xref: /linux/arch/x86/kernel/tsc.c (revision 40d3057ac036f2501c1930728a6179be4fca577b)
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/dmi.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
12 
13 #include <asm/hpet.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
16 #include <asm/time.h>
17 #include <asm/delay.h>
18 
19 unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
20 EXPORT_SYMBOL(cpu_khz);
21 unsigned int tsc_khz;
22 EXPORT_SYMBOL(tsc_khz);
23 
24 /*
25  * TSC can be unstable due to cpufreq or due to unsynced TSCs
26  */
27 static int tsc_unstable;
28 
29 /* native_sched_clock() is called before tsc_init(), so
30    we must start with the TSC soft disabled to prevent
31    erroneous rdtsc usage on !cpu_has_tsc processors */
32 static int tsc_disabled = -1;
33 
34 /*
35  * Scheduler clock - returns current time in nanosec units.
36  */
37 u64 native_sched_clock(void)
38 {
39 	u64 this_offset;
40 
41 	/*
42 	 * Fall back to jiffies if there's no TSC available:
43 	 * ( But note that we still use it if the TSC is marked
44 	 *   unstable. We do this because unlike Time Of Day,
45 	 *   the scheduler clock tolerates small errors and it's
46 	 *   very important for it to be as fast as the platform
47 	 *   can achive it. )
48 	 */
49 	if (unlikely(tsc_disabled)) {
50 		/* No locking but a rare wrong value is not a big deal: */
51 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
52 	}
53 
54 	/* read the Time Stamp Counter: */
55 	rdtscll(this_offset);
56 
57 	/* return the value in ns */
58 	return cycles_2_ns(this_offset);
59 }
60 
61 /* We need to define a real function for sched_clock, to override the
62    weak default version */
63 #ifdef CONFIG_PARAVIRT
64 unsigned long long sched_clock(void)
65 {
66 	return paravirt_sched_clock();
67 }
68 #else
69 unsigned long long
70 sched_clock(void) __attribute__((alias("native_sched_clock")));
71 #endif
72 
73 int check_tsc_unstable(void)
74 {
75 	return tsc_unstable;
76 }
77 EXPORT_SYMBOL_GPL(check_tsc_unstable);
78 
79 #ifdef CONFIG_X86_TSC
80 int __init notsc_setup(char *str)
81 {
82 	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
83 			"cannot disable TSC completely.\n");
84 	tsc_disabled = 1;
85 	return 1;
86 }
87 #else
88 /*
89  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
90  * in cpu/common.c
91  */
92 int __init notsc_setup(char *str)
93 {
94 	setup_clear_cpu_cap(X86_FEATURE_TSC);
95 	return 1;
96 }
97 #endif
98 
99 __setup("notsc", notsc_setup);
100 
101 #define MAX_RETRIES     5
102 #define SMI_TRESHOLD    50000
103 
104 /*
105  * Read TSC and the reference counters. Take care of SMI disturbance
106  */
107 static u64 tsc_read_refs(u64 *pm, u64 *hpet)
108 {
109 	u64 t1, t2;
110 	int i;
111 
112 	for (i = 0; i < MAX_RETRIES; i++) {
113 		t1 = get_cycles();
114 		if (hpet)
115 			*hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
116 		else
117 			*pm = acpi_pm_read_early();
118 		t2 = get_cycles();
119 		if ((t2 - t1) < SMI_TRESHOLD)
120 			return t2;
121 	}
122 	return ULLONG_MAX;
123 }
124 
125 /*
126  * Try to calibrate the TSC against the Programmable
127  * Interrupt Timer and return the frequency of the TSC
128  * in kHz.
129  *
130  * Return ULONG_MAX on failure to calibrate.
131  */
132 static unsigned long pit_calibrate_tsc(void)
133 {
134 	u64 tsc, t1, t2, delta;
135 	unsigned long tscmin, tscmax;
136 	int pitcnt;
137 
138 	/* Set the Gate high, disable speaker */
139 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
140 
141 	/*
142 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
143 	 * count mode), binary count. Set the latch register to 50ms
144 	 * (LSB then MSB) to begin countdown.
145 	 */
146 	outb(0xb0, 0x43);
147 	outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
148 	outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
149 
150 	tsc = t1 = t2 = get_cycles();
151 
152 	pitcnt = 0;
153 	tscmax = 0;
154 	tscmin = ULONG_MAX;
155 	while ((inb(0x61) & 0x20) == 0) {
156 		t2 = get_cycles();
157 		delta = t2 - tsc;
158 		tsc = t2;
159 		if ((unsigned long) delta < tscmin)
160 			tscmin = (unsigned int) delta;
161 		if ((unsigned long) delta > tscmax)
162 			tscmax = (unsigned int) delta;
163 		pitcnt++;
164 	}
165 
166 	/*
167 	 * Sanity checks:
168 	 *
169 	 * If we were not able to read the PIT more than 5000
170 	 * times, then we have been hit by a massive SMI
171 	 *
172 	 * If the maximum is 10 times larger than the minimum,
173 	 * then we got hit by an SMI as well.
174 	 */
175 	if (pitcnt < 5000 || tscmax > 10 * tscmin)
176 		return ULONG_MAX;
177 
178 	/* Calculate the PIT value */
179 	delta = t2 - t1;
180 	do_div(delta, 50);
181 	return delta;
182 }
183 
184 
185 /**
186  * native_calibrate_tsc - calibrate the tsc on boot
187  */
188 unsigned long native_calibrate_tsc(void)
189 {
190 	u64 tsc1, tsc2, delta, pm1, pm2, hpet1, hpet2;
191 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
192 	unsigned long flags;
193 	int hpet = is_hpet_enabled(), i;
194 
195 	/*
196 	 * Run 5 calibration loops to get the lowest frequency value
197 	 * (the best estimate). We use two different calibration modes
198 	 * here:
199 	 *
200 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
201 	 * load a timeout of 50ms. We read the time right after we
202 	 * started the timer and wait until the PIT count down reaches
203 	 * zero. In each wait loop iteration we read the TSC and check
204 	 * the delta to the previous read. We keep track of the min
205 	 * and max values of that delta. The delta is mostly defined
206 	 * by the IO time of the PIT access, so we can detect when a
207 	 * SMI/SMM disturbance happend between the two reads. If the
208 	 * maximum time is significantly larger than the minimum time,
209 	 * then we discard the result and have another try.
210 	 *
211 	 * 2) Reference counter. If available we use the HPET or the
212 	 * PMTIMER as a reference to check the sanity of that value.
213 	 * We use separate TSC readouts and check inside of the
214 	 * reference read for a SMI/SMM disturbance. We dicard
215 	 * disturbed values here as well. We do that around the PIT
216 	 * calibration delay loop as we have to wait for a certain
217 	 * amount of time anyway.
218 	 */
219 	for (i = 0; i < 5; i++) {
220 		unsigned long tsc_pit_khz;
221 
222 		/*
223 		 * Read the start value and the reference count of
224 		 * hpet/pmtimer when available. Then do the PIT
225 		 * calibration, which will take at least 50ms, and
226 		 * read the end value.
227 		 */
228 		local_irq_save(flags);
229 		tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
230 		tsc_pit_khz = pit_calibrate_tsc();
231 		tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
232 		local_irq_restore(flags);
233 
234 		/* Pick the lowest PIT TSC calibration so far */
235 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
236 
237 		/* hpet or pmtimer available ? */
238 		if (!hpet && !pm1 && !pm2)
239 			continue;
240 
241 		/* Check, whether the sampling was disturbed by an SMI */
242 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
243 			continue;
244 
245 		tsc2 = (tsc2 - tsc1) * 1000000LL;
246 
247 		if (hpet) {
248 			if (hpet2 < hpet1)
249 				hpet2 += 0x100000000ULL;
250 			hpet2 -= hpet1;
251 			tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
252 			do_div(tsc1, 1000000);
253 		} else {
254 			if (pm2 < pm1)
255 				pm2 += (u64)ACPI_PM_OVRRUN;
256 			pm2 -= pm1;
257 			tsc1 = pm2 * 1000000000LL;
258 			do_div(tsc1, PMTMR_TICKS_PER_SEC);
259 		}
260 
261 		do_div(tsc2, tsc1);
262 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
263 	}
264 
265 	/*
266 	 * Now check the results.
267 	 */
268 	if (tsc_pit_min == ULONG_MAX) {
269 		/* PIT gave no useful value */
270 		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
271 
272 		/* We don't have an alternative source, disable TSC */
273 		if (!hpet && !pm1 && !pm2) {
274 			printk("TSC: No reference (HPET/PMTIMER) available\n");
275 			return 0;
276 		}
277 
278 		/* The alternative source failed as well, disable TSC */
279 		if (tsc_ref_min == ULONG_MAX) {
280 			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
281 			       "failed due to SMI disturbance.\n");
282 			return 0;
283 		}
284 
285 		/* Use the alternative source */
286 		printk(KERN_INFO "TSC: using %s reference calibration\n",
287 		       hpet ? "HPET" : "PMTIMER");
288 
289 		return tsc_ref_min;
290 	}
291 
292 	/* We don't have an alternative source, use the PIT calibration value */
293 	if (!hpet && !pm1 && !pm2) {
294 		printk(KERN_INFO "TSC: Using PIT calibration value\n");
295 		return tsc_pit_min;
296 	}
297 
298 	/* The alternative source failed, use the PIT calibration value */
299 	if (tsc_ref_min == ULONG_MAX) {
300 		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed due "
301 		       "to SMI disturbance. Using PIT calibration\n");
302 		return tsc_pit_min;
303 	}
304 
305 	/* Check the reference deviation */
306 	delta = ((u64) tsc_pit_min) * 100;
307 	do_div(delta, tsc_ref_min);
308 
309 	/*
310 	 * If both calibration results are inside a 5% window, the we
311 	 * use the lower frequency of those as it is probably the
312 	 * closest estimate.
313 	 */
314 	if (delta >= 95 && delta <= 105) {
315 		printk(KERN_INFO "TSC: PIT calibration confirmed by %s.\n",
316 		       hpet ? "HPET" : "PMTIMER");
317 		printk(KERN_INFO "TSC: using %s calibration value\n",
318 		       tsc_pit_min <= tsc_ref_min ? "PIT" :
319 		       hpet ? "HPET" : "PMTIMER");
320 		return tsc_pit_min <= tsc_ref_min ? tsc_pit_min : tsc_ref_min;
321 	}
322 
323 	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
324 	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
325 
326 	/*
327 	 * The calibration values differ too much. In doubt, we use
328 	 * the PIT value as we know that there are PMTIMERs around
329 	 * running at double speed.
330 	 */
331 	printk(KERN_INFO "TSC: Using PIT calibration value\n");
332 	return tsc_pit_min;
333 }
334 
335 #ifdef CONFIG_X86_32
336 /* Only called from the Powernow K7 cpu freq driver */
337 int recalibrate_cpu_khz(void)
338 {
339 #ifndef CONFIG_SMP
340 	unsigned long cpu_khz_old = cpu_khz;
341 
342 	if (cpu_has_tsc) {
343 		tsc_khz = calibrate_tsc();
344 		cpu_khz = tsc_khz;
345 		cpu_data(0).loops_per_jiffy =
346 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
347 					cpu_khz_old, cpu_khz);
348 		return 0;
349 	} else
350 		return -ENODEV;
351 #else
352 	return -ENODEV;
353 #endif
354 }
355 
356 EXPORT_SYMBOL(recalibrate_cpu_khz);
357 
358 #endif /* CONFIG_X86_32 */
359 
360 /* Accelerators for sched_clock()
361  * convert from cycles(64bits) => nanoseconds (64bits)
362  *  basic equation:
363  *              ns = cycles / (freq / ns_per_sec)
364  *              ns = cycles * (ns_per_sec / freq)
365  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
366  *              ns = cycles * (10^6 / cpu_khz)
367  *
368  *      Then we use scaling math (suggested by george@mvista.com) to get:
369  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
370  *              ns = cycles * cyc2ns_scale / SC
371  *
372  *      And since SC is a constant power of two, we can convert the div
373  *  into a shift.
374  *
375  *  We can use khz divisor instead of mhz to keep a better precision, since
376  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
377  *  (mathieu.desnoyers@polymtl.ca)
378  *
379  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
380  */
381 
382 DEFINE_PER_CPU(unsigned long, cyc2ns);
383 
384 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
385 {
386 	unsigned long long tsc_now, ns_now;
387 	unsigned long flags, *scale;
388 
389 	local_irq_save(flags);
390 	sched_clock_idle_sleep_event();
391 
392 	scale = &per_cpu(cyc2ns, cpu);
393 
394 	rdtscll(tsc_now);
395 	ns_now = __cycles_2_ns(tsc_now);
396 
397 	if (cpu_khz)
398 		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
399 
400 	sched_clock_idle_wakeup_event(0);
401 	local_irq_restore(flags);
402 }
403 
404 #ifdef CONFIG_CPU_FREQ
405 
406 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
407  * changes.
408  *
409  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
410  * not that important because current Opteron setups do not support
411  * scaling on SMP anyroads.
412  *
413  * Should fix up last_tsc too. Currently gettimeofday in the
414  * first tick after the change will be slightly wrong.
415  */
416 
417 static unsigned int  ref_freq;
418 static unsigned long loops_per_jiffy_ref;
419 static unsigned long tsc_khz_ref;
420 
421 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
422 				void *data)
423 {
424 	struct cpufreq_freqs *freq = data;
425 	unsigned long *lpj, dummy;
426 
427 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
428 		return 0;
429 
430 	lpj = &dummy;
431 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
432 #ifdef CONFIG_SMP
433 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
434 #else
435 	lpj = &boot_cpu_data.loops_per_jiffy;
436 #endif
437 
438 	if (!ref_freq) {
439 		ref_freq = freq->old;
440 		loops_per_jiffy_ref = *lpj;
441 		tsc_khz_ref = tsc_khz;
442 	}
443 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
444 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
445 			(val == CPUFREQ_RESUMECHANGE)) {
446 		*lpj = 	cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
447 
448 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
449 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
450 			mark_tsc_unstable("cpufreq changes");
451 	}
452 
453 	set_cyc2ns_scale(tsc_khz, freq->cpu);
454 
455 	return 0;
456 }
457 
458 static struct notifier_block time_cpufreq_notifier_block = {
459 	.notifier_call  = time_cpufreq_notifier
460 };
461 
462 static int __init cpufreq_tsc(void)
463 {
464 	if (!cpu_has_tsc)
465 		return 0;
466 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
467 		return 0;
468 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
469 				CPUFREQ_TRANSITION_NOTIFIER);
470 	return 0;
471 }
472 
473 core_initcall(cpufreq_tsc);
474 
475 #endif /* CONFIG_CPU_FREQ */
476 
477 /* clocksource code */
478 
479 static struct clocksource clocksource_tsc;
480 
481 /*
482  * We compare the TSC to the cycle_last value in the clocksource
483  * structure to avoid a nasty time-warp. This can be observed in a
484  * very small window right after one CPU updated cycle_last under
485  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
486  * is smaller than the cycle_last reference value due to a TSC which
487  * is slighty behind. This delta is nowhere else observable, but in
488  * that case it results in a forward time jump in the range of hours
489  * due to the unsigned delta calculation of the time keeping core
490  * code, which is necessary to support wrapping clocksources like pm
491  * timer.
492  */
493 static cycle_t read_tsc(void)
494 {
495 	cycle_t ret = (cycle_t)get_cycles();
496 
497 	return ret >= clocksource_tsc.cycle_last ?
498 		ret : clocksource_tsc.cycle_last;
499 }
500 
501 #ifdef CONFIG_X86_64
502 static cycle_t __vsyscall_fn vread_tsc(void)
503 {
504 	cycle_t ret = (cycle_t)vget_cycles();
505 
506 	return ret >= __vsyscall_gtod_data.clock.cycle_last ?
507 		ret : __vsyscall_gtod_data.clock.cycle_last;
508 }
509 #endif
510 
511 static struct clocksource clocksource_tsc = {
512 	.name                   = "tsc",
513 	.rating                 = 300,
514 	.read                   = read_tsc,
515 	.mask                   = CLOCKSOURCE_MASK(64),
516 	.shift                  = 22,
517 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
518 				  CLOCK_SOURCE_MUST_VERIFY,
519 #ifdef CONFIG_X86_64
520 	.vread                  = vread_tsc,
521 #endif
522 };
523 
524 void mark_tsc_unstable(char *reason)
525 {
526 	if (!tsc_unstable) {
527 		tsc_unstable = 1;
528 		printk("Marking TSC unstable due to %s\n", reason);
529 		/* Change only the rating, when not registered */
530 		if (clocksource_tsc.mult)
531 			clocksource_change_rating(&clocksource_tsc, 0);
532 		else
533 			clocksource_tsc.rating = 0;
534 	}
535 }
536 
537 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
538 
539 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
540 {
541 	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
542 			d->ident);
543 	tsc_unstable = 1;
544 	return 0;
545 }
546 
547 /* List of systems that have known TSC problems */
548 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
549 	{
550 		.callback = dmi_mark_tsc_unstable,
551 		.ident = "IBM Thinkpad 380XD",
552 		.matches = {
553 			DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
554 			DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
555 		},
556 	},
557 	{}
558 };
559 
560 /*
561  * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
562  */
563 #ifdef CONFIG_MGEODE_LX
564 /* RTSC counts during suspend */
565 #define RTSC_SUSP 0x100
566 
567 static void __init check_geode_tsc_reliable(void)
568 {
569 	unsigned long res_low, res_high;
570 
571 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
572 	if (res_low & RTSC_SUSP)
573 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
574 }
575 #else
576 static inline void check_geode_tsc_reliable(void) { }
577 #endif
578 
579 /*
580  * Make an educated guess if the TSC is trustworthy and synchronized
581  * over all CPUs.
582  */
583 __cpuinit int unsynchronized_tsc(void)
584 {
585 	if (!cpu_has_tsc || tsc_unstable)
586 		return 1;
587 
588 #ifdef CONFIG_SMP
589 	if (apic_is_clustered_box())
590 		return 1;
591 #endif
592 
593 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
594 		return 0;
595 	/*
596 	 * Intel systems are normally all synchronized.
597 	 * Exceptions must mark TSC as unstable:
598 	 */
599 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
600 		/* assume multi socket systems are not synchronized: */
601 		if (num_possible_cpus() > 1)
602 			tsc_unstable = 1;
603 	}
604 
605 	return tsc_unstable;
606 }
607 
608 static void __init init_tsc_clocksource(void)
609 {
610 	clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
611 			clocksource_tsc.shift);
612 	/* lower the rating if we already know its unstable: */
613 	if (check_tsc_unstable()) {
614 		clocksource_tsc.rating = 0;
615 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
616 	}
617 	clocksource_register(&clocksource_tsc);
618 }
619 
620 void __init tsc_init(void)
621 {
622 	u64 lpj;
623 	int cpu;
624 
625 	if (!cpu_has_tsc)
626 		return;
627 
628 	tsc_khz = calibrate_tsc();
629 	cpu_khz = tsc_khz;
630 
631 	if (!tsc_khz) {
632 		mark_tsc_unstable("could not calculate TSC khz");
633 		return;
634 	}
635 
636 #ifdef CONFIG_X86_64
637 	if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
638 			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
639 		cpu_khz = calibrate_cpu();
640 #endif
641 
642 	lpj = ((u64)tsc_khz * 1000);
643 	do_div(lpj, HZ);
644 	lpj_fine = lpj;
645 
646 	printk("Detected %lu.%03lu MHz processor.\n",
647 			(unsigned long)cpu_khz / 1000,
648 			(unsigned long)cpu_khz % 1000);
649 
650 	/*
651 	 * Secondary CPUs do not run through tsc_init(), so set up
652 	 * all the scale factors for all CPUs, assuming the same
653 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
654 	 * up if their speed diverges)
655 	 */
656 	for_each_possible_cpu(cpu)
657 		set_cyc2ns_scale(cpu_khz, cpu);
658 
659 	if (tsc_disabled > 0)
660 		return;
661 
662 	/* now allow native_sched_clock() to use rdtsc */
663 	tsc_disabled = 0;
664 
665 	use_tsc_delay();
666 	/* Check and install the TSC clocksource */
667 	dmi_check_system(bad_tsc_dmi_table);
668 
669 	if (unsynchronized_tsc())
670 		mark_tsc_unstable("TSCs unsynchronized");
671 
672 	check_geode_tsc_reliable();
673 	init_tsc_clocksource();
674 }
675 
676