xref: /linux/arch/x86/kernel/tsc.c (revision 5c2e7736e20d9b348a44cafbfa639fe2653fbc34)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17 #include <linux/static_call.h>
18 
19 #include <asm/hpet.h>
20 #include <asm/timer.h>
21 #include <asm/vgtod.h>
22 #include <asm/time.h>
23 #include <asm/delay.h>
24 #include <asm/hypervisor.h>
25 #include <asm/nmi.h>
26 #include <asm/x86_init.h>
27 #include <asm/geode.h>
28 #include <asm/apic.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/i8259.h>
31 #include <asm/topology.h>
32 #include <asm/uv/uv.h>
33 
34 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
35 EXPORT_SYMBOL(cpu_khz);
36 
37 unsigned int __read_mostly tsc_khz;
38 EXPORT_SYMBOL(tsc_khz);
39 
40 #define KHZ	1000
41 
42 /*
43  * TSC can be unstable due to cpufreq or due to unsynced TSCs
44  */
45 static int __read_mostly tsc_unstable;
46 static unsigned int __initdata tsc_early_khz;
47 
48 static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc);
49 
50 int tsc_clocksource_reliable;
51 
52 static int __read_mostly tsc_force_recalibrate;
53 
54 static struct clocksource_base art_base_clk = {
55 	.id    = CSID_X86_ART,
56 };
57 static bool have_art;
58 
59 struct cyc2ns {
60 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
61 	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
62 
63 }; /* fits one cacheline */
64 
65 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
66 
67 static int __init tsc_early_khz_setup(char *buf)
68 {
69 	return kstrtouint(buf, 0, &tsc_early_khz);
70 }
71 early_param("tsc_early_khz", tsc_early_khz_setup);
72 
73 __always_inline void __cyc2ns_read(struct cyc2ns_data *data)
74 {
75 	int seq, idx;
76 
77 	do {
78 		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
79 		idx = seq & 1;
80 
81 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
82 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
83 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
84 
85 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
86 }
87 
88 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
89 {
90 	preempt_disable_notrace();
91 	__cyc2ns_read(data);
92 }
93 
94 __always_inline void cyc2ns_read_end(void)
95 {
96 	preempt_enable_notrace();
97 }
98 
99 /*
100  * Accelerators for sched_clock()
101  * convert from cycles(64bits) => nanoseconds (64bits)
102  *  basic equation:
103  *              ns = cycles / (freq / ns_per_sec)
104  *              ns = cycles * (ns_per_sec / freq)
105  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
106  *              ns = cycles * (10^6 / cpu_khz)
107  *
108  *      Then we use scaling math (suggested by george@mvista.com) to get:
109  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
110  *              ns = cycles * cyc2ns_scale / SC
111  *
112  *      And since SC is a constant power of two, we can convert the div
113  *  into a shift. The larger SC is, the more accurate the conversion, but
114  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
115  *  (64-bit result) can be used.
116  *
117  *  We can use khz divisor instead of mhz to keep a better precision.
118  *  (mathieu.desnoyers@polymtl.ca)
119  *
120  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
121  */
122 
123 static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
124 {
125 	struct cyc2ns_data data;
126 	unsigned long long ns;
127 
128 	__cyc2ns_read(&data);
129 
130 	ns = data.cyc2ns_offset;
131 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
132 
133 	return ns;
134 }
135 
136 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
137 {
138 	unsigned long long ns;
139 	preempt_disable_notrace();
140 	ns = __cycles_2_ns(cyc);
141 	preempt_enable_notrace();
142 	return ns;
143 }
144 
145 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
146 {
147 	unsigned long long ns_now;
148 	struct cyc2ns_data data;
149 	struct cyc2ns *c2n;
150 
151 	ns_now = cycles_2_ns(tsc_now);
152 
153 	/*
154 	 * Compute a new multiplier as per the above comment and ensure our
155 	 * time function is continuous; see the comment near struct
156 	 * cyc2ns_data.
157 	 */
158 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
159 			       NSEC_PER_MSEC, 0);
160 
161 	/*
162 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
163 	 * not expected to be greater than 31 due to the original published
164 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
165 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
166 	 */
167 	if (data.cyc2ns_shift == 32) {
168 		data.cyc2ns_shift = 31;
169 		data.cyc2ns_mul >>= 1;
170 	}
171 
172 	data.cyc2ns_offset = ns_now -
173 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
174 
175 	c2n = per_cpu_ptr(&cyc2ns, cpu);
176 
177 	write_seqcount_latch_begin(&c2n->seq);
178 	c2n->data[0] = data;
179 	write_seqcount_latch(&c2n->seq);
180 	c2n->data[1] = data;
181 	write_seqcount_latch_end(&c2n->seq);
182 }
183 
184 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
185 {
186 	unsigned long flags;
187 
188 	local_irq_save(flags);
189 	sched_clock_idle_sleep_event();
190 
191 	if (khz)
192 		__set_cyc2ns_scale(khz, cpu, tsc_now);
193 
194 	sched_clock_idle_wakeup_event();
195 	local_irq_restore(flags);
196 }
197 
198 /*
199  * Initialize cyc2ns for boot cpu
200  */
201 static void __init cyc2ns_init_boot_cpu(void)
202 {
203 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
204 
205 	seqcount_latch_init(&c2n->seq);
206 	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
207 }
208 
209 /*
210  * Secondary CPUs do not run through tsc_init(), so set up
211  * all the scale factors for all CPUs, assuming the same
212  * speed as the bootup CPU.
213  */
214 static void __init cyc2ns_init_secondary_cpus(void)
215 {
216 	unsigned int cpu, this_cpu = smp_processor_id();
217 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
218 	struct cyc2ns_data *data = c2n->data;
219 
220 	for_each_possible_cpu(cpu) {
221 		if (cpu != this_cpu) {
222 			seqcount_latch_init(&c2n->seq);
223 			c2n = per_cpu_ptr(&cyc2ns, cpu);
224 			c2n->data[0] = data[0];
225 			c2n->data[1] = data[1];
226 		}
227 	}
228 }
229 
230 /*
231  * Scheduler clock - returns current time in nanosec units.
232  */
233 noinstr u64 native_sched_clock(void)
234 {
235 	if (static_branch_likely(&__use_tsc)) {
236 		u64 tsc_now = rdtsc();
237 
238 		/* return the value in ns */
239 		return __cycles_2_ns(tsc_now);
240 	}
241 
242 	/*
243 	 * Fall back to jiffies if there's no TSC available:
244 	 * ( But note that we still use it if the TSC is marked
245 	 *   unstable. We do this because unlike Time Of Day,
246 	 *   the scheduler clock tolerates small errors and it's
247 	 *   very important for it to be as fast as the platform
248 	 *   can achieve it. )
249 	 */
250 
251 	/* No locking but a rare wrong value is not a big deal: */
252 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
253 }
254 
255 /*
256  * Generate a sched_clock if you already have a TSC value.
257  */
258 u64 native_sched_clock_from_tsc(u64 tsc)
259 {
260 	return cycles_2_ns(tsc);
261 }
262 
263 /* We need to define a real function for sched_clock, to override the
264    weak default version */
265 #ifdef CONFIG_PARAVIRT
266 noinstr u64 sched_clock_noinstr(void)
267 {
268 	return paravirt_sched_clock();
269 }
270 
271 bool using_native_sched_clock(void)
272 {
273 	return static_call_query(pv_sched_clock) == native_sched_clock;
274 }
275 #else
276 u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
277 
278 bool using_native_sched_clock(void) { return true; }
279 #endif
280 
281 notrace u64 sched_clock(void)
282 {
283 	u64 now;
284 	preempt_disable_notrace();
285 	now = sched_clock_noinstr();
286 	preempt_enable_notrace();
287 	return now;
288 }
289 
290 int check_tsc_unstable(void)
291 {
292 	return tsc_unstable;
293 }
294 EXPORT_SYMBOL_GPL(check_tsc_unstable);
295 
296 #ifdef CONFIG_X86_TSC
297 int __init notsc_setup(char *str)
298 {
299 	mark_tsc_unstable("boot parameter notsc");
300 	return 1;
301 }
302 #else
303 /*
304  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
305  * in cpu/common.c
306  */
307 int __init notsc_setup(char *str)
308 {
309 	setup_clear_cpu_cap(X86_FEATURE_TSC);
310 	return 1;
311 }
312 #endif
313 
314 __setup("notsc", notsc_setup);
315 
316 static int no_sched_irq_time;
317 static int no_tsc_watchdog;
318 static int tsc_as_watchdog;
319 
320 static int __init tsc_setup(char *str)
321 {
322 	if (!strcmp(str, "reliable"))
323 		tsc_clocksource_reliable = 1;
324 	if (!strncmp(str, "noirqtime", 9))
325 		no_sched_irq_time = 1;
326 	if (!strcmp(str, "unstable"))
327 		mark_tsc_unstable("boot parameter");
328 	if (!strcmp(str, "nowatchdog")) {
329 		no_tsc_watchdog = 1;
330 		if (tsc_as_watchdog)
331 			pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
332 				 __func__);
333 		tsc_as_watchdog = 0;
334 	}
335 	if (!strcmp(str, "recalibrate"))
336 		tsc_force_recalibrate = 1;
337 	if (!strcmp(str, "watchdog")) {
338 		if (no_tsc_watchdog)
339 			pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
340 				 __func__);
341 		else
342 			tsc_as_watchdog = 1;
343 	}
344 	return 1;
345 }
346 
347 __setup("tsc=", tsc_setup);
348 
349 #define MAX_RETRIES		5
350 #define TSC_DEFAULT_THRESHOLD	0x20000
351 
352 /*
353  * Read TSC and the reference counters. Take care of any disturbances
354  */
355 static u64 tsc_read_refs(u64 *p, int hpet)
356 {
357 	u64 t1, t2;
358 	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
359 	int i;
360 
361 	for (i = 0; i < MAX_RETRIES; i++) {
362 		t1 = get_cycles();
363 		if (hpet)
364 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
365 		else
366 			*p = acpi_pm_read_early();
367 		t2 = get_cycles();
368 		if ((t2 - t1) < thresh)
369 			return t2;
370 	}
371 	return ULLONG_MAX;
372 }
373 
374 /*
375  * Calculate the TSC frequency from HPET reference
376  */
377 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
378 {
379 	u64 tmp;
380 
381 	if (hpet2 < hpet1)
382 		hpet2 += 0x100000000ULL;
383 	hpet2 -= hpet1;
384 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
385 	do_div(tmp, 1000000);
386 	deltatsc = div64_u64(deltatsc, tmp);
387 
388 	return (unsigned long) deltatsc;
389 }
390 
391 /*
392  * Calculate the TSC frequency from PMTimer reference
393  */
394 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
395 {
396 	u64 tmp;
397 
398 	if (!pm1 && !pm2)
399 		return ULONG_MAX;
400 
401 	if (pm2 < pm1)
402 		pm2 += (u64)ACPI_PM_OVRRUN;
403 	pm2 -= pm1;
404 	tmp = pm2 * 1000000000LL;
405 	do_div(tmp, PMTMR_TICKS_PER_SEC);
406 	do_div(deltatsc, tmp);
407 
408 	return (unsigned long) deltatsc;
409 }
410 
411 #define CAL_MS		10
412 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
413 #define CAL_PIT_LOOPS	1000
414 
415 #define CAL2_MS		50
416 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
417 #define CAL2_PIT_LOOPS	5000
418 
419 
420 /*
421  * Try to calibrate the TSC against the Programmable
422  * Interrupt Timer and return the frequency of the TSC
423  * in kHz.
424  *
425  * Return ULONG_MAX on failure to calibrate.
426  */
427 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
428 {
429 	u64 tsc, t1, t2, delta;
430 	unsigned long tscmin, tscmax;
431 	int pitcnt;
432 
433 	if (!has_legacy_pic()) {
434 		/*
435 		 * Relies on tsc_early_delay_calibrate() to have given us semi
436 		 * usable udelay(), wait for the same 50ms we would have with
437 		 * the PIT loop below.
438 		 */
439 		udelay(10 * USEC_PER_MSEC);
440 		udelay(10 * USEC_PER_MSEC);
441 		udelay(10 * USEC_PER_MSEC);
442 		udelay(10 * USEC_PER_MSEC);
443 		udelay(10 * USEC_PER_MSEC);
444 		return ULONG_MAX;
445 	}
446 
447 	/* Set the Gate high, disable speaker */
448 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
449 
450 	/*
451 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
452 	 * count mode), binary count. Set the latch register to 50ms
453 	 * (LSB then MSB) to begin countdown.
454 	 */
455 	outb(0xb0, 0x43);
456 	outb(latch & 0xff, 0x42);
457 	outb(latch >> 8, 0x42);
458 
459 	tsc = t1 = t2 = get_cycles();
460 
461 	pitcnt = 0;
462 	tscmax = 0;
463 	tscmin = ULONG_MAX;
464 	while ((inb(0x61) & 0x20) == 0) {
465 		t2 = get_cycles();
466 		delta = t2 - tsc;
467 		tsc = t2;
468 		if ((unsigned long) delta < tscmin)
469 			tscmin = (unsigned int) delta;
470 		if ((unsigned long) delta > tscmax)
471 			tscmax = (unsigned int) delta;
472 		pitcnt++;
473 	}
474 
475 	/*
476 	 * Sanity checks:
477 	 *
478 	 * If we were not able to read the PIT more than loopmin
479 	 * times, then we have been hit by a massive SMI
480 	 *
481 	 * If the maximum is 10 times larger than the minimum,
482 	 * then we got hit by an SMI as well.
483 	 */
484 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
485 		return ULONG_MAX;
486 
487 	/* Calculate the PIT value */
488 	delta = t2 - t1;
489 	do_div(delta, ms);
490 	return delta;
491 }
492 
493 /*
494  * This reads the current MSB of the PIT counter, and
495  * checks if we are running on sufficiently fast and
496  * non-virtualized hardware.
497  *
498  * Our expectations are:
499  *
500  *  - the PIT is running at roughly 1.19MHz
501  *
502  *  - each IO is going to take about 1us on real hardware,
503  *    but we allow it to be much faster (by a factor of 10) or
504  *    _slightly_ slower (ie we allow up to a 2us read+counter
505  *    update - anything else implies a unacceptably slow CPU
506  *    or PIT for the fast calibration to work.
507  *
508  *  - with 256 PIT ticks to read the value, we have 214us to
509  *    see the same MSB (and overhead like doing a single TSC
510  *    read per MSB value etc).
511  *
512  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
513  *    them each to take about a microsecond on real hardware.
514  *    So we expect a count value of around 100. But we'll be
515  *    generous, and accept anything over 50.
516  *
517  *  - if the PIT is stuck, and we see *many* more reads, we
518  *    return early (and the next caller of pit_expect_msb()
519  *    then consider it a failure when they don't see the
520  *    next expected value).
521  *
522  * These expectations mean that we know that we have seen the
523  * transition from one expected value to another with a fairly
524  * high accuracy, and we didn't miss any events. We can thus
525  * use the TSC value at the transitions to calculate a pretty
526  * good value for the TSC frequency.
527  */
528 static inline int pit_verify_msb(unsigned char val)
529 {
530 	/* Ignore LSB */
531 	inb(0x42);
532 	return inb(0x42) == val;
533 }
534 
535 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
536 {
537 	int count;
538 	u64 tsc = 0, prev_tsc = 0;
539 
540 	for (count = 0; count < 50000; count++) {
541 		if (!pit_verify_msb(val))
542 			break;
543 		prev_tsc = tsc;
544 		tsc = get_cycles();
545 	}
546 	*deltap = get_cycles() - prev_tsc;
547 	*tscp = tsc;
548 
549 	/*
550 	 * We require _some_ success, but the quality control
551 	 * will be based on the error terms on the TSC values.
552 	 */
553 	return count > 5;
554 }
555 
556 /*
557  * How many MSB values do we want to see? We aim for
558  * a maximum error rate of 500ppm (in practice the
559  * real error is much smaller), but refuse to spend
560  * more than 50ms on it.
561  */
562 #define MAX_QUICK_PIT_MS 50
563 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
564 
565 static unsigned long quick_pit_calibrate(void)
566 {
567 	int i;
568 	u64 tsc, delta;
569 	unsigned long d1, d2;
570 
571 	if (!has_legacy_pic())
572 		return 0;
573 
574 	/* Set the Gate high, disable speaker */
575 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
576 
577 	/*
578 	 * Counter 2, mode 0 (one-shot), binary count
579 	 *
580 	 * NOTE! Mode 2 decrements by two (and then the
581 	 * output is flipped each time, giving the same
582 	 * final output frequency as a decrement-by-one),
583 	 * so mode 0 is much better when looking at the
584 	 * individual counts.
585 	 */
586 	outb(0xb0, 0x43);
587 
588 	/* Start at 0xffff */
589 	outb(0xff, 0x42);
590 	outb(0xff, 0x42);
591 
592 	/*
593 	 * The PIT starts counting at the next edge, so we
594 	 * need to delay for a microsecond. The easiest way
595 	 * to do that is to just read back the 16-bit counter
596 	 * once from the PIT.
597 	 */
598 	pit_verify_msb(0);
599 
600 	if (pit_expect_msb(0xff, &tsc, &d1)) {
601 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
602 			if (!pit_expect_msb(0xff-i, &delta, &d2))
603 				break;
604 
605 			delta -= tsc;
606 
607 			/*
608 			 * Extrapolate the error and fail fast if the error will
609 			 * never be below 500 ppm.
610 			 */
611 			if (i == 1 &&
612 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
613 				return 0;
614 
615 			/*
616 			 * Iterate until the error is less than 500 ppm
617 			 */
618 			if (d1+d2 >= delta >> 11)
619 				continue;
620 
621 			/*
622 			 * Check the PIT one more time to verify that
623 			 * all TSC reads were stable wrt the PIT.
624 			 *
625 			 * This also guarantees serialization of the
626 			 * last cycle read ('d2') in pit_expect_msb.
627 			 */
628 			if (!pit_verify_msb(0xfe - i))
629 				break;
630 			goto success;
631 		}
632 	}
633 	pr_info("Fast TSC calibration failed\n");
634 	return 0;
635 
636 success:
637 	/*
638 	 * Ok, if we get here, then we've seen the
639 	 * MSB of the PIT decrement 'i' times, and the
640 	 * error has shrunk to less than 500 ppm.
641 	 *
642 	 * As a result, we can depend on there not being
643 	 * any odd delays anywhere, and the TSC reads are
644 	 * reliable (within the error).
645 	 *
646 	 * kHz = ticks / time-in-seconds / 1000;
647 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
648 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
649 	 */
650 	delta *= PIT_TICK_RATE;
651 	do_div(delta, i*256*1000);
652 	pr_info("Fast TSC calibration using PIT\n");
653 	return delta;
654 }
655 
656 /**
657  * native_calibrate_tsc - determine TSC frequency
658  * Determine TSC frequency via CPUID, else return 0.
659  */
660 unsigned long native_calibrate_tsc(void)
661 {
662 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
663 	unsigned int crystal_khz;
664 
665 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
666 		return 0;
667 
668 	if (boot_cpu_data.cpuid_level < 0x15)
669 		return 0;
670 
671 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
672 
673 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
674 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
675 
676 	if (ebx_numerator == 0 || eax_denominator == 0)
677 		return 0;
678 
679 	crystal_khz = ecx_hz / 1000;
680 
681 	/*
682 	 * Denverton SoCs don't report crystal clock, and also don't support
683 	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
684 	 * clock.
685 	 */
686 	if (crystal_khz == 0 &&
687 			boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D)
688 		crystal_khz = 25000;
689 
690 	/*
691 	 * TSC frequency reported directly by CPUID is a "hardware reported"
692 	 * frequency and is the most accurate one so far we have. This
693 	 * is considered a known frequency.
694 	 */
695 	if (crystal_khz != 0)
696 		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
697 
698 	/*
699 	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
700 	 * clock, but we can easily calculate it to a high degree of accuracy
701 	 * by considering the crystal ratio and the CPU speed.
702 	 */
703 	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
704 		unsigned int eax_base_mhz, ebx, ecx, edx;
705 
706 		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
707 		crystal_khz = eax_base_mhz * 1000 *
708 			eax_denominator / ebx_numerator;
709 	}
710 
711 	if (crystal_khz == 0)
712 		return 0;
713 
714 	/*
715 	 * For Atom SoCs TSC is the only reliable clocksource.
716 	 * Mark TSC reliable so no watchdog on it.
717 	 */
718 	if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT)
719 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
720 
721 #ifdef CONFIG_X86_LOCAL_APIC
722 	/*
723 	 * The local APIC appears to be fed by the core crystal clock
724 	 * (which sounds entirely sensible). We can set the global
725 	 * lapic_timer_period here to avoid having to calibrate the APIC
726 	 * timer later.
727 	 */
728 	lapic_timer_period = crystal_khz * 1000 / HZ;
729 #endif
730 
731 	return crystal_khz * ebx_numerator / eax_denominator;
732 }
733 
734 static unsigned long cpu_khz_from_cpuid(void)
735 {
736 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
737 
738 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
739 		return 0;
740 
741 	if (boot_cpu_data.cpuid_level < 0x16)
742 		return 0;
743 
744 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
745 
746 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
747 
748 	return eax_base_mhz * 1000;
749 }
750 
751 /*
752  * calibrate cpu using pit, hpet, and ptimer methods. They are available
753  * later in boot after acpi is initialized.
754  */
755 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
756 {
757 	u64 tsc1, tsc2, delta, ref1, ref2;
758 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
759 	unsigned long flags, latch, ms;
760 	int hpet = is_hpet_enabled(), i, loopmin;
761 
762 	/*
763 	 * Run 5 calibration loops to get the lowest frequency value
764 	 * (the best estimate). We use two different calibration modes
765 	 * here:
766 	 *
767 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
768 	 * load a timeout of 50ms. We read the time right after we
769 	 * started the timer and wait until the PIT count down reaches
770 	 * zero. In each wait loop iteration we read the TSC and check
771 	 * the delta to the previous read. We keep track of the min
772 	 * and max values of that delta. The delta is mostly defined
773 	 * by the IO time of the PIT access, so we can detect when
774 	 * any disturbance happened between the two reads. If the
775 	 * maximum time is significantly larger than the minimum time,
776 	 * then we discard the result and have another try.
777 	 *
778 	 * 2) Reference counter. If available we use the HPET or the
779 	 * PMTIMER as a reference to check the sanity of that value.
780 	 * We use separate TSC readouts and check inside of the
781 	 * reference read for any possible disturbance. We discard
782 	 * disturbed values here as well. We do that around the PIT
783 	 * calibration delay loop as we have to wait for a certain
784 	 * amount of time anyway.
785 	 */
786 
787 	/* Preset PIT loop values */
788 	latch = CAL_LATCH;
789 	ms = CAL_MS;
790 	loopmin = CAL_PIT_LOOPS;
791 
792 	for (i = 0; i < 3; i++) {
793 		unsigned long tsc_pit_khz;
794 
795 		/*
796 		 * Read the start value and the reference count of
797 		 * hpet/pmtimer when available. Then do the PIT
798 		 * calibration, which will take at least 50ms, and
799 		 * read the end value.
800 		 */
801 		local_irq_save(flags);
802 		tsc1 = tsc_read_refs(&ref1, hpet);
803 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
804 		tsc2 = tsc_read_refs(&ref2, hpet);
805 		local_irq_restore(flags);
806 
807 		/* Pick the lowest PIT TSC calibration so far */
808 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
809 
810 		/* hpet or pmtimer available ? */
811 		if (ref1 == ref2)
812 			continue;
813 
814 		/* Check, whether the sampling was disturbed */
815 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
816 			continue;
817 
818 		tsc2 = (tsc2 - tsc1) * 1000000LL;
819 		if (hpet)
820 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
821 		else
822 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
823 
824 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
825 
826 		/* Check the reference deviation */
827 		delta = ((u64) tsc_pit_min) * 100;
828 		do_div(delta, tsc_ref_min);
829 
830 		/*
831 		 * If both calibration results are inside a 10% window
832 		 * then we can be sure, that the calibration
833 		 * succeeded. We break out of the loop right away. We
834 		 * use the reference value, as it is more precise.
835 		 */
836 		if (delta >= 90 && delta <= 110) {
837 			pr_info("PIT calibration matches %s. %d loops\n",
838 				hpet ? "HPET" : "PMTIMER", i + 1);
839 			return tsc_ref_min;
840 		}
841 
842 		/*
843 		 * Check whether PIT failed more than once. This
844 		 * happens in virtualized environments. We need to
845 		 * give the virtual PC a slightly longer timeframe for
846 		 * the HPET/PMTIMER to make the result precise.
847 		 */
848 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
849 			latch = CAL2_LATCH;
850 			ms = CAL2_MS;
851 			loopmin = CAL2_PIT_LOOPS;
852 		}
853 	}
854 
855 	/*
856 	 * Now check the results.
857 	 */
858 	if (tsc_pit_min == ULONG_MAX) {
859 		/* PIT gave no useful value */
860 		pr_warn("Unable to calibrate against PIT\n");
861 
862 		/* We don't have an alternative source, disable TSC */
863 		if (!hpet && !ref1 && !ref2) {
864 			pr_notice("No reference (HPET/PMTIMER) available\n");
865 			return 0;
866 		}
867 
868 		/* The alternative source failed as well, disable TSC */
869 		if (tsc_ref_min == ULONG_MAX) {
870 			pr_warn("HPET/PMTIMER calibration failed\n");
871 			return 0;
872 		}
873 
874 		/* Use the alternative source */
875 		pr_info("using %s reference calibration\n",
876 			hpet ? "HPET" : "PMTIMER");
877 
878 		return tsc_ref_min;
879 	}
880 
881 	/* We don't have an alternative source, use the PIT calibration value */
882 	if (!hpet && !ref1 && !ref2) {
883 		pr_info("Using PIT calibration value\n");
884 		return tsc_pit_min;
885 	}
886 
887 	/* The alternative source failed, use the PIT calibration value */
888 	if (tsc_ref_min == ULONG_MAX) {
889 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
890 		return tsc_pit_min;
891 	}
892 
893 	/*
894 	 * The calibration values differ too much. In doubt, we use
895 	 * the PIT value as we know that there are PMTIMERs around
896 	 * running at double speed. At least we let the user know:
897 	 */
898 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
899 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
900 	pr_info("Using PIT calibration value\n");
901 	return tsc_pit_min;
902 }
903 
904 /**
905  * native_calibrate_cpu_early - can calibrate the cpu early in boot
906  */
907 unsigned long native_calibrate_cpu_early(void)
908 {
909 	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
910 
911 	if (!fast_calibrate)
912 		fast_calibrate = cpu_khz_from_msr();
913 	if (!fast_calibrate) {
914 		local_irq_save(flags);
915 		fast_calibrate = quick_pit_calibrate();
916 		local_irq_restore(flags);
917 	}
918 	return fast_calibrate;
919 }
920 
921 
922 /**
923  * native_calibrate_cpu - calibrate the cpu
924  */
925 static unsigned long native_calibrate_cpu(void)
926 {
927 	unsigned long tsc_freq = native_calibrate_cpu_early();
928 
929 	if (!tsc_freq)
930 		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
931 
932 	return tsc_freq;
933 }
934 
935 void recalibrate_cpu_khz(void)
936 {
937 #ifndef CONFIG_SMP
938 	unsigned long cpu_khz_old = cpu_khz;
939 
940 	if (!boot_cpu_has(X86_FEATURE_TSC))
941 		return;
942 
943 	cpu_khz = x86_platform.calibrate_cpu();
944 	tsc_khz = x86_platform.calibrate_tsc();
945 	if (tsc_khz == 0)
946 		tsc_khz = cpu_khz;
947 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
948 		cpu_khz = tsc_khz;
949 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
950 						    cpu_khz_old, cpu_khz);
951 #endif
952 }
953 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
954 
955 
956 static unsigned long long cyc2ns_suspend;
957 
958 void tsc_save_sched_clock_state(void)
959 {
960 	if (!sched_clock_stable())
961 		return;
962 
963 	cyc2ns_suspend = sched_clock();
964 }
965 
966 /*
967  * Even on processors with invariant TSC, TSC gets reset in some the
968  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
969  * arbitrary value (still sync'd across cpu's) during resume from such sleep
970  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
971  * that sched_clock() continues from the point where it was left off during
972  * suspend.
973  */
974 void tsc_restore_sched_clock_state(void)
975 {
976 	unsigned long long offset;
977 	unsigned long flags;
978 	int cpu;
979 
980 	if (!sched_clock_stable())
981 		return;
982 
983 	local_irq_save(flags);
984 
985 	/*
986 	 * We're coming out of suspend, there's no concurrency yet; don't
987 	 * bother being nice about the RCU stuff, just write to both
988 	 * data fields.
989 	 */
990 
991 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
992 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
993 
994 	offset = cyc2ns_suspend - sched_clock();
995 
996 	for_each_possible_cpu(cpu) {
997 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
998 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
999 	}
1000 
1001 	local_irq_restore(flags);
1002 }
1003 
1004 #ifdef CONFIG_CPU_FREQ
1005 /*
1006  * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1007  * changes.
1008  *
1009  * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1010  * as unstable and give up in those cases.
1011  *
1012  * Should fix up last_tsc too. Currently gettimeofday in the
1013  * first tick after the change will be slightly wrong.
1014  */
1015 
1016 static unsigned int  ref_freq;
1017 static unsigned long loops_per_jiffy_ref;
1018 static unsigned long tsc_khz_ref;
1019 
1020 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1021 				void *data)
1022 {
1023 	struct cpufreq_freqs *freq = data;
1024 
1025 	if (num_online_cpus() > 1) {
1026 		mark_tsc_unstable("cpufreq changes on SMP");
1027 		return 0;
1028 	}
1029 
1030 	if (!ref_freq) {
1031 		ref_freq = freq->old;
1032 		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1033 		tsc_khz_ref = tsc_khz;
1034 	}
1035 
1036 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1037 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1038 		boot_cpu_data.loops_per_jiffy =
1039 			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1040 
1041 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1042 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1043 			mark_tsc_unstable("cpufreq changes");
1044 
1045 		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 static struct notifier_block time_cpufreq_notifier_block = {
1052 	.notifier_call  = time_cpufreq_notifier
1053 };
1054 
1055 static int __init cpufreq_register_tsc_scaling(void)
1056 {
1057 	if (!boot_cpu_has(X86_FEATURE_TSC))
1058 		return 0;
1059 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1060 		return 0;
1061 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1062 				CPUFREQ_TRANSITION_NOTIFIER);
1063 	return 0;
1064 }
1065 
1066 core_initcall(cpufreq_register_tsc_scaling);
1067 
1068 #endif /* CONFIG_CPU_FREQ */
1069 
1070 #define ART_CPUID_LEAF (0x15)
1071 #define ART_MIN_DENOMINATOR (1)
1072 
1073 
1074 /*
1075  * If ART is present detect the numerator:denominator to convert to TSC
1076  */
1077 static void __init detect_art(void)
1078 {
1079 	unsigned int unused;
1080 
1081 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1082 		return;
1083 
1084 	/*
1085 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1086 	 * and the TSC counter resets must not occur asynchronously.
1087 	 */
1088 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1089 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1090 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1091 	    tsc_async_resets)
1092 		return;
1093 
1094 	cpuid(ART_CPUID_LEAF, &art_base_clk.denominator,
1095 	      &art_base_clk.numerator, &art_base_clk.freq_khz, &unused);
1096 
1097 	art_base_clk.freq_khz /= KHZ;
1098 	if (art_base_clk.denominator < ART_MIN_DENOMINATOR)
1099 		return;
1100 
1101 	rdmsrl(MSR_IA32_TSC_ADJUST, art_base_clk.offset);
1102 
1103 	/* Make this sticky over multiple CPU init calls */
1104 	setup_force_cpu_cap(X86_FEATURE_ART);
1105 }
1106 
1107 
1108 /* clocksource code */
1109 
1110 static void tsc_resume(struct clocksource *cs)
1111 {
1112 	tsc_verify_tsc_adjust(true);
1113 }
1114 
1115 /*
1116  * We used to compare the TSC to the cycle_last value in the clocksource
1117  * structure to avoid a nasty time-warp. This can be observed in a
1118  * very small window right after one CPU updated cycle_last under
1119  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1120  * is smaller than the cycle_last reference value due to a TSC which
1121  * is slightly behind. This delta is nowhere else observable, but in
1122  * that case it results in a forward time jump in the range of hours
1123  * due to the unsigned delta calculation of the time keeping core
1124  * code, which is necessary to support wrapping clocksources like pm
1125  * timer.
1126  *
1127  * This sanity check is now done in the core timekeeping code.
1128  * checking the result of read_tsc() - cycle_last for being negative.
1129  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1130  */
1131 static u64 read_tsc(struct clocksource *cs)
1132 {
1133 	return (u64)rdtsc_ordered();
1134 }
1135 
1136 static void tsc_cs_mark_unstable(struct clocksource *cs)
1137 {
1138 	if (tsc_unstable)
1139 		return;
1140 
1141 	tsc_unstable = 1;
1142 	if (using_native_sched_clock())
1143 		clear_sched_clock_stable();
1144 	disable_sched_clock_irqtime();
1145 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1146 }
1147 
1148 static void tsc_cs_tick_stable(struct clocksource *cs)
1149 {
1150 	if (tsc_unstable)
1151 		return;
1152 
1153 	if (using_native_sched_clock())
1154 		sched_clock_tick_stable();
1155 }
1156 
1157 static int tsc_cs_enable(struct clocksource *cs)
1158 {
1159 	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1160 	return 0;
1161 }
1162 
1163 /*
1164  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1165  */
1166 static struct clocksource clocksource_tsc_early = {
1167 	.name			= "tsc-early",
1168 	.rating			= 299,
1169 	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1170 	.read			= read_tsc,
1171 	.mask			= CLOCKSOURCE_MASK(64),
1172 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1173 				  CLOCK_SOURCE_MUST_VERIFY,
1174 	.id			= CSID_X86_TSC_EARLY,
1175 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1176 	.enable			= tsc_cs_enable,
1177 	.resume			= tsc_resume,
1178 	.mark_unstable		= tsc_cs_mark_unstable,
1179 	.tick_stable		= tsc_cs_tick_stable,
1180 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1181 };
1182 
1183 /*
1184  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1185  * this one will immediately take over. We will only register if TSC has
1186  * been found good.
1187  */
1188 static struct clocksource clocksource_tsc = {
1189 	.name			= "tsc",
1190 	.rating			= 300,
1191 	.read			= read_tsc,
1192 	.mask			= CLOCKSOURCE_MASK(64),
1193 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1194 				  CLOCK_SOURCE_VALID_FOR_HRES |
1195 				  CLOCK_SOURCE_MUST_VERIFY |
1196 				  CLOCK_SOURCE_VERIFY_PERCPU,
1197 	.id			= CSID_X86_TSC,
1198 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1199 	.enable			= tsc_cs_enable,
1200 	.resume			= tsc_resume,
1201 	.mark_unstable		= tsc_cs_mark_unstable,
1202 	.tick_stable		= tsc_cs_tick_stable,
1203 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1204 };
1205 
1206 void mark_tsc_unstable(char *reason)
1207 {
1208 	if (tsc_unstable)
1209 		return;
1210 
1211 	tsc_unstable = 1;
1212 	if (using_native_sched_clock())
1213 		clear_sched_clock_stable();
1214 	disable_sched_clock_irqtime();
1215 	pr_info("Marking TSC unstable due to %s\n", reason);
1216 
1217 	clocksource_mark_unstable(&clocksource_tsc_early);
1218 	clocksource_mark_unstable(&clocksource_tsc);
1219 }
1220 
1221 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1222 
1223 static void __init tsc_disable_clocksource_watchdog(void)
1224 {
1225 	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1226 	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1227 }
1228 
1229 bool tsc_clocksource_watchdog_disabled(void)
1230 {
1231 	return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1232 	       tsc_as_watchdog && !no_tsc_watchdog;
1233 }
1234 
1235 static void __init check_system_tsc_reliable(void)
1236 {
1237 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1238 	if (is_geode_lx()) {
1239 		/* RTSC counts during suspend */
1240 #define RTSC_SUSP 0x100
1241 		unsigned long res_low, res_high;
1242 
1243 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1244 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1245 		if (res_low & RTSC_SUSP)
1246 			tsc_clocksource_reliable = 1;
1247 	}
1248 #endif
1249 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1250 		tsc_clocksource_reliable = 1;
1251 
1252 	/*
1253 	 * Disable the clocksource watchdog when the system has:
1254 	 *  - TSC running at constant frequency
1255 	 *  - TSC which does not stop in C-States
1256 	 *  - the TSC_ADJUST register which allows to detect even minimal
1257 	 *    modifications
1258 	 *  - not more than four packages
1259 	 */
1260 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1261 	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1262 	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1263 	    topology_max_packages() <= 4)
1264 		tsc_disable_clocksource_watchdog();
1265 }
1266 
1267 /*
1268  * Make an educated guess if the TSC is trustworthy and synchronized
1269  * over all CPUs.
1270  */
1271 int unsynchronized_tsc(void)
1272 {
1273 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1274 		return 1;
1275 
1276 #ifdef CONFIG_SMP
1277 	if (apic_is_clustered_box())
1278 		return 1;
1279 #endif
1280 
1281 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1282 		return 0;
1283 
1284 	if (tsc_clocksource_reliable)
1285 		return 0;
1286 	/*
1287 	 * Intel systems are normally all synchronized.
1288 	 * Exceptions must mark TSC as unstable:
1289 	 */
1290 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1291 		/* assume multi socket systems are not synchronized: */
1292 		if (topology_max_packages() > 1)
1293 			return 1;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 static void tsc_refine_calibration_work(struct work_struct *work);
1300 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1301 /**
1302  * tsc_refine_calibration_work - Further refine tsc freq calibration
1303  * @work: ignored.
1304  *
1305  * This functions uses delayed work over a period of a
1306  * second to further refine the TSC freq value. Since this is
1307  * timer based, instead of loop based, we don't block the boot
1308  * process while this longer calibration is done.
1309  *
1310  * If there are any calibration anomalies (too many SMIs, etc),
1311  * or the refined calibration is off by 1% of the fast early
1312  * calibration, we throw out the new calibration and use the
1313  * early calibration.
1314  */
1315 static void tsc_refine_calibration_work(struct work_struct *work)
1316 {
1317 	static u64 tsc_start = ULLONG_MAX, ref_start;
1318 	static int hpet;
1319 	u64 tsc_stop, ref_stop, delta;
1320 	unsigned long freq;
1321 	int cpu;
1322 
1323 	/* Don't bother refining TSC on unstable systems */
1324 	if (tsc_unstable)
1325 		goto unreg;
1326 
1327 	/*
1328 	 * Since the work is started early in boot, we may be
1329 	 * delayed the first time we expire. So set the workqueue
1330 	 * again once we know timers are working.
1331 	 */
1332 	if (tsc_start == ULLONG_MAX) {
1333 restart:
1334 		/*
1335 		 * Only set hpet once, to avoid mixing hardware
1336 		 * if the hpet becomes enabled later.
1337 		 */
1338 		hpet = is_hpet_enabled();
1339 		tsc_start = tsc_read_refs(&ref_start, hpet);
1340 		schedule_delayed_work(&tsc_irqwork, HZ);
1341 		return;
1342 	}
1343 
1344 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1345 
1346 	/* hpet or pmtimer available ? */
1347 	if (ref_start == ref_stop)
1348 		goto out;
1349 
1350 	/* Check, whether the sampling was disturbed */
1351 	if (tsc_stop == ULLONG_MAX)
1352 		goto restart;
1353 
1354 	delta = tsc_stop - tsc_start;
1355 	delta *= 1000000LL;
1356 	if (hpet)
1357 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1358 	else
1359 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1360 
1361 	/* Will hit this only if tsc_force_recalibrate has been set */
1362 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1363 
1364 		/* Warn if the deviation exceeds 500 ppm */
1365 		if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1366 			pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1367 			pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1368 				(unsigned long)tsc_khz / 1000,
1369 				(unsigned long)tsc_khz % 1000);
1370 		}
1371 
1372 		pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1373 			hpet ? "HPET" : "PM_TIMER",
1374 			(unsigned long)freq / 1000,
1375 			(unsigned long)freq % 1000);
1376 
1377 		return;
1378 	}
1379 
1380 	/* Make sure we're within 1% */
1381 	if (abs(tsc_khz - freq) > tsc_khz/100)
1382 		goto out;
1383 
1384 	tsc_khz = freq;
1385 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1386 		(unsigned long)tsc_khz / 1000,
1387 		(unsigned long)tsc_khz % 1000);
1388 
1389 	/* Inform the TSC deadline clockevent devices about the recalibration */
1390 	lapic_update_tsc_freq();
1391 
1392 	/* Update the sched_clock() rate to match the clocksource one */
1393 	for_each_possible_cpu(cpu)
1394 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1395 
1396 out:
1397 	if (tsc_unstable)
1398 		goto unreg;
1399 
1400 	if (boot_cpu_has(X86_FEATURE_ART)) {
1401 		have_art = true;
1402 		clocksource_tsc.base = &art_base_clk;
1403 	}
1404 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1405 unreg:
1406 	clocksource_unregister(&clocksource_tsc_early);
1407 }
1408 
1409 
1410 static int __init init_tsc_clocksource(void)
1411 {
1412 	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1413 		return 0;
1414 
1415 	if (tsc_unstable) {
1416 		clocksource_unregister(&clocksource_tsc_early);
1417 		return 0;
1418 	}
1419 
1420 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1421 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1422 
1423 	/*
1424 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1425 	 * the refined calibration and directly register it as a clocksource.
1426 	 */
1427 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1428 		if (boot_cpu_has(X86_FEATURE_ART)) {
1429 			have_art = true;
1430 			clocksource_tsc.base = &art_base_clk;
1431 		}
1432 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1433 		clocksource_unregister(&clocksource_tsc_early);
1434 
1435 		if (!tsc_force_recalibrate)
1436 			return 0;
1437 	}
1438 
1439 	schedule_delayed_work(&tsc_irqwork, 0);
1440 	return 0;
1441 }
1442 /*
1443  * We use device_initcall here, to ensure we run after the hpet
1444  * is fully initialized, which may occur at fs_initcall time.
1445  */
1446 device_initcall(init_tsc_clocksource);
1447 
1448 static bool __init determine_cpu_tsc_frequencies(bool early)
1449 {
1450 	/* Make sure that cpu and tsc are not already calibrated */
1451 	WARN_ON(cpu_khz || tsc_khz);
1452 
1453 	if (early) {
1454 		cpu_khz = x86_platform.calibrate_cpu();
1455 		if (tsc_early_khz) {
1456 			tsc_khz = tsc_early_khz;
1457 		} else {
1458 			tsc_khz = x86_platform.calibrate_tsc();
1459 			clocksource_tsc.freq_khz = tsc_khz;
1460 		}
1461 	} else {
1462 		/* We should not be here with non-native cpu calibration */
1463 		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1464 		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1465 	}
1466 
1467 	/*
1468 	 * Trust non-zero tsc_khz as authoritative,
1469 	 * and use it to sanity check cpu_khz,
1470 	 * which will be off if system timer is off.
1471 	 */
1472 	if (tsc_khz == 0)
1473 		tsc_khz = cpu_khz;
1474 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1475 		cpu_khz = tsc_khz;
1476 
1477 	if (tsc_khz == 0)
1478 		return false;
1479 
1480 	pr_info("Detected %lu.%03lu MHz processor\n",
1481 		(unsigned long)cpu_khz / KHZ,
1482 		(unsigned long)cpu_khz % KHZ);
1483 
1484 	if (cpu_khz != tsc_khz) {
1485 		pr_info("Detected %lu.%03lu MHz TSC",
1486 			(unsigned long)tsc_khz / KHZ,
1487 			(unsigned long)tsc_khz % KHZ);
1488 	}
1489 	return true;
1490 }
1491 
1492 static unsigned long __init get_loops_per_jiffy(void)
1493 {
1494 	u64 lpj = (u64)tsc_khz * KHZ;
1495 
1496 	do_div(lpj, HZ);
1497 	return lpj;
1498 }
1499 
1500 static void __init tsc_enable_sched_clock(void)
1501 {
1502 	loops_per_jiffy = get_loops_per_jiffy();
1503 	use_tsc_delay();
1504 
1505 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1506 	tsc_store_and_check_tsc_adjust(true);
1507 	cyc2ns_init_boot_cpu();
1508 	static_branch_enable(&__use_tsc);
1509 }
1510 
1511 void __init tsc_early_init(void)
1512 {
1513 	if (!boot_cpu_has(X86_FEATURE_TSC))
1514 		return;
1515 	/* Don't change UV TSC multi-chassis synchronization */
1516 	if (is_early_uv_system())
1517 		return;
1518 	if (!determine_cpu_tsc_frequencies(true))
1519 		return;
1520 	tsc_enable_sched_clock();
1521 }
1522 
1523 void __init tsc_init(void)
1524 {
1525 	if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1526 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1527 		return;
1528 	}
1529 
1530 	/*
1531 	 * native_calibrate_cpu_early can only calibrate using methods that are
1532 	 * available early in boot.
1533 	 */
1534 	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1535 		x86_platform.calibrate_cpu = native_calibrate_cpu;
1536 
1537 	if (!tsc_khz) {
1538 		/* We failed to determine frequencies earlier, try again */
1539 		if (!determine_cpu_tsc_frequencies(false)) {
1540 			mark_tsc_unstable("could not calculate TSC khz");
1541 			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1542 			return;
1543 		}
1544 		tsc_enable_sched_clock();
1545 	}
1546 
1547 	cyc2ns_init_secondary_cpus();
1548 
1549 	if (!no_sched_irq_time)
1550 		enable_sched_clock_irqtime();
1551 
1552 	lpj_fine = get_loops_per_jiffy();
1553 
1554 	check_system_tsc_reliable();
1555 
1556 	if (unsynchronized_tsc()) {
1557 		mark_tsc_unstable("TSCs unsynchronized");
1558 		return;
1559 	}
1560 
1561 	if (tsc_clocksource_reliable || no_tsc_watchdog)
1562 		tsc_disable_clocksource_watchdog();
1563 
1564 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1565 	detect_art();
1566 }
1567 
1568 #ifdef CONFIG_SMP
1569 /*
1570  * Check whether existing calibration data can be reused.
1571  */
1572 unsigned long calibrate_delay_is_known(void)
1573 {
1574 	int sibling, cpu = smp_processor_id();
1575 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1576 	const struct cpumask *mask = topology_core_cpumask(cpu);
1577 
1578 	/*
1579 	 * If TSC has constant frequency and TSC is synchronized across
1580 	 * sockets then reuse CPU0 calibration.
1581 	 */
1582 	if (constant_tsc && !tsc_unstable)
1583 		return cpu_data(0).loops_per_jiffy;
1584 
1585 	/*
1586 	 * If TSC has constant frequency and TSC is not synchronized across
1587 	 * sockets and this is not the first CPU in the socket, then reuse
1588 	 * the calibration value of an already online CPU on that socket.
1589 	 *
1590 	 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1591 	 * socket.
1592 	 */
1593 	if (!constant_tsc || !mask)
1594 		return 0;
1595 
1596 	sibling = cpumask_any_but(mask, cpu);
1597 	if (sibling < nr_cpu_ids)
1598 		return cpu_data(sibling).loops_per_jiffy;
1599 	return 0;
1600 }
1601 #endif
1602