clocksource_unregister(&clocksource_tsc_early); 1419 return 0; 1420 } 1421 1422 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1423 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1424 1425 /* 1426 * When TSC frequency is known (retrieved via MSR or CPUID), we skip 1427 * the refined calibration and directly register it as a clocksource. 1428 */ 1429 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1430 if (boot_cpu_has(X86_FEATURE_ART)) { 1431 have_art = true; 1432 clocksource_tsc.base = &art_base_clk; 1433 } 1434 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1435 clocksource_unregister(&clocksource_tsc_early); 1436 1437 if (!tsc_force_recalibrate) 1438 return 0; 1439 } 1440 1441 schedule_delayed_work(&tsc_irqwork, 0); 1442 return 0; 1443 } 1444 /* 1445 * We use device_initcall here, to ensure we run after the hpet 1446 * is fully initialized, which may occur at fs_initcall time. 1447 */ 1448 device_initcall(init_tsc_clocksource); 1449 1450 static bool __init determine_cpu_tsc_frequencies(bool early) 1451 { 1452 /* Make sure that cpu and tsc are not already calibrated */ 1453 WARN_ON(cpu_khz || tsc_khz); 1454 1455 if (early) { 1456 cpu_khz = x86_platform.calibrate_cpu(); 1457 if (tsc_early_khz) { 1458 tsc_khz = tsc_early_khz; 1459 } else { 1460 tsc_khz = x86_platform.calibrate_tsc(); 1461 clocksource_tsc.freq_khz = tsc_khz; 1462 } 1463 } else { 1464 /* We should not be here with non-native cpu calibration */ 1465 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); 1466 cpu_khz = pit_hpet_ptimer_calibrate_cpu(); 1467 } 1468 1469 /* 1470 * Trust non-zero tsc_khz as authoritative, 1471 * and use it to sanity check cpu_khz, 1472 * which will be off if system timer is off. 1473 */ 1474 if (tsc_khz == 0) 1475 tsc_khz = cpu_khz; 1476 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1477 cpu_khz = tsc_khz; 1478 1479 if (tsc_khz == 0) 1480 return false; 1481 1482 pr_info("Detected %lu.%03lu MHz processor\n", 1483 (unsigned long)cpu_khz / KHZ, 1484 (unsigned long)cpu_khz % KHZ); 1485 1486 if (cpu_khz != tsc_khz) { 1487 pr_info("Detected %lu.%03lu MHz TSC", 1488 (unsigned long)tsc_khz / KHZ, 1489 (unsigned long)tsc_khz % KHZ); 1490 } 1491 return true; 1492 } 1493 1494 static unsigned long __init get_loops_per_jiffy(void) 1495 { 1496 u64 lpj = (u64)tsc_khz * KHZ; 1497 1498 do_div(lpj, HZ); 1499 return lpj; 1500 } 1501 1502 static void __init tsc_enable_sched_clock(void) 1503 { 1504 loops_per_jiffy = get_loops_per_jiffy(); 1505 use_tsc_delay(); 1506 1507 /* Sanitize TSC ADJUST before cyc2ns gets initialized */ 1508 tsc_store_and_check_tsc_adjust(true); 1509 cyc2ns_init_boot_cpu(); 1510 static_branch_enable(&__use_tsc); 1511 } 1512 1513 void __init tsc_early_init(void) 1514 { 1515 if (!boot_cpu_has(X86_FEATURE_TSC)) 1516 return; 1517 /* Don't change UV TSC multi-chassis synchronization */ 1518 if (is_early_uv_system()) 1519 return; 1520 1521 snp_secure_tsc_init(); 1522 1523 if (!determine_cpu_tsc_frequencies(true)) 1524 return; 1525 tsc_enable_sched_clock(); 1526 } 1527 1528 void __init tsc_init(void) 1529 { 1530 if (!cpu_feature_enabled(X86_FEATURE_TSC)) { 1531 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1532 return; 1533 } 1534 1535 /* 1536 * native_calibrate_cpu_early can only calibrate using methods that are 1537 * available early in boot. 1538 */ 1539 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) 1540 x86_platform.calibrate_cpu = native_calibrate_cpu; 1541 1542 if (!tsc_khz) { 1543 /* We failed to determine frequencies earlier, try again */ 1544 if (!determine_cpu_tsc_frequencies(false)) { 1545 mark_tsc_unstable("could not calculate TSC khz"); 1546 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1547 return; 1548 } 1549 tsc_enable_sched_clock(); 1550 } 1551 1552 cyc2ns_init_secondary_cpus(); 1553 1554 if (!no_sched_irq_time) 1555 enable_sched_clock_irqtime(); 1556 1557 lpj_fine = get_loops_per_jiffy(); 1558 1559 check_system_tsc_reliable(); 1560 1561 if (unsynchronized_tsc()) { 1562 mark_tsc_unstable("TSCs unsynchronized"); 1563 return; 1564 } 1565 1566 if (tsc_clocksource_reliable || no_tsc_watchdog) 1567 tsc_disable_clocksource_watchdog(); 1568 1569 clocksource_register_khz(&clocksource_tsc_early, tsc_khz); 1570 detect_art(); 1571 } 1572 1573 #ifdef CONFIG_SMP 1574 /* 1575 * Check whether existing calibration data can be reused. 1576 */ 1577 unsigned long calibrate_delay_is_known(void) 1578 { 1579 int sibling, cpu = smp_processor_id(); 1580 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); 1581 const struct cpumask *mask = topology_core_cpumask(cpu); 1582 1583 /* 1584 * If TSC has constant frequency and TSC is synchronized across 1585 * sockets then reuse CPU0 calibration. 1586 */ 1587 if (constant_tsc && !tsc_unstable) 1588 return cpu_data(0).loops_per_jiffy; 1589 1590 /* 1591 * If TSC has constant frequency and TSC is not synchronized across 1592 * sockets and this is not the first CPU in the socket, then reuse 1593 * the calibration value of an already online CPU on that socket. 1594 * 1595 * This assumes that CONSTANT_TSC is consistent for all CPUs in a 1596 * socket. 1597 */ 1598 if (!constant_tsc || !mask) 1599 return 0; 1600 1601 sibling = cpumask_any_but(mask, cpu); 1602 if (sibling < nr_cpu_ids) 1603 return cpu_data(sibling).loops_per_jiffy; 1604 return 0; 1605 } 1606 #endif 1607