xref: /linux/arch/x86/kernel/tsc.c (revision 5a2dd72abdae75ea2960145e0549635ce4e0be96)
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/dmi.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
12 
13 #include <asm/hpet.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
16 #include <asm/time.h>
17 #include <asm/delay.h>
18 #include <asm/hypervisor.h>
19 
20 unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
21 EXPORT_SYMBOL(cpu_khz);
22 unsigned int tsc_khz;
23 EXPORT_SYMBOL(tsc_khz);
24 
25 /*
26  * TSC can be unstable due to cpufreq or due to unsynced TSCs
27  */
28 static int tsc_unstable;
29 
30 /* native_sched_clock() is called before tsc_init(), so
31    we must start with the TSC soft disabled to prevent
32    erroneous rdtsc usage on !cpu_has_tsc processors */
33 static int tsc_disabled = -1;
34 
35 static int tsc_clocksource_reliable;
36 /*
37  * Scheduler clock - returns current time in nanosec units.
38  */
39 u64 native_sched_clock(void)
40 {
41 	u64 this_offset;
42 
43 	/*
44 	 * Fall back to jiffies if there's no TSC available:
45 	 * ( But note that we still use it if the TSC is marked
46 	 *   unstable. We do this because unlike Time Of Day,
47 	 *   the scheduler clock tolerates small errors and it's
48 	 *   very important for it to be as fast as the platform
49 	 *   can achive it. )
50 	 */
51 	if (unlikely(tsc_disabled)) {
52 		/* No locking but a rare wrong value is not a big deal: */
53 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
54 	}
55 
56 	/* read the Time Stamp Counter: */
57 	rdtscll(this_offset);
58 
59 	/* return the value in ns */
60 	return __cycles_2_ns(this_offset);
61 }
62 
63 /* We need to define a real function for sched_clock, to override the
64    weak default version */
65 #ifdef CONFIG_PARAVIRT
66 unsigned long long sched_clock(void)
67 {
68 	return paravirt_sched_clock();
69 }
70 #else
71 unsigned long long
72 sched_clock(void) __attribute__((alias("native_sched_clock")));
73 #endif
74 
75 int check_tsc_unstable(void)
76 {
77 	return tsc_unstable;
78 }
79 EXPORT_SYMBOL_GPL(check_tsc_unstable);
80 
81 #ifdef CONFIG_X86_TSC
82 int __init notsc_setup(char *str)
83 {
84 	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
85 			"cannot disable TSC completely.\n");
86 	tsc_disabled = 1;
87 	return 1;
88 }
89 #else
90 /*
91  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
92  * in cpu/common.c
93  */
94 int __init notsc_setup(char *str)
95 {
96 	setup_clear_cpu_cap(X86_FEATURE_TSC);
97 	return 1;
98 }
99 #endif
100 
101 __setup("notsc", notsc_setup);
102 
103 static int __init tsc_setup(char *str)
104 {
105 	if (!strcmp(str, "reliable"))
106 		tsc_clocksource_reliable = 1;
107 	return 1;
108 }
109 
110 __setup("tsc=", tsc_setup);
111 
112 #define MAX_RETRIES     5
113 #define SMI_TRESHOLD    50000
114 
115 /*
116  * Read TSC and the reference counters. Take care of SMI disturbance
117  */
118 static u64 tsc_read_refs(u64 *p, int hpet)
119 {
120 	u64 t1, t2;
121 	int i;
122 
123 	for (i = 0; i < MAX_RETRIES; i++) {
124 		t1 = get_cycles();
125 		if (hpet)
126 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
127 		else
128 			*p = acpi_pm_read_early();
129 		t2 = get_cycles();
130 		if ((t2 - t1) < SMI_TRESHOLD)
131 			return t2;
132 	}
133 	return ULLONG_MAX;
134 }
135 
136 /*
137  * Calculate the TSC frequency from HPET reference
138  */
139 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
140 {
141 	u64 tmp;
142 
143 	if (hpet2 < hpet1)
144 		hpet2 += 0x100000000ULL;
145 	hpet2 -= hpet1;
146 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
147 	do_div(tmp, 1000000);
148 	do_div(deltatsc, tmp);
149 
150 	return (unsigned long) deltatsc;
151 }
152 
153 /*
154  * Calculate the TSC frequency from PMTimer reference
155  */
156 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
157 {
158 	u64 tmp;
159 
160 	if (!pm1 && !pm2)
161 		return ULONG_MAX;
162 
163 	if (pm2 < pm1)
164 		pm2 += (u64)ACPI_PM_OVRRUN;
165 	pm2 -= pm1;
166 	tmp = pm2 * 1000000000LL;
167 	do_div(tmp, PMTMR_TICKS_PER_SEC);
168 	do_div(deltatsc, tmp);
169 
170 	return (unsigned long) deltatsc;
171 }
172 
173 #define CAL_MS		10
174 #define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
175 #define CAL_PIT_LOOPS	1000
176 
177 #define CAL2_MS		50
178 #define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
179 #define CAL2_PIT_LOOPS	5000
180 
181 
182 /*
183  * Try to calibrate the TSC against the Programmable
184  * Interrupt Timer and return the frequency of the TSC
185  * in kHz.
186  *
187  * Return ULONG_MAX on failure to calibrate.
188  */
189 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
190 {
191 	u64 tsc, t1, t2, delta;
192 	unsigned long tscmin, tscmax;
193 	int pitcnt;
194 
195 	/* Set the Gate high, disable speaker */
196 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
197 
198 	/*
199 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
200 	 * count mode), binary count. Set the latch register to 50ms
201 	 * (LSB then MSB) to begin countdown.
202 	 */
203 	outb(0xb0, 0x43);
204 	outb(latch & 0xff, 0x42);
205 	outb(latch >> 8, 0x42);
206 
207 	tsc = t1 = t2 = get_cycles();
208 
209 	pitcnt = 0;
210 	tscmax = 0;
211 	tscmin = ULONG_MAX;
212 	while ((inb(0x61) & 0x20) == 0) {
213 		t2 = get_cycles();
214 		delta = t2 - tsc;
215 		tsc = t2;
216 		if ((unsigned long) delta < tscmin)
217 			tscmin = (unsigned int) delta;
218 		if ((unsigned long) delta > tscmax)
219 			tscmax = (unsigned int) delta;
220 		pitcnt++;
221 	}
222 
223 	/*
224 	 * Sanity checks:
225 	 *
226 	 * If we were not able to read the PIT more than loopmin
227 	 * times, then we have been hit by a massive SMI
228 	 *
229 	 * If the maximum is 10 times larger than the minimum,
230 	 * then we got hit by an SMI as well.
231 	 */
232 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
233 		return ULONG_MAX;
234 
235 	/* Calculate the PIT value */
236 	delta = t2 - t1;
237 	do_div(delta, ms);
238 	return delta;
239 }
240 
241 /*
242  * This reads the current MSB of the PIT counter, and
243  * checks if we are running on sufficiently fast and
244  * non-virtualized hardware.
245  *
246  * Our expectations are:
247  *
248  *  - the PIT is running at roughly 1.19MHz
249  *
250  *  - each IO is going to take about 1us on real hardware,
251  *    but we allow it to be much faster (by a factor of 10) or
252  *    _slightly_ slower (ie we allow up to a 2us read+counter
253  *    update - anything else implies a unacceptably slow CPU
254  *    or PIT for the fast calibration to work.
255  *
256  *  - with 256 PIT ticks to read the value, we have 214us to
257  *    see the same MSB (and overhead like doing a single TSC
258  *    read per MSB value etc).
259  *
260  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
261  *    them each to take about a microsecond on real hardware.
262  *    So we expect a count value of around 100. But we'll be
263  *    generous, and accept anything over 50.
264  *
265  *  - if the PIT is stuck, and we see *many* more reads, we
266  *    return early (and the next caller of pit_expect_msb()
267  *    then consider it a failure when they don't see the
268  *    next expected value).
269  *
270  * These expectations mean that we know that we have seen the
271  * transition from one expected value to another with a fairly
272  * high accuracy, and we didn't miss any events. We can thus
273  * use the TSC value at the transitions to calculate a pretty
274  * good value for the TSC frequencty.
275  */
276 static inline int pit_expect_msb(unsigned char val)
277 {
278 	int count = 0;
279 
280 	for (count = 0; count < 50000; count++) {
281 		/* Ignore LSB */
282 		inb(0x42);
283 		if (inb(0x42) != val)
284 			break;
285 	}
286 	return count > 50;
287 }
288 
289 /*
290  * How many MSB values do we want to see? We aim for a
291  * 15ms calibration, which assuming a 2us counter read
292  * error should give us roughly 150 ppm precision for
293  * the calibration.
294  */
295 #define QUICK_PIT_MS 15
296 #define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
297 
298 static unsigned long quick_pit_calibrate(void)
299 {
300 	/* Set the Gate high, disable speaker */
301 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
302 
303 	/*
304 	 * Counter 2, mode 0 (one-shot), binary count
305 	 *
306 	 * NOTE! Mode 2 decrements by two (and then the
307 	 * output is flipped each time, giving the same
308 	 * final output frequency as a decrement-by-one),
309 	 * so mode 0 is much better when looking at the
310 	 * individual counts.
311 	 */
312 	outb(0xb0, 0x43);
313 
314 	/* Start at 0xffff */
315 	outb(0xff, 0x42);
316 	outb(0xff, 0x42);
317 
318 	if (pit_expect_msb(0xff)) {
319 		int i;
320 		u64 t1, t2, delta;
321 		unsigned char expect = 0xfe;
322 
323 		t1 = get_cycles();
324 		for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
325 			if (!pit_expect_msb(expect))
326 				goto failed;
327 		}
328 		t2 = get_cycles();
329 
330 		/*
331 		 * Make sure we can rely on the second TSC timestamp:
332 		 */
333 		if (!pit_expect_msb(expect))
334 			goto failed;
335 
336 		/*
337 		 * Ok, if we get here, then we've seen the
338 		 * MSB of the PIT decrement QUICK_PIT_ITERATIONS
339 		 * times, and each MSB had many hits, so we never
340 		 * had any sudden jumps.
341 		 *
342 		 * As a result, we can depend on there not being
343 		 * any odd delays anywhere, and the TSC reads are
344 		 * reliable.
345 		 *
346 		 * kHz = ticks / time-in-seconds / 1000;
347 		 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
348 		 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
349 		 */
350 		delta = (t2 - t1)*PIT_TICK_RATE;
351 		do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
352 		printk("Fast TSC calibration using PIT\n");
353 		return delta;
354 	}
355 failed:
356 	return 0;
357 }
358 
359 /**
360  * native_calibrate_tsc - calibrate the tsc on boot
361  */
362 unsigned long native_calibrate_tsc(void)
363 {
364 	u64 tsc1, tsc2, delta, ref1, ref2;
365 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
366 	unsigned long flags, latch, ms, fast_calibrate, tsc_khz;
367 	int hpet = is_hpet_enabled(), i, loopmin;
368 
369 	tsc_khz = get_hypervisor_tsc_freq();
370 	if (tsc_khz) {
371 		printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
372 		return tsc_khz;
373 	}
374 
375 	local_irq_save(flags);
376 	fast_calibrate = quick_pit_calibrate();
377 	local_irq_restore(flags);
378 	if (fast_calibrate)
379 		return fast_calibrate;
380 
381 	/*
382 	 * Run 5 calibration loops to get the lowest frequency value
383 	 * (the best estimate). We use two different calibration modes
384 	 * here:
385 	 *
386 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
387 	 * load a timeout of 50ms. We read the time right after we
388 	 * started the timer and wait until the PIT count down reaches
389 	 * zero. In each wait loop iteration we read the TSC and check
390 	 * the delta to the previous read. We keep track of the min
391 	 * and max values of that delta. The delta is mostly defined
392 	 * by the IO time of the PIT access, so we can detect when a
393 	 * SMI/SMM disturbance happend between the two reads. If the
394 	 * maximum time is significantly larger than the minimum time,
395 	 * then we discard the result and have another try.
396 	 *
397 	 * 2) Reference counter. If available we use the HPET or the
398 	 * PMTIMER as a reference to check the sanity of that value.
399 	 * We use separate TSC readouts and check inside of the
400 	 * reference read for a SMI/SMM disturbance. We dicard
401 	 * disturbed values here as well. We do that around the PIT
402 	 * calibration delay loop as we have to wait for a certain
403 	 * amount of time anyway.
404 	 */
405 
406 	/* Preset PIT loop values */
407 	latch = CAL_LATCH;
408 	ms = CAL_MS;
409 	loopmin = CAL_PIT_LOOPS;
410 
411 	for (i = 0; i < 3; i++) {
412 		unsigned long tsc_pit_khz;
413 
414 		/*
415 		 * Read the start value and the reference count of
416 		 * hpet/pmtimer when available. Then do the PIT
417 		 * calibration, which will take at least 50ms, and
418 		 * read the end value.
419 		 */
420 		local_irq_save(flags);
421 		tsc1 = tsc_read_refs(&ref1, hpet);
422 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
423 		tsc2 = tsc_read_refs(&ref2, hpet);
424 		local_irq_restore(flags);
425 
426 		/* Pick the lowest PIT TSC calibration so far */
427 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
428 
429 		/* hpet or pmtimer available ? */
430 		if (!hpet && !ref1 && !ref2)
431 			continue;
432 
433 		/* Check, whether the sampling was disturbed by an SMI */
434 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
435 			continue;
436 
437 		tsc2 = (tsc2 - tsc1) * 1000000LL;
438 		if (hpet)
439 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
440 		else
441 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
442 
443 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
444 
445 		/* Check the reference deviation */
446 		delta = ((u64) tsc_pit_min) * 100;
447 		do_div(delta, tsc_ref_min);
448 
449 		/*
450 		 * If both calibration results are inside a 10% window
451 		 * then we can be sure, that the calibration
452 		 * succeeded. We break out of the loop right away. We
453 		 * use the reference value, as it is more precise.
454 		 */
455 		if (delta >= 90 && delta <= 110) {
456 			printk(KERN_INFO
457 			       "TSC: PIT calibration matches %s. %d loops\n",
458 			       hpet ? "HPET" : "PMTIMER", i + 1);
459 			return tsc_ref_min;
460 		}
461 
462 		/*
463 		 * Check whether PIT failed more than once. This
464 		 * happens in virtualized environments. We need to
465 		 * give the virtual PC a slightly longer timeframe for
466 		 * the HPET/PMTIMER to make the result precise.
467 		 */
468 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
469 			latch = CAL2_LATCH;
470 			ms = CAL2_MS;
471 			loopmin = CAL2_PIT_LOOPS;
472 		}
473 	}
474 
475 	/*
476 	 * Now check the results.
477 	 */
478 	if (tsc_pit_min == ULONG_MAX) {
479 		/* PIT gave no useful value */
480 		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
481 
482 		/* We don't have an alternative source, disable TSC */
483 		if (!hpet && !ref1 && !ref2) {
484 			printk("TSC: No reference (HPET/PMTIMER) available\n");
485 			return 0;
486 		}
487 
488 		/* The alternative source failed as well, disable TSC */
489 		if (tsc_ref_min == ULONG_MAX) {
490 			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
491 			       "failed.\n");
492 			return 0;
493 		}
494 
495 		/* Use the alternative source */
496 		printk(KERN_INFO "TSC: using %s reference calibration\n",
497 		       hpet ? "HPET" : "PMTIMER");
498 
499 		return tsc_ref_min;
500 	}
501 
502 	/* We don't have an alternative source, use the PIT calibration value */
503 	if (!hpet && !ref1 && !ref2) {
504 		printk(KERN_INFO "TSC: Using PIT calibration value\n");
505 		return tsc_pit_min;
506 	}
507 
508 	/* The alternative source failed, use the PIT calibration value */
509 	if (tsc_ref_min == ULONG_MAX) {
510 		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
511 		       "Using PIT calibration\n");
512 		return tsc_pit_min;
513 	}
514 
515 	/*
516 	 * The calibration values differ too much. In doubt, we use
517 	 * the PIT value as we know that there are PMTIMERs around
518 	 * running at double speed. At least we let the user know:
519 	 */
520 	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
521 	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
522 	printk(KERN_INFO "TSC: Using PIT calibration value\n");
523 	return tsc_pit_min;
524 }
525 
526 #ifdef CONFIG_X86_32
527 /* Only called from the Powernow K7 cpu freq driver */
528 int recalibrate_cpu_khz(void)
529 {
530 #ifndef CONFIG_SMP
531 	unsigned long cpu_khz_old = cpu_khz;
532 
533 	if (cpu_has_tsc) {
534 		tsc_khz = calibrate_tsc();
535 		cpu_khz = tsc_khz;
536 		cpu_data(0).loops_per_jiffy =
537 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
538 					cpu_khz_old, cpu_khz);
539 		return 0;
540 	} else
541 		return -ENODEV;
542 #else
543 	return -ENODEV;
544 #endif
545 }
546 
547 EXPORT_SYMBOL(recalibrate_cpu_khz);
548 
549 #endif /* CONFIG_X86_32 */
550 
551 /* Accelerators for sched_clock()
552  * convert from cycles(64bits) => nanoseconds (64bits)
553  *  basic equation:
554  *              ns = cycles / (freq / ns_per_sec)
555  *              ns = cycles * (ns_per_sec / freq)
556  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
557  *              ns = cycles * (10^6 / cpu_khz)
558  *
559  *      Then we use scaling math (suggested by george@mvista.com) to get:
560  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
561  *              ns = cycles * cyc2ns_scale / SC
562  *
563  *      And since SC is a constant power of two, we can convert the div
564  *  into a shift.
565  *
566  *  We can use khz divisor instead of mhz to keep a better precision, since
567  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
568  *  (mathieu.desnoyers@polymtl.ca)
569  *
570  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
571  */
572 
573 DEFINE_PER_CPU(unsigned long, cyc2ns);
574 
575 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
576 {
577 	unsigned long long tsc_now, ns_now;
578 	unsigned long flags, *scale;
579 
580 	local_irq_save(flags);
581 	sched_clock_idle_sleep_event();
582 
583 	scale = &per_cpu(cyc2ns, cpu);
584 
585 	rdtscll(tsc_now);
586 	ns_now = __cycles_2_ns(tsc_now);
587 
588 	if (cpu_khz)
589 		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
590 
591 	sched_clock_idle_wakeup_event(0);
592 	local_irq_restore(flags);
593 }
594 
595 #ifdef CONFIG_CPU_FREQ
596 
597 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
598  * changes.
599  *
600  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
601  * not that important because current Opteron setups do not support
602  * scaling on SMP anyroads.
603  *
604  * Should fix up last_tsc too. Currently gettimeofday in the
605  * first tick after the change will be slightly wrong.
606  */
607 
608 static unsigned int  ref_freq;
609 static unsigned long loops_per_jiffy_ref;
610 static unsigned long tsc_khz_ref;
611 
612 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
613 				void *data)
614 {
615 	struct cpufreq_freqs *freq = data;
616 	unsigned long *lpj, dummy;
617 
618 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
619 		return 0;
620 
621 	lpj = &dummy;
622 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
623 #ifdef CONFIG_SMP
624 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
625 #else
626 	lpj = &boot_cpu_data.loops_per_jiffy;
627 #endif
628 
629 	if (!ref_freq) {
630 		ref_freq = freq->old;
631 		loops_per_jiffy_ref = *lpj;
632 		tsc_khz_ref = tsc_khz;
633 	}
634 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
635 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
636 			(val == CPUFREQ_RESUMECHANGE)) {
637 		*lpj = 	cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
638 
639 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
640 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
641 			mark_tsc_unstable("cpufreq changes");
642 	}
643 
644 	set_cyc2ns_scale(tsc_khz, freq->cpu);
645 
646 	return 0;
647 }
648 
649 static struct notifier_block time_cpufreq_notifier_block = {
650 	.notifier_call  = time_cpufreq_notifier
651 };
652 
653 static int __init cpufreq_tsc(void)
654 {
655 	if (!cpu_has_tsc)
656 		return 0;
657 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
658 		return 0;
659 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
660 				CPUFREQ_TRANSITION_NOTIFIER);
661 	return 0;
662 }
663 
664 core_initcall(cpufreq_tsc);
665 
666 #endif /* CONFIG_CPU_FREQ */
667 
668 /* clocksource code */
669 
670 static struct clocksource clocksource_tsc;
671 
672 /*
673  * We compare the TSC to the cycle_last value in the clocksource
674  * structure to avoid a nasty time-warp. This can be observed in a
675  * very small window right after one CPU updated cycle_last under
676  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
677  * is smaller than the cycle_last reference value due to a TSC which
678  * is slighty behind. This delta is nowhere else observable, but in
679  * that case it results in a forward time jump in the range of hours
680  * due to the unsigned delta calculation of the time keeping core
681  * code, which is necessary to support wrapping clocksources like pm
682  * timer.
683  */
684 static cycle_t read_tsc(void)
685 {
686 	cycle_t ret = (cycle_t)get_cycles();
687 
688 	return ret >= clocksource_tsc.cycle_last ?
689 		ret : clocksource_tsc.cycle_last;
690 }
691 
692 #ifdef CONFIG_X86_64
693 static cycle_t __vsyscall_fn vread_tsc(void)
694 {
695 	cycle_t ret = (cycle_t)vget_cycles();
696 
697 	return ret >= __vsyscall_gtod_data.clock.cycle_last ?
698 		ret : __vsyscall_gtod_data.clock.cycle_last;
699 }
700 #endif
701 
702 static struct clocksource clocksource_tsc = {
703 	.name                   = "tsc",
704 	.rating                 = 300,
705 	.read                   = read_tsc,
706 	.mask                   = CLOCKSOURCE_MASK(64),
707 	.shift                  = 22,
708 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
709 				  CLOCK_SOURCE_MUST_VERIFY,
710 #ifdef CONFIG_X86_64
711 	.vread                  = vread_tsc,
712 #endif
713 };
714 
715 void mark_tsc_unstable(char *reason)
716 {
717 	if (!tsc_unstable) {
718 		tsc_unstable = 1;
719 		printk("Marking TSC unstable due to %s\n", reason);
720 		/* Change only the rating, when not registered */
721 		if (clocksource_tsc.mult)
722 			clocksource_change_rating(&clocksource_tsc, 0);
723 		else
724 			clocksource_tsc.rating = 0;
725 	}
726 }
727 
728 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
729 
730 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
731 {
732 	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
733 			d->ident);
734 	tsc_unstable = 1;
735 	return 0;
736 }
737 
738 /* List of systems that have known TSC problems */
739 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
740 	{
741 		.callback = dmi_mark_tsc_unstable,
742 		.ident = "IBM Thinkpad 380XD",
743 		.matches = {
744 			DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
745 			DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
746 		},
747 	},
748 	{}
749 };
750 
751 static void __init check_system_tsc_reliable(void)
752 {
753 #ifdef CONFIG_MGEODE_LX
754 	/* RTSC counts during suspend */
755 #define RTSC_SUSP 0x100
756 	unsigned long res_low, res_high;
757 
758 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
759 	/* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
760 	if (res_low & RTSC_SUSP)
761 		tsc_clocksource_reliable = 1;
762 #endif
763 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
764 		tsc_clocksource_reliable = 1;
765 }
766 
767 /*
768  * Make an educated guess if the TSC is trustworthy and synchronized
769  * over all CPUs.
770  */
771 __cpuinit int unsynchronized_tsc(void)
772 {
773 	if (!cpu_has_tsc || tsc_unstable)
774 		return 1;
775 
776 #ifdef CONFIG_X86_SMP
777 	if (apic_is_clustered_box())
778 		return 1;
779 #endif
780 
781 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
782 		return 0;
783 	/*
784 	 * Intel systems are normally all synchronized.
785 	 * Exceptions must mark TSC as unstable:
786 	 */
787 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
788 		/* assume multi socket systems are not synchronized: */
789 		if (num_possible_cpus() > 1)
790 			tsc_unstable = 1;
791 	}
792 
793 	return tsc_unstable;
794 }
795 
796 static void __init init_tsc_clocksource(void)
797 {
798 	clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
799 			clocksource_tsc.shift);
800 	if (tsc_clocksource_reliable)
801 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
802 	/* lower the rating if we already know its unstable: */
803 	if (check_tsc_unstable()) {
804 		clocksource_tsc.rating = 0;
805 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
806 	}
807 	clocksource_register(&clocksource_tsc);
808 }
809 
810 void __init tsc_init(void)
811 {
812 	u64 lpj;
813 	int cpu;
814 
815 	if (!cpu_has_tsc)
816 		return;
817 
818 	tsc_khz = calibrate_tsc();
819 	cpu_khz = tsc_khz;
820 
821 	if (!tsc_khz) {
822 		mark_tsc_unstable("could not calculate TSC khz");
823 		return;
824 	}
825 
826 #ifdef CONFIG_X86_64
827 	if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
828 			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
829 		cpu_khz = calibrate_cpu();
830 #endif
831 
832 	printk("Detected %lu.%03lu MHz processor.\n",
833 			(unsigned long)cpu_khz / 1000,
834 			(unsigned long)cpu_khz % 1000);
835 
836 	/*
837 	 * Secondary CPUs do not run through tsc_init(), so set up
838 	 * all the scale factors for all CPUs, assuming the same
839 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
840 	 * up if their speed diverges)
841 	 */
842 	for_each_possible_cpu(cpu)
843 		set_cyc2ns_scale(cpu_khz, cpu);
844 
845 	if (tsc_disabled > 0)
846 		return;
847 
848 	/* now allow native_sched_clock() to use rdtsc */
849 	tsc_disabled = 0;
850 
851 	lpj = ((u64)tsc_khz * 1000);
852 	do_div(lpj, HZ);
853 	lpj_fine = lpj;
854 
855 	use_tsc_delay();
856 	/* Check and install the TSC clocksource */
857 	dmi_check_system(bad_tsc_dmi_table);
858 
859 	if (unsynchronized_tsc())
860 		mark_tsc_unstable("TSCs unsynchronized");
861 
862 	check_system_tsc_reliable();
863 	init_tsc_clocksource();
864 }
865 
866