1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/init.h> 8 #include <linux/export.h> 9 #include <linux/timer.h> 10 #include <linux/acpi_pmtmr.h> 11 #include <linux/cpufreq.h> 12 #include <linux/delay.h> 13 #include <linux/clocksource.h> 14 #include <linux/percpu.h> 15 #include <linux/timex.h> 16 #include <linux/static_key.h> 17 #include <linux/static_call.h> 18 19 #include <asm/hpet.h> 20 #include <asm/timer.h> 21 #include <asm/vgtod.h> 22 #include <asm/time.h> 23 #include <asm/delay.h> 24 #include <asm/hypervisor.h> 25 #include <asm/nmi.h> 26 #include <asm/x86_init.h> 27 #include <asm/geode.h> 28 #include <asm/apic.h> 29 #include <asm/cpu_device_id.h> 30 #include <asm/i8259.h> 31 #include <asm/topology.h> 32 #include <asm/uv/uv.h> 33 34 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 35 EXPORT_SYMBOL(cpu_khz); 36 37 unsigned int __read_mostly tsc_khz; 38 EXPORT_SYMBOL(tsc_khz); 39 40 #define KHZ 1000 41 42 /* 43 * TSC can be unstable due to cpufreq or due to unsynced TSCs 44 */ 45 static int __read_mostly tsc_unstable; 46 static unsigned int __initdata tsc_early_khz; 47 48 static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc); 49 50 int tsc_clocksource_reliable; 51 52 static int __read_mostly tsc_force_recalibrate; 53 54 static struct clocksource_base art_base_clk = { 55 .id = CSID_X86_ART, 56 }; 57 static bool have_art; 58 59 struct cyc2ns { 60 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ 61 seqcount_latch_t seq; /* 32 + 4 = 36 */ 62 63 }; /* fits one cacheline */ 64 65 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 66 67 static int __init tsc_early_khz_setup(char *buf) 68 { 69 return kstrtouint(buf, 0, &tsc_early_khz); 70 } 71 early_param("tsc_early_khz", tsc_early_khz_setup); 72 73 __always_inline void __cyc2ns_read(struct cyc2ns_data *data) 74 { 75 int seq, idx; 76 77 do { 78 seq = this_cpu_read(cyc2ns.seq.seqcount.sequence); 79 idx = seq & 1; 80 81 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); 82 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); 83 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); 84 85 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence))); 86 } 87 88 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) 89 { 90 preempt_disable_notrace(); 91 __cyc2ns_read(data); 92 } 93 94 __always_inline void cyc2ns_read_end(void) 95 { 96 preempt_enable_notrace(); 97 } 98 99 /* 100 * Accelerators for sched_clock() 101 * convert from cycles(64bits) => nanoseconds (64bits) 102 * basic equation: 103 * ns = cycles / (freq / ns_per_sec) 104 * ns = cycles * (ns_per_sec / freq) 105 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 106 * ns = cycles * (10^6 / cpu_khz) 107 * 108 * Then we use scaling math (suggested by george@mvista.com) to get: 109 * ns = cycles * (10^6 * SC / cpu_khz) / SC 110 * ns = cycles * cyc2ns_scale / SC 111 * 112 * And since SC is a constant power of two, we can convert the div 113 * into a shift. The larger SC is, the more accurate the conversion, but 114 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 115 * (64-bit result) can be used. 116 * 117 * We can use khz divisor instead of mhz to keep a better precision. 118 * (mathieu.desnoyers@polymtl.ca) 119 * 120 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 121 */ 122 123 static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc) 124 { 125 struct cyc2ns_data data; 126 unsigned long long ns; 127 128 __cyc2ns_read(&data); 129 130 ns = data.cyc2ns_offset; 131 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); 132 133 return ns; 134 } 135 136 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) 137 { 138 unsigned long long ns; 139 preempt_disable_notrace(); 140 ns = __cycles_2_ns(cyc); 141 preempt_enable_notrace(); 142 return ns; 143 } 144 145 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 146 { 147 unsigned long long ns_now; 148 struct cyc2ns_data data; 149 struct cyc2ns *c2n; 150 151 ns_now = cycles_2_ns(tsc_now); 152 153 /* 154 * Compute a new multiplier as per the above comment and ensure our 155 * time function is continuous; see the comment near struct 156 * cyc2ns_data. 157 */ 158 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, 159 NSEC_PER_MSEC, 0); 160 161 /* 162 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 163 * not expected to be greater than 31 due to the original published 164 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 165 * value) - refer perf_event_mmap_page documentation in perf_event.h. 166 */ 167 if (data.cyc2ns_shift == 32) { 168 data.cyc2ns_shift = 31; 169 data.cyc2ns_mul >>= 1; 170 } 171 172 data.cyc2ns_offset = ns_now - 173 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); 174 175 c2n = per_cpu_ptr(&cyc2ns, cpu); 176 177 write_seqcount_latch_begin(&c2n->seq); 178 c2n->data[0] = data; 179 write_seqcount_latch(&c2n->seq); 180 c2n->data[1] = data; 181 write_seqcount_latch_end(&c2n->seq); 182 } 183 184 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 185 { 186 unsigned long flags; 187 188 local_irq_save(flags); 189 sched_clock_idle_sleep_event(); 190 191 if (khz) 192 __set_cyc2ns_scale(khz, cpu, tsc_now); 193 194 sched_clock_idle_wakeup_event(); 195 local_irq_restore(flags); 196 } 197 198 /* 199 * Initialize cyc2ns for boot cpu 200 */ 201 static void __init cyc2ns_init_boot_cpu(void) 202 { 203 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 204 205 seqcount_latch_init(&c2n->seq); 206 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); 207 } 208 209 /* 210 * Secondary CPUs do not run through tsc_init(), so set up 211 * all the scale factors for all CPUs, assuming the same 212 * speed as the bootup CPU. 213 */ 214 static void __init cyc2ns_init_secondary_cpus(void) 215 { 216 unsigned int cpu, this_cpu = smp_processor_id(); 217 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 218 struct cyc2ns_data *data = c2n->data; 219 220 for_each_possible_cpu(cpu) { 221 if (cpu != this_cpu) { 222 seqcount_latch_init(&c2n->seq); 223 c2n = per_cpu_ptr(&cyc2ns, cpu); 224 c2n->data[0] = data[0]; 225 c2n->data[1] = data[1]; 226 } 227 } 228 } 229 230 /* 231 * Scheduler clock - returns current time in nanosec units. 232 */ 233 noinstr u64 native_sched_clock(void) 234 { 235 if (static_branch_likely(&__use_tsc)) { 236 u64 tsc_now = rdtsc(); 237 238 /* return the value in ns */ 239 return __cycles_2_ns(tsc_now); 240 } 241 242 /* 243 * Fall back to jiffies if there's no TSC available: 244 * ( But note that we still use it if the TSC is marked 245 * unstable. We do this because unlike Time Of Day, 246 * the scheduler clock tolerates small errors and it's 247 * very important for it to be as fast as the platform 248 * can achieve it. ) 249 */ 250 251 /* No locking but a rare wrong value is not a big deal: */ 252 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 253 } 254 255 /* 256 * Generate a sched_clock if you already have a TSC value. 257 */ 258 u64 native_sched_clock_from_tsc(u64 tsc) 259 { 260 return cycles_2_ns(tsc); 261 } 262 263 /* We need to define a real function for sched_clock, to override the 264 weak default version */ 265 #ifdef CONFIG_PARAVIRT 266 noinstr u64 sched_clock_noinstr(void) 267 { 268 return paravirt_sched_clock(); 269 } 270 271 bool using_native_sched_clock(void) 272 { 273 return static_call_query(pv_sched_clock) == native_sched_clock; 274 } 275 #else 276 u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock"))); 277 278 bool using_native_sched_clock(void) { return true; } 279 #endif 280 281 notrace u64 sched_clock(void) 282 { 283 u64 now; 284 preempt_disable_notrace(); 285 now = sched_clock_noinstr(); 286 preempt_enable_notrace(); 287 return now; 288 } 289 290 int check_tsc_unstable(void) 291 { 292 return tsc_unstable; 293 } 294 EXPORT_SYMBOL_GPL(check_tsc_unstable); 295 296 #ifdef CONFIG_X86_TSC 297 int __init notsc_setup(char *str) 298 { 299 mark_tsc_unstable("boot parameter notsc"); 300 return 1; 301 } 302 #else 303 /* 304 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 305 * in cpu/common.c 306 */ 307 int __init notsc_setup(char *str) 308 { 309 setup_clear_cpu_cap(X86_FEATURE_TSC); 310 return 1; 311 } 312 #endif 313 314 __setup("notsc", notsc_setup); 315 316 static int no_sched_irq_time; 317 static int no_tsc_watchdog; 318 static int tsc_as_watchdog; 319 320 static int __init tsc_setup(char *str) 321 { 322 if (!strcmp(str, "reliable")) 323 tsc_clocksource_reliable = 1; 324 if (!strncmp(str, "noirqtime", 9)) 325 no_sched_irq_time = 1; 326 if (!strcmp(str, "unstable")) 327 mark_tsc_unstable("boot parameter"); 328 if (!strcmp(str, "nowatchdog")) { 329 no_tsc_watchdog = 1; 330 if (tsc_as_watchdog) 331 pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n", 332 __func__); 333 tsc_as_watchdog = 0; 334 } 335 if (!strcmp(str, "recalibrate")) 336 tsc_force_recalibrate = 1; 337 if (!strcmp(str, "watchdog")) { 338 if (no_tsc_watchdog) 339 pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n", 340 __func__); 341 else 342 tsc_as_watchdog = 1; 343 } 344 return 1; 345 } 346 347 __setup("tsc=", tsc_setup); 348 349 #define MAX_RETRIES 5 350 #define TSC_DEFAULT_THRESHOLD 0x20000 351 352 /* 353 * Read TSC and the reference counters. Take care of any disturbances 354 */ 355 static u64 tsc_read_refs(u64 *p, int hpet) 356 { 357 u64 t1, t2; 358 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; 359 int i; 360 361 for (i = 0; i < MAX_RETRIES; i++) { 362 t1 = get_cycles(); 363 if (hpet) 364 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 365 else 366 *p = acpi_pm_read_early(); 367 t2 = get_cycles(); 368 if ((t2 - t1) < thresh) 369 return t2; 370 } 371 return ULLONG_MAX; 372 } 373 374 /* 375 * Calculate the TSC frequency from HPET reference 376 */ 377 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 378 { 379 u64 tmp; 380 381 if (hpet2 < hpet1) 382 hpet2 += 0x100000000ULL; 383 hpet2 -= hpet1; 384 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 385 do_div(tmp, 1000000); 386 deltatsc = div64_u64(deltatsc, tmp); 387 388 return (unsigned long) deltatsc; 389 } 390 391 /* 392 * Calculate the TSC frequency from PMTimer reference 393 */ 394 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 395 { 396 u64 tmp; 397 398 if (!pm1 && !pm2) 399 return ULONG_MAX; 400 401 if (pm2 < pm1) 402 pm2 += (u64)ACPI_PM_OVRRUN; 403 pm2 -= pm1; 404 tmp = pm2 * 1000000000LL; 405 do_div(tmp, PMTMR_TICKS_PER_SEC); 406 do_div(deltatsc, tmp); 407 408 return (unsigned long) deltatsc; 409 } 410 411 #define CAL_MS 10 412 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 413 #define CAL_PIT_LOOPS 1000 414 415 #define CAL2_MS 50 416 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 417 #define CAL2_PIT_LOOPS 5000 418 419 420 /* 421 * Try to calibrate the TSC against the Programmable 422 * Interrupt Timer and return the frequency of the TSC 423 * in kHz. 424 * 425 * Return ULONG_MAX on failure to calibrate. 426 */ 427 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 428 { 429 u64 tsc, t1, t2, delta; 430 unsigned long tscmin, tscmax; 431 int pitcnt; 432 433 if (!has_legacy_pic()) { 434 /* 435 * Relies on tsc_early_delay_calibrate() to have given us semi 436 * usable udelay(), wait for the same 50ms we would have with 437 * the PIT loop below. 438 */ 439 udelay(10 * USEC_PER_MSEC); 440 udelay(10 * USEC_PER_MSEC); 441 udelay(10 * USEC_PER_MSEC); 442 udelay(10 * USEC_PER_MSEC); 443 udelay(10 * USEC_PER_MSEC); 444 return ULONG_MAX; 445 } 446 447 /* Set the Gate high, disable speaker */ 448 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 449 450 /* 451 * Setup CTC channel 2* for mode 0, (interrupt on terminal 452 * count mode), binary count. Set the latch register to 50ms 453 * (LSB then MSB) to begin countdown. 454 */ 455 outb(0xb0, 0x43); 456 outb(latch & 0xff, 0x42); 457 outb(latch >> 8, 0x42); 458 459 tsc = t1 = t2 = get_cycles(); 460 461 pitcnt = 0; 462 tscmax = 0; 463 tscmin = ULONG_MAX; 464 while ((inb(0x61) & 0x20) == 0) { 465 t2 = get_cycles(); 466 delta = t2 - tsc; 467 tsc = t2; 468 if ((unsigned long) delta < tscmin) 469 tscmin = (unsigned int) delta; 470 if ((unsigned long) delta > tscmax) 471 tscmax = (unsigned int) delta; 472 pitcnt++; 473 } 474 475 /* 476 * Sanity checks: 477 * 478 * If we were not able to read the PIT more than loopmin 479 * times, then we have been hit by a massive SMI 480 * 481 * If the maximum is 10 times larger than the minimum, 482 * then we got hit by an SMI as well. 483 */ 484 if (pitcnt < loopmin || tscmax > 10 * tscmin) 485 return ULONG_MAX; 486 487 /* Calculate the PIT value */ 488 delta = t2 - t1; 489 do_div(delta, ms); 490 return delta; 491 } 492 493 /* 494 * This reads the current MSB of the PIT counter, and 495 * checks if we are running on sufficiently fast and 496 * non-virtualized hardware. 497 * 498 * Our expectations are: 499 * 500 * - the PIT is running at roughly 1.19MHz 501 * 502 * - each IO is going to take about 1us on real hardware, 503 * but we allow it to be much faster (by a factor of 10) or 504 * _slightly_ slower (ie we allow up to a 2us read+counter 505 * update - anything else implies a unacceptably slow CPU 506 * or PIT for the fast calibration to work. 507 * 508 * - with 256 PIT ticks to read the value, we have 214us to 509 * see the same MSB (and overhead like doing a single TSC 510 * read per MSB value etc). 511 * 512 * - We're doing 2 reads per loop (LSB, MSB), and we expect 513 * them each to take about a microsecond on real hardware. 514 * So we expect a count value of around 100. But we'll be 515 * generous, and accept anything over 50. 516 * 517 * - if the PIT is stuck, and we see *many* more reads, we 518 * return early (and the next caller of pit_expect_msb() 519 * then consider it a failure when they don't see the 520 * next expected value). 521 * 522 * These expectations mean that we know that we have seen the 523 * transition from one expected value to another with a fairly 524 * high accuracy, and we didn't miss any events. We can thus 525 * use the TSC value at the transitions to calculate a pretty 526 * good value for the TSC frequency. 527 */ 528 static inline int pit_verify_msb(unsigned char val) 529 { 530 /* Ignore LSB */ 531 inb(0x42); 532 return inb(0x42) == val; 533 } 534 535 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 536 { 537 int count; 538 u64 tsc = 0, prev_tsc = 0; 539 540 for (count = 0; count < 50000; count++) { 541 if (!pit_verify_msb(val)) 542 break; 543 prev_tsc = tsc; 544 tsc = get_cycles(); 545 } 546 *deltap = get_cycles() - prev_tsc; 547 *tscp = tsc; 548 549 /* 550 * We require _some_ success, but the quality control 551 * will be based on the error terms on the TSC values. 552 */ 553 return count > 5; 554 } 555 556 /* 557 * How many MSB values do we want to see? We aim for 558 * a maximum error rate of 500ppm (in practice the 559 * real error is much smaller), but refuse to spend 560 * more than 50ms on it. 561 */ 562 #define MAX_QUICK_PIT_MS 50 563 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 564 565 static unsigned long quick_pit_calibrate(void) 566 { 567 int i; 568 u64 tsc, delta; 569 unsigned long d1, d2; 570 571 if (!has_legacy_pic()) 572 return 0; 573 574 /* Set the Gate high, disable speaker */ 575 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 576 577 /* 578 * Counter 2, mode 0 (one-shot), binary count 579 * 580 * NOTE! Mode 2 decrements by two (and then the 581 * output is flipped each time, giving the same 582 * final output frequency as a decrement-by-one), 583 * so mode 0 is much better when looking at the 584 * individual counts. 585 */ 586 outb(0xb0, 0x43); 587 588 /* Start at 0xffff */ 589 outb(0xff, 0x42); 590 outb(0xff, 0x42); 591 592 /* 593 * The PIT starts counting at the next edge, so we 594 * need to delay for a microsecond. The easiest way 595 * to do that is to just read back the 16-bit counter 596 * once from the PIT. 597 */ 598 pit_verify_msb(0); 599 600 if (pit_expect_msb(0xff, &tsc, &d1)) { 601 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 602 if (!pit_expect_msb(0xff-i, &delta, &d2)) 603 break; 604 605 delta -= tsc; 606 607 /* 608 * Extrapolate the error and fail fast if the error will 609 * never be below 500 ppm. 610 */ 611 if (i == 1 && 612 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 613 return 0; 614 615 /* 616 * Iterate until the error is less than 500 ppm 617 */ 618 if (d1+d2 >= delta >> 11) 619 continue; 620 621 /* 622 * Check the PIT one more time to verify that 623 * all TSC reads were stable wrt the PIT. 624 * 625 * This also guarantees serialization of the 626 * last cycle read ('d2') in pit_expect_msb. 627 */ 628 if (!pit_verify_msb(0xfe - i)) 629 break; 630 goto success; 631 } 632 } 633 pr_info("Fast TSC calibration failed\n"); 634 return 0; 635 636 success: 637 /* 638 * Ok, if we get here, then we've seen the 639 * MSB of the PIT decrement 'i' times, and the 640 * error has shrunk to less than 500 ppm. 641 * 642 * As a result, we can depend on there not being 643 * any odd delays anywhere, and the TSC reads are 644 * reliable (within the error). 645 * 646 * kHz = ticks / time-in-seconds / 1000; 647 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 648 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 649 */ 650 delta *= PIT_TICK_RATE; 651 do_div(delta, i*256*1000); 652 pr_info("Fast TSC calibration using PIT\n"); 653 return delta; 654 } 655 656 /** 657 * native_calibrate_tsc - determine TSC frequency 658 * Determine TSC frequency via CPUID, else return 0. 659 */ 660 unsigned long native_calibrate_tsc(void) 661 { 662 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 663 unsigned int crystal_khz; 664 665 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 666 return 0; 667 668 if (boot_cpu_data.cpuid_level < 0x15) 669 return 0; 670 671 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 672 673 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 674 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 675 676 if (ebx_numerator == 0 || eax_denominator == 0) 677 return 0; 678 679 crystal_khz = ecx_hz / 1000; 680 681 /* 682 * Denverton SoCs don't report crystal clock, and also don't support 683 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal 684 * clock. 685 */ 686 if (crystal_khz == 0 && 687 boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D) 688 crystal_khz = 25000; 689 690 /* 691 * TSC frequency reported directly by CPUID is a "hardware reported" 692 * frequency and is the most accurate one so far we have. This 693 * is considered a known frequency. 694 */ 695 if (crystal_khz != 0) 696 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); 697 698 /* 699 * Some Intel SoCs like Skylake and Kabylake don't report the crystal 700 * clock, but we can easily calculate it to a high degree of accuracy 701 * by considering the crystal ratio and the CPU speed. 702 */ 703 if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) { 704 unsigned int eax_base_mhz, ebx, ecx, edx; 705 706 cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx); 707 crystal_khz = eax_base_mhz * 1000 * 708 eax_denominator / ebx_numerator; 709 } 710 711 if (crystal_khz == 0) 712 return 0; 713 714 /* 715 * For Atom SoCs TSC is the only reliable clocksource. 716 * Mark TSC reliable so no watchdog on it. 717 */ 718 if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT) 719 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 720 721 #ifdef CONFIG_X86_LOCAL_APIC 722 /* 723 * The local APIC appears to be fed by the core crystal clock 724 * (which sounds entirely sensible). We can set the global 725 * lapic_timer_period here to avoid having to calibrate the APIC 726 * timer later. 727 */ 728 lapic_timer_period = crystal_khz * 1000 / HZ; 729 #endif 730 731 return crystal_khz * ebx_numerator / eax_denominator; 732 } 733 734 static unsigned long cpu_khz_from_cpuid(void) 735 { 736 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 737 738 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 739 return 0; 740 741 if (boot_cpu_data.cpuid_level < 0x16) 742 return 0; 743 744 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 745 746 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 747 748 return eax_base_mhz * 1000; 749 } 750 751 /* 752 * calibrate cpu using pit, hpet, and ptimer methods. They are available 753 * later in boot after acpi is initialized. 754 */ 755 static unsigned long pit_hpet_ptimer_calibrate_cpu(void) 756 { 757 u64 tsc1, tsc2, delta, ref1, ref2; 758 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 759 unsigned long flags, latch, ms; 760 int hpet = is_hpet_enabled(), i, loopmin; 761 762 /* 763 * Run 5 calibration loops to get the lowest frequency value 764 * (the best estimate). We use two different calibration modes 765 * here: 766 * 767 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 768 * load a timeout of 50ms. We read the time right after we 769 * started the timer and wait until the PIT count down reaches 770 * zero. In each wait loop iteration we read the TSC and check 771 * the delta to the previous read. We keep track of the min 772 * and max values of that delta. The delta is mostly defined 773 * by the IO time of the PIT access, so we can detect when 774 * any disturbance happened between the two reads. If the 775 * maximum time is significantly larger than the minimum time, 776 * then we discard the result and have another try. 777 * 778 * 2) Reference counter. If available we use the HPET or the 779 * PMTIMER as a reference to check the sanity of that value. 780 * We use separate TSC readouts and check inside of the 781 * reference read for any possible disturbance. We discard 782 * disturbed values here as well. We do that around the PIT 783 * calibration delay loop as we have to wait for a certain 784 * amount of time anyway. 785 */ 786 787 /* Preset PIT loop values */ 788 latch = CAL_LATCH; 789 ms = CAL_MS; 790 loopmin = CAL_PIT_LOOPS; 791 792 for (i = 0; i < 3; i++) { 793 unsigned long tsc_pit_khz; 794 795 /* 796 * Read the start value and the reference count of 797 * hpet/pmtimer when available. Then do the PIT 798 * calibration, which will take at least 50ms, and 799 * read the end value. 800 */ 801 local_irq_save(flags); 802 tsc1 = tsc_read_refs(&ref1, hpet); 803 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 804 tsc2 = tsc_read_refs(&ref2, hpet); 805 local_irq_restore(flags); 806 807 /* Pick the lowest PIT TSC calibration so far */ 808 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 809 810 /* hpet or pmtimer available ? */ 811 if (ref1 == ref2) 812 continue; 813 814 /* Check, whether the sampling was disturbed */ 815 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 816 continue; 817 818 tsc2 = (tsc2 - tsc1) * 1000000LL; 819 if (hpet) 820 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 821 else 822 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 823 824 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 825 826 /* Check the reference deviation */ 827 delta = ((u64) tsc_pit_min) * 100; 828 do_div(delta, tsc_ref_min); 829 830 /* 831 * If both calibration results are inside a 10% window 832 * then we can be sure, that the calibration 833 * succeeded. We break out of the loop right away. We 834 * use the reference value, as it is more precise. 835 */ 836 if (delta >= 90 && delta <= 110) { 837 pr_info("PIT calibration matches %s. %d loops\n", 838 hpet ? "HPET" : "PMTIMER", i + 1); 839 return tsc_ref_min; 840 } 841 842 /* 843 * Check whether PIT failed more than once. This 844 * happens in virtualized environments. We need to 845 * give the virtual PC a slightly longer timeframe for 846 * the HPET/PMTIMER to make the result precise. 847 */ 848 if (i == 1 && tsc_pit_min == ULONG_MAX) { 849 latch = CAL2_LATCH; 850 ms = CAL2_MS; 851 loopmin = CAL2_PIT_LOOPS; 852 } 853 } 854 855 /* 856 * Now check the results. 857 */ 858 if (tsc_pit_min == ULONG_MAX) { 859 /* PIT gave no useful value */ 860 pr_warn("Unable to calibrate against PIT\n"); 861 862 /* We don't have an alternative source, disable TSC */ 863 if (!hpet && !ref1 && !ref2) { 864 pr_notice("No reference (HPET/PMTIMER) available\n"); 865 return 0; 866 } 867 868 /* The alternative source failed as well, disable TSC */ 869 if (tsc_ref_min == ULONG_MAX) { 870 pr_warn("HPET/PMTIMER calibration failed\n"); 871 return 0; 872 } 873 874 /* Use the alternative source */ 875 pr_info("using %s reference calibration\n", 876 hpet ? "HPET" : "PMTIMER"); 877 878 return tsc_ref_min; 879 } 880 881 /* We don't have an alternative source, use the PIT calibration value */ 882 if (!hpet && !ref1 && !ref2) { 883 pr_info("Using PIT calibration value\n"); 884 return tsc_pit_min; 885 } 886 887 /* The alternative source failed, use the PIT calibration value */ 888 if (tsc_ref_min == ULONG_MAX) { 889 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 890 return tsc_pit_min; 891 } 892 893 /* 894 * The calibration values differ too much. In doubt, we use 895 * the PIT value as we know that there are PMTIMERs around 896 * running at double speed. At least we let the user know: 897 */ 898 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 899 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 900 pr_info("Using PIT calibration value\n"); 901 return tsc_pit_min; 902 } 903 904 /** 905 * native_calibrate_cpu_early - can calibrate the cpu early in boot 906 */ 907 unsigned long native_calibrate_cpu_early(void) 908 { 909 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); 910 911 if (!fast_calibrate) 912 fast_calibrate = cpu_khz_from_msr(); 913 if (!fast_calibrate) { 914 local_irq_save(flags); 915 fast_calibrate = quick_pit_calibrate(); 916 local_irq_restore(flags); 917 } 918 return fast_calibrate; 919 } 920 921 922 /** 923 * native_calibrate_cpu - calibrate the cpu 924 */ 925 static unsigned long native_calibrate_cpu(void) 926 { 927 unsigned long tsc_freq = native_calibrate_cpu_early(); 928 929 if (!tsc_freq) 930 tsc_freq = pit_hpet_ptimer_calibrate_cpu(); 931 932 return tsc_freq; 933 } 934 935 void recalibrate_cpu_khz(void) 936 { 937 #ifndef CONFIG_SMP 938 unsigned long cpu_khz_old = cpu_khz; 939 940 if (!boot_cpu_has(X86_FEATURE_TSC)) 941 return; 942 943 cpu_khz = x86_platform.calibrate_cpu(); 944 tsc_khz = x86_platform.calibrate_tsc(); 945 if (tsc_khz == 0) 946 tsc_khz = cpu_khz; 947 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 948 cpu_khz = tsc_khz; 949 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 950 cpu_khz_old, cpu_khz); 951 #endif 952 } 953 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz); 954 955 956 static unsigned long long cyc2ns_suspend; 957 958 void tsc_save_sched_clock_state(void) 959 { 960 if (!sched_clock_stable()) 961 return; 962 963 cyc2ns_suspend = sched_clock(); 964 } 965 966 /* 967 * Even on processors with invariant TSC, TSC gets reset in some the 968 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 969 * arbitrary value (still sync'd across cpu's) during resume from such sleep 970 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 971 * that sched_clock() continues from the point where it was left off during 972 * suspend. 973 */ 974 void tsc_restore_sched_clock_state(void) 975 { 976 unsigned long long offset; 977 unsigned long flags; 978 int cpu; 979 980 if (!sched_clock_stable()) 981 return; 982 983 local_irq_save(flags); 984 985 /* 986 * We're coming out of suspend, there's no concurrency yet; don't 987 * bother being nice about the RCU stuff, just write to both 988 * data fields. 989 */ 990 991 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 992 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 993 994 offset = cyc2ns_suspend - sched_clock(); 995 996 for_each_possible_cpu(cpu) { 997 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 998 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 999 } 1000 1001 local_irq_restore(flags); 1002 } 1003 1004 #ifdef CONFIG_CPU_FREQ 1005 /* 1006 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency 1007 * changes. 1008 * 1009 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC 1010 * as unstable and give up in those cases. 1011 * 1012 * Should fix up last_tsc too. Currently gettimeofday in the 1013 * first tick after the change will be slightly wrong. 1014 */ 1015 1016 static unsigned int ref_freq; 1017 static unsigned long loops_per_jiffy_ref; 1018 static unsigned long tsc_khz_ref; 1019 1020 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 1021 void *data) 1022 { 1023 struct cpufreq_freqs *freq = data; 1024 1025 if (num_online_cpus() > 1) { 1026 mark_tsc_unstable("cpufreq changes on SMP"); 1027 return 0; 1028 } 1029 1030 if (!ref_freq) { 1031 ref_freq = freq->old; 1032 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; 1033 tsc_khz_ref = tsc_khz; 1034 } 1035 1036 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 1037 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 1038 boot_cpu_data.loops_per_jiffy = 1039 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 1040 1041 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 1042 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 1043 mark_tsc_unstable("cpufreq changes"); 1044 1045 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); 1046 } 1047 1048 return 0; 1049 } 1050 1051 static struct notifier_block time_cpufreq_notifier_block = { 1052 .notifier_call = time_cpufreq_notifier 1053 }; 1054 1055 static int __init cpufreq_register_tsc_scaling(void) 1056 { 1057 if (!boot_cpu_has(X86_FEATURE_TSC)) 1058 return 0; 1059 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1060 return 0; 1061 cpufreq_register_notifier(&time_cpufreq_notifier_block, 1062 CPUFREQ_TRANSITION_NOTIFIER); 1063 return 0; 1064 } 1065 1066 core_initcall(cpufreq_register_tsc_scaling); 1067 1068 #endif /* CONFIG_CPU_FREQ */ 1069 1070 #define ART_CPUID_LEAF (0x15) 1071 #define ART_MIN_DENOMINATOR (1) 1072 1073 1074 /* 1075 * If ART is present detect the numerator:denominator to convert to TSC 1076 */ 1077 static void __init detect_art(void) 1078 { 1079 unsigned int unused; 1080 1081 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 1082 return; 1083 1084 /* 1085 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, 1086 * and the TSC counter resets must not occur asynchronously. 1087 */ 1088 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1089 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1090 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || 1091 tsc_async_resets) 1092 return; 1093 1094 cpuid(ART_CPUID_LEAF, &art_base_clk.denominator, 1095 &art_base_clk.numerator, &art_base_clk.freq_khz, &unused); 1096 1097 art_base_clk.freq_khz /= KHZ; 1098 if (art_base_clk.denominator < ART_MIN_DENOMINATOR) 1099 return; 1100 1101 rdmsrl(MSR_IA32_TSC_ADJUST, art_base_clk.offset); 1102 1103 /* Make this sticky over multiple CPU init calls */ 1104 setup_force_cpu_cap(X86_FEATURE_ART); 1105 } 1106 1107 1108 /* clocksource code */ 1109 1110 static void tsc_resume(struct clocksource *cs) 1111 { 1112 tsc_verify_tsc_adjust(true); 1113 } 1114 1115 /* 1116 * We used to compare the TSC to the cycle_last value in the clocksource 1117 * structure to avoid a nasty time-warp. This can be observed in a 1118 * very small window right after one CPU updated cycle_last under 1119 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1120 * is smaller than the cycle_last reference value due to a TSC which 1121 * is slightly behind. This delta is nowhere else observable, but in 1122 * that case it results in a forward time jump in the range of hours 1123 * due to the unsigned delta calculation of the time keeping core 1124 * code, which is necessary to support wrapping clocksources like pm 1125 * timer. 1126 * 1127 * This sanity check is now done in the core timekeeping code. 1128 * checking the result of read_tsc() - cycle_last for being negative. 1129 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1130 */ 1131 static u64 read_tsc(struct clocksource *cs) 1132 { 1133 return (u64)rdtsc_ordered(); 1134 } 1135 1136 static void tsc_cs_mark_unstable(struct clocksource *cs) 1137 { 1138 if (tsc_unstable) 1139 return; 1140 1141 tsc_unstable = 1; 1142 if (using_native_sched_clock()) 1143 clear_sched_clock_stable(); 1144 disable_sched_clock_irqtime(); 1145 pr_info("Marking TSC unstable due to clocksource watchdog\n"); 1146 } 1147 1148 static void tsc_cs_tick_stable(struct clocksource *cs) 1149 { 1150 if (tsc_unstable) 1151 return; 1152 1153 if (using_native_sched_clock()) 1154 sched_clock_tick_stable(); 1155 } 1156 1157 static int tsc_cs_enable(struct clocksource *cs) 1158 { 1159 vclocks_set_used(VDSO_CLOCKMODE_TSC); 1160 return 0; 1161 } 1162 1163 /* 1164 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1165 */ 1166 static struct clocksource clocksource_tsc_early = { 1167 .name = "tsc-early", 1168 .rating = 299, 1169 .uncertainty_margin = 32 * NSEC_PER_MSEC, 1170 .read = read_tsc, 1171 .mask = CLOCKSOURCE_MASK(64), 1172 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1173 CLOCK_SOURCE_MUST_VERIFY, 1174 .id = CSID_X86_TSC_EARLY, 1175 .vdso_clock_mode = VDSO_CLOCKMODE_TSC, 1176 .enable = tsc_cs_enable, 1177 .resume = tsc_resume, 1178 .mark_unstable = tsc_cs_mark_unstable, 1179 .tick_stable = tsc_cs_tick_stable, 1180 .list = LIST_HEAD_INIT(clocksource_tsc_early.list), 1181 }; 1182 1183 /* 1184 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early 1185 * this one will immediately take over. We will only register if TSC has 1186 * been found good. 1187 */ 1188 static struct clocksource clocksource_tsc = { 1189 .name = "tsc", 1190 .rating = 300, 1191 .read = read_tsc, 1192 .mask = CLOCKSOURCE_MASK(64), 1193 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1194 CLOCK_SOURCE_VALID_FOR_HRES | 1195 CLOCK_SOURCE_MUST_VERIFY | 1196 CLOCK_SOURCE_VERIFY_PERCPU, 1197 .id = CSID_X86_TSC, 1198 .vdso_clock_mode = VDSO_CLOCKMODE_TSC, 1199 .enable = tsc_cs_enable, 1200 .resume = tsc_resume, 1201 .mark_unstable = tsc_cs_mark_unstable, 1202 .tick_stable = tsc_cs_tick_stable, 1203 .list = LIST_HEAD_INIT(clocksource_tsc.list), 1204 }; 1205 1206 void mark_tsc_unstable(char *reason) 1207 { 1208 if (tsc_unstable) 1209 return; 1210 1211 tsc_unstable = 1; 1212 if (using_native_sched_clock()) 1213 clear_sched_clock_stable(); 1214 disable_sched_clock_irqtime(); 1215 pr_info("Marking TSC unstable due to %s\n", reason); 1216 1217 clocksource_mark_unstable(&clocksource_tsc_early); 1218 clocksource_mark_unstable(&clocksource_tsc); 1219 } 1220 1221 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1222 1223 static void __init tsc_disable_clocksource_watchdog(void) 1224 { 1225 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1226 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1227 } 1228 1229 bool tsc_clocksource_watchdog_disabled(void) 1230 { 1231 return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) && 1232 tsc_as_watchdog && !no_tsc_watchdog; 1233 } 1234 1235 static void __init check_system_tsc_reliable(void) 1236 { 1237 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1238 if (is_geode_lx()) { 1239 /* RTSC counts during suspend */ 1240 #define RTSC_SUSP 0x100 1241 unsigned long res_low, res_high; 1242 1243 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1244 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1245 if (res_low & RTSC_SUSP) 1246 tsc_clocksource_reliable = 1; 1247 } 1248 #endif 1249 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1250 tsc_clocksource_reliable = 1; 1251 1252 /* 1253 * Disable the clocksource watchdog when the system has: 1254 * - TSC running at constant frequency 1255 * - TSC which does not stop in C-States 1256 * - the TSC_ADJUST register which allows to detect even minimal 1257 * modifications 1258 * - not more than four packages 1259 */ 1260 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && 1261 boot_cpu_has(X86_FEATURE_NONSTOP_TSC) && 1262 boot_cpu_has(X86_FEATURE_TSC_ADJUST) && 1263 topology_max_packages() <= 4) 1264 tsc_disable_clocksource_watchdog(); 1265 } 1266 1267 /* 1268 * Make an educated guess if the TSC is trustworthy and synchronized 1269 * over all CPUs. 1270 */ 1271 int unsynchronized_tsc(void) 1272 { 1273 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1274 return 1; 1275 1276 #ifdef CONFIG_SMP 1277 if (apic_is_clustered_box()) 1278 return 1; 1279 #endif 1280 1281 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1282 return 0; 1283 1284 if (tsc_clocksource_reliable) 1285 return 0; 1286 /* 1287 * Intel systems are normally all synchronized. 1288 * Exceptions must mark TSC as unstable: 1289 */ 1290 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1291 /* assume multi socket systems are not synchronized: */ 1292 if (topology_max_packages() > 1) 1293 return 1; 1294 } 1295 1296 return 0; 1297 } 1298 1299 static void tsc_refine_calibration_work(struct work_struct *work); 1300 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1301 /** 1302 * tsc_refine_calibration_work - Further refine tsc freq calibration 1303 * @work: ignored. 1304 * 1305 * This functions uses delayed work over a period of a 1306 * second to further refine the TSC freq value. Since this is 1307 * timer based, instead of loop based, we don't block the boot 1308 * process while this longer calibration is done. 1309 * 1310 * If there are any calibration anomalies (too many SMIs, etc), 1311 * or the refined calibration is off by 1% of the fast early 1312 * calibration, we throw out the new calibration and use the 1313 * early calibration. 1314 */ 1315 static void tsc_refine_calibration_work(struct work_struct *work) 1316 { 1317 static u64 tsc_start = ULLONG_MAX, ref_start; 1318 static int hpet; 1319 u64 tsc_stop, ref_stop, delta; 1320 unsigned long freq; 1321 int cpu; 1322 1323 /* Don't bother refining TSC on unstable systems */ 1324 if (tsc_unstable) 1325 goto unreg; 1326 1327 /* 1328 * Since the work is started early in boot, we may be 1329 * delayed the first time we expire. So set the workqueue 1330 * again once we know timers are working. 1331 */ 1332 if (tsc_start == ULLONG_MAX) { 1333 restart: 1334 /* 1335 * Only set hpet once, to avoid mixing hardware 1336 * if the hpet becomes enabled later. 1337 */ 1338 hpet = is_hpet_enabled(); 1339 tsc_start = tsc_read_refs(&ref_start, hpet); 1340 schedule_delayed_work(&tsc_irqwork, HZ); 1341 return; 1342 } 1343 1344 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1345 1346 /* hpet or pmtimer available ? */ 1347 if (ref_start == ref_stop) 1348 goto out; 1349 1350 /* Check, whether the sampling was disturbed */ 1351 if (tsc_stop == ULLONG_MAX) 1352 goto restart; 1353 1354 delta = tsc_stop - tsc_start; 1355 delta *= 1000000LL; 1356 if (hpet) 1357 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1358 else 1359 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1360 1361 /* Will hit this only if tsc_force_recalibrate has been set */ 1362 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1363 1364 /* Warn if the deviation exceeds 500 ppm */ 1365 if (abs(tsc_khz - freq) > (tsc_khz >> 11)) { 1366 pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n"); 1367 pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n", 1368 (unsigned long)tsc_khz / 1000, 1369 (unsigned long)tsc_khz % 1000); 1370 } 1371 1372 pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n", 1373 hpet ? "HPET" : "PM_TIMER", 1374 (unsigned long)freq / 1000, 1375 (unsigned long)freq % 1000); 1376 1377 return; 1378 } 1379 1380 /* Make sure we're within 1% */ 1381 if (abs(tsc_khz - freq) > tsc_khz/100) 1382 goto out; 1383 1384 tsc_khz = freq; 1385 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1386 (unsigned long)tsc_khz / 1000, 1387 (unsigned long)tsc_khz % 1000); 1388 1389 /* Inform the TSC deadline clockevent devices about the recalibration */ 1390 lapic_update_tsc_freq(); 1391 1392 /* Update the sched_clock() rate to match the clocksource one */ 1393 for_each_possible_cpu(cpu) 1394 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); 1395 1396 out: 1397 if (tsc_unstable) 1398 goto unreg; 1399 1400 if (boot_cpu_has(X86_FEATURE_ART)) { 1401 have_art = true; 1402 clocksource_tsc.base = &art_base_clk; 1403 } 1404 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1405 unreg: 1406 clocksource_unregister(&clocksource_tsc_early); 1407 } 1408 1409 1410 static int __init init_tsc_clocksource(void) 1411 { 1412 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) 1413 return 0; 1414 1415 if (tsc_unstable) { 1416 clocksource_unregister(&clocksource_tsc_early); 1417 return 0; 1418 } 1419 1420 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1421 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1422 1423 /* 1424 * When TSC frequency is known (retrieved via MSR or CPUID), we skip 1425 * the refined calibration and directly register it as a clocksource. 1426 */ 1427 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1428 if (boot_cpu_has(X86_FEATURE_ART)) { 1429 have_art = true; 1430 clocksource_tsc.base = &art_base_clk; 1431 } 1432 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1433 clocksource_unregister(&clocksource_tsc_early); 1434 1435 if (!tsc_force_recalibrate) 1436 return 0; 1437 } 1438 1439 schedule_delayed_work(&tsc_irqwork, 0); 1440 return 0; 1441 } 1442 /* 1443 * We use device_initcall here, to ensure we run after the hpet 1444 * is fully initialized, which may occur at fs_initcall time. 1445 */ 1446 device_initcall(init_tsc_clocksource); 1447 1448 static bool __init determine_cpu_tsc_frequencies(bool early) 1449 { 1450 /* Make sure that cpu and tsc are not already calibrated */ 1451 WARN_ON(cpu_khz || tsc_khz); 1452 1453 if (early) { 1454 cpu_khz = x86_platform.calibrate_cpu(); 1455 if (tsc_early_khz) { 1456 tsc_khz = tsc_early_khz; 1457 } else { 1458 tsc_khz = x86_platform.calibrate_tsc(); 1459 clocksource_tsc.freq_khz = tsc_khz; 1460 } 1461 } else { 1462 /* We should not be here with non-native cpu calibration */ 1463 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); 1464 cpu_khz = pit_hpet_ptimer_calibrate_cpu(); 1465 } 1466 1467 /* 1468 * Trust non-zero tsc_khz as authoritative, 1469 * and use it to sanity check cpu_khz, 1470 * which will be off if system timer is off. 1471 */ 1472 if (tsc_khz == 0) 1473 tsc_khz = cpu_khz; 1474 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1475 cpu_khz = tsc_khz; 1476 1477 if (tsc_khz == 0) 1478 return false; 1479 1480 pr_info("Detected %lu.%03lu MHz processor\n", 1481 (unsigned long)cpu_khz / KHZ, 1482 (unsigned long)cpu_khz % KHZ); 1483 1484 if (cpu_khz != tsc_khz) { 1485 pr_info("Detected %lu.%03lu MHz TSC", 1486 (unsigned long)tsc_khz / KHZ, 1487 (unsigned long)tsc_khz % KHZ); 1488 } 1489 return true; 1490 } 1491 1492 static unsigned long __init get_loops_per_jiffy(void) 1493 { 1494 u64 lpj = (u64)tsc_khz * KHZ; 1495 1496 do_div(lpj, HZ); 1497 return lpj; 1498 } 1499 1500 static void __init tsc_enable_sched_clock(void) 1501 { 1502 loops_per_jiffy = get_loops_per_jiffy(); 1503 use_tsc_delay(); 1504 1505 /* Sanitize TSC ADJUST before cyc2ns gets initialized */ 1506 tsc_store_and_check_tsc_adjust(true); 1507 cyc2ns_init_boot_cpu(); 1508 static_branch_enable(&__use_tsc); 1509 } 1510 1511 void __init tsc_early_init(void) 1512 { 1513 if (!boot_cpu_has(X86_FEATURE_TSC)) 1514 return; 1515 /* Don't change UV TSC multi-chassis synchronization */ 1516 if (is_early_uv_system()) 1517 return; 1518 if (!determine_cpu_tsc_frequencies(true)) 1519 return; 1520 tsc_enable_sched_clock(); 1521 } 1522 1523 void __init tsc_init(void) 1524 { 1525 if (!cpu_feature_enabled(X86_FEATURE_TSC)) { 1526 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1527 return; 1528 } 1529 1530 /* 1531 * native_calibrate_cpu_early can only calibrate using methods that are 1532 * available early in boot. 1533 */ 1534 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) 1535 x86_platform.calibrate_cpu = native_calibrate_cpu; 1536 1537 if (!tsc_khz) { 1538 /* We failed to determine frequencies earlier, try again */ 1539 if (!determine_cpu_tsc_frequencies(false)) { 1540 mark_tsc_unstable("could not calculate TSC khz"); 1541 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1542 return; 1543 } 1544 tsc_enable_sched_clock(); 1545 } 1546 1547 cyc2ns_init_secondary_cpus(); 1548 1549 if (!no_sched_irq_time) 1550 enable_sched_clock_irqtime(); 1551 1552 lpj_fine = get_loops_per_jiffy(); 1553 1554 check_system_tsc_reliable(); 1555 1556 if (unsynchronized_tsc()) { 1557 mark_tsc_unstable("TSCs unsynchronized"); 1558 return; 1559 } 1560 1561 if (tsc_clocksource_reliable || no_tsc_watchdog) 1562 tsc_disable_clocksource_watchdog(); 1563 1564 clocksource_register_khz(&clocksource_tsc_early, tsc_khz); 1565 detect_art(); 1566 } 1567 1568 #ifdef CONFIG_SMP 1569 /* 1570 * Check whether existing calibration data can be reused. 1571 */ 1572 unsigned long calibrate_delay_is_known(void) 1573 { 1574 int sibling, cpu = smp_processor_id(); 1575 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); 1576 const struct cpumask *mask = topology_core_cpumask(cpu); 1577 1578 /* 1579 * If TSC has constant frequency and TSC is synchronized across 1580 * sockets then reuse CPU0 calibration. 1581 */ 1582 if (constant_tsc && !tsc_unstable) 1583 return cpu_data(0).loops_per_jiffy; 1584 1585 /* 1586 * If TSC has constant frequency and TSC is not synchronized across 1587 * sockets and this is not the first CPU in the socket, then reuse 1588 * the calibration value of an already online CPU on that socket. 1589 * 1590 * This assumes that CONSTANT_TSC is consistent for all CPUs in a 1591 * socket. 1592 */ 1593 if (!constant_tsc || !mask) 1594 return 0; 1595 1596 sibling = cpumask_any_but(mask, cpu); 1597 if (sibling < nr_cpu_ids) 1598 return cpu_data(sibling).loops_per_jiffy; 1599 return 0; 1600 } 1601 #endif 1602