1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/init.h> 8 #include <linux/export.h> 9 #include <linux/timer.h> 10 #include <linux/acpi_pmtmr.h> 11 #include <linux/cpufreq.h> 12 #include <linux/delay.h> 13 #include <linux/clocksource.h> 14 #include <linux/percpu.h> 15 #include <linux/timex.h> 16 #include <linux/static_key.h> 17 18 #include <asm/hpet.h> 19 #include <asm/timer.h> 20 #include <asm/vgtod.h> 21 #include <asm/time.h> 22 #include <asm/delay.h> 23 #include <asm/hypervisor.h> 24 #include <asm/nmi.h> 25 #include <asm/x86_init.h> 26 #include <asm/geode.h> 27 #include <asm/apic.h> 28 #include <asm/intel-family.h> 29 #include <asm/i8259.h> 30 #include <asm/uv/uv.h> 31 32 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 33 EXPORT_SYMBOL(cpu_khz); 34 35 unsigned int __read_mostly tsc_khz; 36 EXPORT_SYMBOL(tsc_khz); 37 38 #define KHZ 1000 39 40 /* 41 * TSC can be unstable due to cpufreq or due to unsynced TSCs 42 */ 43 static int __read_mostly tsc_unstable; 44 static unsigned int __initdata tsc_early_khz; 45 46 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 47 48 int tsc_clocksource_reliable; 49 50 static u32 art_to_tsc_numerator; 51 static u32 art_to_tsc_denominator; 52 static u64 art_to_tsc_offset; 53 struct clocksource *art_related_clocksource; 54 55 struct cyc2ns { 56 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ 57 seqcount_t seq; /* 32 + 4 = 36 */ 58 59 }; /* fits one cacheline */ 60 61 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 62 63 static int __init tsc_early_khz_setup(char *buf) 64 { 65 return kstrtouint(buf, 0, &tsc_early_khz); 66 } 67 early_param("tsc_early_khz", tsc_early_khz_setup); 68 69 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) 70 { 71 int seq, idx; 72 73 preempt_disable_notrace(); 74 75 do { 76 seq = this_cpu_read(cyc2ns.seq.sequence); 77 idx = seq & 1; 78 79 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); 80 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); 81 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); 82 83 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence))); 84 } 85 86 __always_inline void cyc2ns_read_end(void) 87 { 88 preempt_enable_notrace(); 89 } 90 91 /* 92 * Accelerators for sched_clock() 93 * convert from cycles(64bits) => nanoseconds (64bits) 94 * basic equation: 95 * ns = cycles / (freq / ns_per_sec) 96 * ns = cycles * (ns_per_sec / freq) 97 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 98 * ns = cycles * (10^6 / cpu_khz) 99 * 100 * Then we use scaling math (suggested by george@mvista.com) to get: 101 * ns = cycles * (10^6 * SC / cpu_khz) / SC 102 * ns = cycles * cyc2ns_scale / SC 103 * 104 * And since SC is a constant power of two, we can convert the div 105 * into a shift. The larger SC is, the more accurate the conversion, but 106 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 107 * (64-bit result) can be used. 108 * 109 * We can use khz divisor instead of mhz to keep a better precision. 110 * (mathieu.desnoyers@polymtl.ca) 111 * 112 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 113 */ 114 115 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) 116 { 117 struct cyc2ns_data data; 118 unsigned long long ns; 119 120 cyc2ns_read_begin(&data); 121 122 ns = data.cyc2ns_offset; 123 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); 124 125 cyc2ns_read_end(); 126 127 return ns; 128 } 129 130 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 131 { 132 unsigned long long ns_now; 133 struct cyc2ns_data data; 134 struct cyc2ns *c2n; 135 136 ns_now = cycles_2_ns(tsc_now); 137 138 /* 139 * Compute a new multiplier as per the above comment and ensure our 140 * time function is continuous; see the comment near struct 141 * cyc2ns_data. 142 */ 143 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, 144 NSEC_PER_MSEC, 0); 145 146 /* 147 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 148 * not expected to be greater than 31 due to the original published 149 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 150 * value) - refer perf_event_mmap_page documentation in perf_event.h. 151 */ 152 if (data.cyc2ns_shift == 32) { 153 data.cyc2ns_shift = 31; 154 data.cyc2ns_mul >>= 1; 155 } 156 157 data.cyc2ns_offset = ns_now - 158 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); 159 160 c2n = per_cpu_ptr(&cyc2ns, cpu); 161 162 raw_write_seqcount_latch(&c2n->seq); 163 c2n->data[0] = data; 164 raw_write_seqcount_latch(&c2n->seq); 165 c2n->data[1] = data; 166 } 167 168 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) 169 { 170 unsigned long flags; 171 172 local_irq_save(flags); 173 sched_clock_idle_sleep_event(); 174 175 if (khz) 176 __set_cyc2ns_scale(khz, cpu, tsc_now); 177 178 sched_clock_idle_wakeup_event(); 179 local_irq_restore(flags); 180 } 181 182 /* 183 * Initialize cyc2ns for boot cpu 184 */ 185 static void __init cyc2ns_init_boot_cpu(void) 186 { 187 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 188 189 seqcount_init(&c2n->seq); 190 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); 191 } 192 193 /* 194 * Secondary CPUs do not run through tsc_init(), so set up 195 * all the scale factors for all CPUs, assuming the same 196 * speed as the bootup CPU. 197 */ 198 static void __init cyc2ns_init_secondary_cpus(void) 199 { 200 unsigned int cpu, this_cpu = smp_processor_id(); 201 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); 202 struct cyc2ns_data *data = c2n->data; 203 204 for_each_possible_cpu(cpu) { 205 if (cpu != this_cpu) { 206 seqcount_init(&c2n->seq); 207 c2n = per_cpu_ptr(&cyc2ns, cpu); 208 c2n->data[0] = data[0]; 209 c2n->data[1] = data[1]; 210 } 211 } 212 } 213 214 /* 215 * Scheduler clock - returns current time in nanosec units. 216 */ 217 u64 native_sched_clock(void) 218 { 219 if (static_branch_likely(&__use_tsc)) { 220 u64 tsc_now = rdtsc(); 221 222 /* return the value in ns */ 223 return cycles_2_ns(tsc_now); 224 } 225 226 /* 227 * Fall back to jiffies if there's no TSC available: 228 * ( But note that we still use it if the TSC is marked 229 * unstable. We do this because unlike Time Of Day, 230 * the scheduler clock tolerates small errors and it's 231 * very important for it to be as fast as the platform 232 * can achieve it. ) 233 */ 234 235 /* No locking but a rare wrong value is not a big deal: */ 236 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 237 } 238 239 /* 240 * Generate a sched_clock if you already have a TSC value. 241 */ 242 u64 native_sched_clock_from_tsc(u64 tsc) 243 { 244 return cycles_2_ns(tsc); 245 } 246 247 /* We need to define a real function for sched_clock, to override the 248 weak default version */ 249 #ifdef CONFIG_PARAVIRT 250 unsigned long long sched_clock(void) 251 { 252 return paravirt_sched_clock(); 253 } 254 255 bool using_native_sched_clock(void) 256 { 257 return pv_ops.time.sched_clock == native_sched_clock; 258 } 259 #else 260 unsigned long long 261 sched_clock(void) __attribute__((alias("native_sched_clock"))); 262 263 bool using_native_sched_clock(void) { return true; } 264 #endif 265 266 int check_tsc_unstable(void) 267 { 268 return tsc_unstable; 269 } 270 EXPORT_SYMBOL_GPL(check_tsc_unstable); 271 272 #ifdef CONFIG_X86_TSC 273 int __init notsc_setup(char *str) 274 { 275 mark_tsc_unstable("boot parameter notsc"); 276 return 1; 277 } 278 #else 279 /* 280 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 281 * in cpu/common.c 282 */ 283 int __init notsc_setup(char *str) 284 { 285 setup_clear_cpu_cap(X86_FEATURE_TSC); 286 return 1; 287 } 288 #endif 289 290 __setup("notsc", notsc_setup); 291 292 static int no_sched_irq_time; 293 static int no_tsc_watchdog; 294 295 static int __init tsc_setup(char *str) 296 { 297 if (!strcmp(str, "reliable")) 298 tsc_clocksource_reliable = 1; 299 if (!strncmp(str, "noirqtime", 9)) 300 no_sched_irq_time = 1; 301 if (!strcmp(str, "unstable")) 302 mark_tsc_unstable("boot parameter"); 303 if (!strcmp(str, "nowatchdog")) 304 no_tsc_watchdog = 1; 305 return 1; 306 } 307 308 __setup("tsc=", tsc_setup); 309 310 #define MAX_RETRIES 5 311 #define TSC_DEFAULT_THRESHOLD 0x20000 312 313 /* 314 * Read TSC and the reference counters. Take care of any disturbances 315 */ 316 static u64 tsc_read_refs(u64 *p, int hpet) 317 { 318 u64 t1, t2; 319 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; 320 int i; 321 322 for (i = 0; i < MAX_RETRIES; i++) { 323 t1 = get_cycles(); 324 if (hpet) 325 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 326 else 327 *p = acpi_pm_read_early(); 328 t2 = get_cycles(); 329 if ((t2 - t1) < thresh) 330 return t2; 331 } 332 return ULLONG_MAX; 333 } 334 335 /* 336 * Calculate the TSC frequency from HPET reference 337 */ 338 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 339 { 340 u64 tmp; 341 342 if (hpet2 < hpet1) 343 hpet2 += 0x100000000ULL; 344 hpet2 -= hpet1; 345 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 346 do_div(tmp, 1000000); 347 deltatsc = div64_u64(deltatsc, tmp); 348 349 return (unsigned long) deltatsc; 350 } 351 352 /* 353 * Calculate the TSC frequency from PMTimer reference 354 */ 355 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 356 { 357 u64 tmp; 358 359 if (!pm1 && !pm2) 360 return ULONG_MAX; 361 362 if (pm2 < pm1) 363 pm2 += (u64)ACPI_PM_OVRRUN; 364 pm2 -= pm1; 365 tmp = pm2 * 1000000000LL; 366 do_div(tmp, PMTMR_TICKS_PER_SEC); 367 do_div(deltatsc, tmp); 368 369 return (unsigned long) deltatsc; 370 } 371 372 #define CAL_MS 10 373 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 374 #define CAL_PIT_LOOPS 1000 375 376 #define CAL2_MS 50 377 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 378 #define CAL2_PIT_LOOPS 5000 379 380 381 /* 382 * Try to calibrate the TSC against the Programmable 383 * Interrupt Timer and return the frequency of the TSC 384 * in kHz. 385 * 386 * Return ULONG_MAX on failure to calibrate. 387 */ 388 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 389 { 390 u64 tsc, t1, t2, delta; 391 unsigned long tscmin, tscmax; 392 int pitcnt; 393 394 if (!has_legacy_pic()) { 395 /* 396 * Relies on tsc_early_delay_calibrate() to have given us semi 397 * usable udelay(), wait for the same 50ms we would have with 398 * the PIT loop below. 399 */ 400 udelay(10 * USEC_PER_MSEC); 401 udelay(10 * USEC_PER_MSEC); 402 udelay(10 * USEC_PER_MSEC); 403 udelay(10 * USEC_PER_MSEC); 404 udelay(10 * USEC_PER_MSEC); 405 return ULONG_MAX; 406 } 407 408 /* Set the Gate high, disable speaker */ 409 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 410 411 /* 412 * Setup CTC channel 2* for mode 0, (interrupt on terminal 413 * count mode), binary count. Set the latch register to 50ms 414 * (LSB then MSB) to begin countdown. 415 */ 416 outb(0xb0, 0x43); 417 outb(latch & 0xff, 0x42); 418 outb(latch >> 8, 0x42); 419 420 tsc = t1 = t2 = get_cycles(); 421 422 pitcnt = 0; 423 tscmax = 0; 424 tscmin = ULONG_MAX; 425 while ((inb(0x61) & 0x20) == 0) { 426 t2 = get_cycles(); 427 delta = t2 - tsc; 428 tsc = t2; 429 if ((unsigned long) delta < tscmin) 430 tscmin = (unsigned int) delta; 431 if ((unsigned long) delta > tscmax) 432 tscmax = (unsigned int) delta; 433 pitcnt++; 434 } 435 436 /* 437 * Sanity checks: 438 * 439 * If we were not able to read the PIT more than loopmin 440 * times, then we have been hit by a massive SMI 441 * 442 * If the maximum is 10 times larger than the minimum, 443 * then we got hit by an SMI as well. 444 */ 445 if (pitcnt < loopmin || tscmax > 10 * tscmin) 446 return ULONG_MAX; 447 448 /* Calculate the PIT value */ 449 delta = t2 - t1; 450 do_div(delta, ms); 451 return delta; 452 } 453 454 /* 455 * This reads the current MSB of the PIT counter, and 456 * checks if we are running on sufficiently fast and 457 * non-virtualized hardware. 458 * 459 * Our expectations are: 460 * 461 * - the PIT is running at roughly 1.19MHz 462 * 463 * - each IO is going to take about 1us on real hardware, 464 * but we allow it to be much faster (by a factor of 10) or 465 * _slightly_ slower (ie we allow up to a 2us read+counter 466 * update - anything else implies a unacceptably slow CPU 467 * or PIT for the fast calibration to work. 468 * 469 * - with 256 PIT ticks to read the value, we have 214us to 470 * see the same MSB (and overhead like doing a single TSC 471 * read per MSB value etc). 472 * 473 * - We're doing 2 reads per loop (LSB, MSB), and we expect 474 * them each to take about a microsecond on real hardware. 475 * So we expect a count value of around 100. But we'll be 476 * generous, and accept anything over 50. 477 * 478 * - if the PIT is stuck, and we see *many* more reads, we 479 * return early (and the next caller of pit_expect_msb() 480 * then consider it a failure when they don't see the 481 * next expected value). 482 * 483 * These expectations mean that we know that we have seen the 484 * transition from one expected value to another with a fairly 485 * high accuracy, and we didn't miss any events. We can thus 486 * use the TSC value at the transitions to calculate a pretty 487 * good value for the TSC frequency. 488 */ 489 static inline int pit_verify_msb(unsigned char val) 490 { 491 /* Ignore LSB */ 492 inb(0x42); 493 return inb(0x42) == val; 494 } 495 496 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 497 { 498 int count; 499 u64 tsc = 0, prev_tsc = 0; 500 501 for (count = 0; count < 50000; count++) { 502 if (!pit_verify_msb(val)) 503 break; 504 prev_tsc = tsc; 505 tsc = get_cycles(); 506 } 507 *deltap = get_cycles() - prev_tsc; 508 *tscp = tsc; 509 510 /* 511 * We require _some_ success, but the quality control 512 * will be based on the error terms on the TSC values. 513 */ 514 return count > 5; 515 } 516 517 /* 518 * How many MSB values do we want to see? We aim for 519 * a maximum error rate of 500ppm (in practice the 520 * real error is much smaller), but refuse to spend 521 * more than 50ms on it. 522 */ 523 #define MAX_QUICK_PIT_MS 50 524 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 525 526 static unsigned long quick_pit_calibrate(void) 527 { 528 int i; 529 u64 tsc, delta; 530 unsigned long d1, d2; 531 532 if (!has_legacy_pic()) 533 return 0; 534 535 /* Set the Gate high, disable speaker */ 536 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 537 538 /* 539 * Counter 2, mode 0 (one-shot), binary count 540 * 541 * NOTE! Mode 2 decrements by two (and then the 542 * output is flipped each time, giving the same 543 * final output frequency as a decrement-by-one), 544 * so mode 0 is much better when looking at the 545 * individual counts. 546 */ 547 outb(0xb0, 0x43); 548 549 /* Start at 0xffff */ 550 outb(0xff, 0x42); 551 outb(0xff, 0x42); 552 553 /* 554 * The PIT starts counting at the next edge, so we 555 * need to delay for a microsecond. The easiest way 556 * to do that is to just read back the 16-bit counter 557 * once from the PIT. 558 */ 559 pit_verify_msb(0); 560 561 if (pit_expect_msb(0xff, &tsc, &d1)) { 562 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 563 if (!pit_expect_msb(0xff-i, &delta, &d2)) 564 break; 565 566 delta -= tsc; 567 568 /* 569 * Extrapolate the error and fail fast if the error will 570 * never be below 500 ppm. 571 */ 572 if (i == 1 && 573 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 574 return 0; 575 576 /* 577 * Iterate until the error is less than 500 ppm 578 */ 579 if (d1+d2 >= delta >> 11) 580 continue; 581 582 /* 583 * Check the PIT one more time to verify that 584 * all TSC reads were stable wrt the PIT. 585 * 586 * This also guarantees serialization of the 587 * last cycle read ('d2') in pit_expect_msb. 588 */ 589 if (!pit_verify_msb(0xfe - i)) 590 break; 591 goto success; 592 } 593 } 594 pr_info("Fast TSC calibration failed\n"); 595 return 0; 596 597 success: 598 /* 599 * Ok, if we get here, then we've seen the 600 * MSB of the PIT decrement 'i' times, and the 601 * error has shrunk to less than 500 ppm. 602 * 603 * As a result, we can depend on there not being 604 * any odd delays anywhere, and the TSC reads are 605 * reliable (within the error). 606 * 607 * kHz = ticks / time-in-seconds / 1000; 608 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 609 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 610 */ 611 delta *= PIT_TICK_RATE; 612 do_div(delta, i*256*1000); 613 pr_info("Fast TSC calibration using PIT\n"); 614 return delta; 615 } 616 617 /** 618 * native_calibrate_tsc 619 * Determine TSC frequency via CPUID, else return 0. 620 */ 621 unsigned long native_calibrate_tsc(void) 622 { 623 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 624 unsigned int crystal_khz; 625 626 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 627 return 0; 628 629 if (boot_cpu_data.cpuid_level < 0x15) 630 return 0; 631 632 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 633 634 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 635 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 636 637 if (ebx_numerator == 0 || eax_denominator == 0) 638 return 0; 639 640 crystal_khz = ecx_hz / 1000; 641 642 /* 643 * Denverton SoCs don't report crystal clock, and also don't support 644 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal 645 * clock. 646 */ 647 if (crystal_khz == 0 && 648 boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D) 649 crystal_khz = 25000; 650 651 /* 652 * TSC frequency reported directly by CPUID is a "hardware reported" 653 * frequency and is the most accurate one so far we have. This 654 * is considered a known frequency. 655 */ 656 if (crystal_khz != 0) 657 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); 658 659 /* 660 * Some Intel SoCs like Skylake and Kabylake don't report the crystal 661 * clock, but we can easily calculate it to a high degree of accuracy 662 * by considering the crystal ratio and the CPU speed. 663 */ 664 if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) { 665 unsigned int eax_base_mhz, ebx, ecx, edx; 666 667 cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx); 668 crystal_khz = eax_base_mhz * 1000 * 669 eax_denominator / ebx_numerator; 670 } 671 672 if (crystal_khz == 0) 673 return 0; 674 675 /* 676 * For Atom SoCs TSC is the only reliable clocksource. 677 * Mark TSC reliable so no watchdog on it. 678 */ 679 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) 680 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 681 682 #ifdef CONFIG_X86_LOCAL_APIC 683 /* 684 * The local APIC appears to be fed by the core crystal clock 685 * (which sounds entirely sensible). We can set the global 686 * lapic_timer_period here to avoid having to calibrate the APIC 687 * timer later. 688 */ 689 lapic_timer_period = crystal_khz * 1000 / HZ; 690 #endif 691 692 return crystal_khz * ebx_numerator / eax_denominator; 693 } 694 695 static unsigned long cpu_khz_from_cpuid(void) 696 { 697 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 698 699 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 700 return 0; 701 702 if (boot_cpu_data.cpuid_level < 0x16) 703 return 0; 704 705 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 706 707 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 708 709 return eax_base_mhz * 1000; 710 } 711 712 /* 713 * calibrate cpu using pit, hpet, and ptimer methods. They are available 714 * later in boot after acpi is initialized. 715 */ 716 static unsigned long pit_hpet_ptimer_calibrate_cpu(void) 717 { 718 u64 tsc1, tsc2, delta, ref1, ref2; 719 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 720 unsigned long flags, latch, ms; 721 int hpet = is_hpet_enabled(), i, loopmin; 722 723 /* 724 * Run 5 calibration loops to get the lowest frequency value 725 * (the best estimate). We use two different calibration modes 726 * here: 727 * 728 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 729 * load a timeout of 50ms. We read the time right after we 730 * started the timer and wait until the PIT count down reaches 731 * zero. In each wait loop iteration we read the TSC and check 732 * the delta to the previous read. We keep track of the min 733 * and max values of that delta. The delta is mostly defined 734 * by the IO time of the PIT access, so we can detect when 735 * any disturbance happened between the two reads. If the 736 * maximum time is significantly larger than the minimum time, 737 * then we discard the result and have another try. 738 * 739 * 2) Reference counter. If available we use the HPET or the 740 * PMTIMER as a reference to check the sanity of that value. 741 * We use separate TSC readouts and check inside of the 742 * reference read for any possible disturbance. We dicard 743 * disturbed values here as well. We do that around the PIT 744 * calibration delay loop as we have to wait for a certain 745 * amount of time anyway. 746 */ 747 748 /* Preset PIT loop values */ 749 latch = CAL_LATCH; 750 ms = CAL_MS; 751 loopmin = CAL_PIT_LOOPS; 752 753 for (i = 0; i < 3; i++) { 754 unsigned long tsc_pit_khz; 755 756 /* 757 * Read the start value and the reference count of 758 * hpet/pmtimer when available. Then do the PIT 759 * calibration, which will take at least 50ms, and 760 * read the end value. 761 */ 762 local_irq_save(flags); 763 tsc1 = tsc_read_refs(&ref1, hpet); 764 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 765 tsc2 = tsc_read_refs(&ref2, hpet); 766 local_irq_restore(flags); 767 768 /* Pick the lowest PIT TSC calibration so far */ 769 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 770 771 /* hpet or pmtimer available ? */ 772 if (ref1 == ref2) 773 continue; 774 775 /* Check, whether the sampling was disturbed */ 776 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 777 continue; 778 779 tsc2 = (tsc2 - tsc1) * 1000000LL; 780 if (hpet) 781 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 782 else 783 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 784 785 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 786 787 /* Check the reference deviation */ 788 delta = ((u64) tsc_pit_min) * 100; 789 do_div(delta, tsc_ref_min); 790 791 /* 792 * If both calibration results are inside a 10% window 793 * then we can be sure, that the calibration 794 * succeeded. We break out of the loop right away. We 795 * use the reference value, as it is more precise. 796 */ 797 if (delta >= 90 && delta <= 110) { 798 pr_info("PIT calibration matches %s. %d loops\n", 799 hpet ? "HPET" : "PMTIMER", i + 1); 800 return tsc_ref_min; 801 } 802 803 /* 804 * Check whether PIT failed more than once. This 805 * happens in virtualized environments. We need to 806 * give the virtual PC a slightly longer timeframe for 807 * the HPET/PMTIMER to make the result precise. 808 */ 809 if (i == 1 && tsc_pit_min == ULONG_MAX) { 810 latch = CAL2_LATCH; 811 ms = CAL2_MS; 812 loopmin = CAL2_PIT_LOOPS; 813 } 814 } 815 816 /* 817 * Now check the results. 818 */ 819 if (tsc_pit_min == ULONG_MAX) { 820 /* PIT gave no useful value */ 821 pr_warn("Unable to calibrate against PIT\n"); 822 823 /* We don't have an alternative source, disable TSC */ 824 if (!hpet && !ref1 && !ref2) { 825 pr_notice("No reference (HPET/PMTIMER) available\n"); 826 return 0; 827 } 828 829 /* The alternative source failed as well, disable TSC */ 830 if (tsc_ref_min == ULONG_MAX) { 831 pr_warn("HPET/PMTIMER calibration failed\n"); 832 return 0; 833 } 834 835 /* Use the alternative source */ 836 pr_info("using %s reference calibration\n", 837 hpet ? "HPET" : "PMTIMER"); 838 839 return tsc_ref_min; 840 } 841 842 /* We don't have an alternative source, use the PIT calibration value */ 843 if (!hpet && !ref1 && !ref2) { 844 pr_info("Using PIT calibration value\n"); 845 return tsc_pit_min; 846 } 847 848 /* The alternative source failed, use the PIT calibration value */ 849 if (tsc_ref_min == ULONG_MAX) { 850 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 851 return tsc_pit_min; 852 } 853 854 /* 855 * The calibration values differ too much. In doubt, we use 856 * the PIT value as we know that there are PMTIMERs around 857 * running at double speed. At least we let the user know: 858 */ 859 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 860 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 861 pr_info("Using PIT calibration value\n"); 862 return tsc_pit_min; 863 } 864 865 /** 866 * native_calibrate_cpu_early - can calibrate the cpu early in boot 867 */ 868 unsigned long native_calibrate_cpu_early(void) 869 { 870 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); 871 872 if (!fast_calibrate) 873 fast_calibrate = cpu_khz_from_msr(); 874 if (!fast_calibrate) { 875 local_irq_save(flags); 876 fast_calibrate = quick_pit_calibrate(); 877 local_irq_restore(flags); 878 } 879 return fast_calibrate; 880 } 881 882 883 /** 884 * native_calibrate_cpu - calibrate the cpu 885 */ 886 static unsigned long native_calibrate_cpu(void) 887 { 888 unsigned long tsc_freq = native_calibrate_cpu_early(); 889 890 if (!tsc_freq) 891 tsc_freq = pit_hpet_ptimer_calibrate_cpu(); 892 893 return tsc_freq; 894 } 895 896 void recalibrate_cpu_khz(void) 897 { 898 #ifndef CONFIG_SMP 899 unsigned long cpu_khz_old = cpu_khz; 900 901 if (!boot_cpu_has(X86_FEATURE_TSC)) 902 return; 903 904 cpu_khz = x86_platform.calibrate_cpu(); 905 tsc_khz = x86_platform.calibrate_tsc(); 906 if (tsc_khz == 0) 907 tsc_khz = cpu_khz; 908 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 909 cpu_khz = tsc_khz; 910 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 911 cpu_khz_old, cpu_khz); 912 #endif 913 } 914 915 EXPORT_SYMBOL(recalibrate_cpu_khz); 916 917 918 static unsigned long long cyc2ns_suspend; 919 920 void tsc_save_sched_clock_state(void) 921 { 922 if (!sched_clock_stable()) 923 return; 924 925 cyc2ns_suspend = sched_clock(); 926 } 927 928 /* 929 * Even on processors with invariant TSC, TSC gets reset in some the 930 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 931 * arbitrary value (still sync'd across cpu's) during resume from such sleep 932 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 933 * that sched_clock() continues from the point where it was left off during 934 * suspend. 935 */ 936 void tsc_restore_sched_clock_state(void) 937 { 938 unsigned long long offset; 939 unsigned long flags; 940 int cpu; 941 942 if (!sched_clock_stable()) 943 return; 944 945 local_irq_save(flags); 946 947 /* 948 * We're coming out of suspend, there's no concurrency yet; don't 949 * bother being nice about the RCU stuff, just write to both 950 * data fields. 951 */ 952 953 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 954 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 955 956 offset = cyc2ns_suspend - sched_clock(); 957 958 for_each_possible_cpu(cpu) { 959 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 960 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 961 } 962 963 local_irq_restore(flags); 964 } 965 966 #ifdef CONFIG_CPU_FREQ 967 /* 968 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency 969 * changes. 970 * 971 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC 972 * as unstable and give up in those cases. 973 * 974 * Should fix up last_tsc too. Currently gettimeofday in the 975 * first tick after the change will be slightly wrong. 976 */ 977 978 static unsigned int ref_freq; 979 static unsigned long loops_per_jiffy_ref; 980 static unsigned long tsc_khz_ref; 981 982 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 983 void *data) 984 { 985 struct cpufreq_freqs *freq = data; 986 987 if (num_online_cpus() > 1) { 988 mark_tsc_unstable("cpufreq changes on SMP"); 989 return 0; 990 } 991 992 if (!ref_freq) { 993 ref_freq = freq->old; 994 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; 995 tsc_khz_ref = tsc_khz; 996 } 997 998 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 999 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 1000 boot_cpu_data.loops_per_jiffy = 1001 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 1002 1003 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 1004 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 1005 mark_tsc_unstable("cpufreq changes"); 1006 1007 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); 1008 } 1009 1010 return 0; 1011 } 1012 1013 static struct notifier_block time_cpufreq_notifier_block = { 1014 .notifier_call = time_cpufreq_notifier 1015 }; 1016 1017 static int __init cpufreq_register_tsc_scaling(void) 1018 { 1019 if (!boot_cpu_has(X86_FEATURE_TSC)) 1020 return 0; 1021 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1022 return 0; 1023 cpufreq_register_notifier(&time_cpufreq_notifier_block, 1024 CPUFREQ_TRANSITION_NOTIFIER); 1025 return 0; 1026 } 1027 1028 core_initcall(cpufreq_register_tsc_scaling); 1029 1030 #endif /* CONFIG_CPU_FREQ */ 1031 1032 #define ART_CPUID_LEAF (0x15) 1033 #define ART_MIN_DENOMINATOR (1) 1034 1035 1036 /* 1037 * If ART is present detect the numerator:denominator to convert to TSC 1038 */ 1039 static void __init detect_art(void) 1040 { 1041 unsigned int unused[2]; 1042 1043 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 1044 return; 1045 1046 /* 1047 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, 1048 * and the TSC counter resets must not occur asynchronously. 1049 */ 1050 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1051 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1052 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || 1053 tsc_async_resets) 1054 return; 1055 1056 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 1057 &art_to_tsc_numerator, unused, unused+1); 1058 1059 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) 1060 return; 1061 1062 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); 1063 1064 /* Make this sticky over multiple CPU init calls */ 1065 setup_force_cpu_cap(X86_FEATURE_ART); 1066 } 1067 1068 1069 /* clocksource code */ 1070 1071 static void tsc_resume(struct clocksource *cs) 1072 { 1073 tsc_verify_tsc_adjust(true); 1074 } 1075 1076 /* 1077 * We used to compare the TSC to the cycle_last value in the clocksource 1078 * structure to avoid a nasty time-warp. This can be observed in a 1079 * very small window right after one CPU updated cycle_last under 1080 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1081 * is smaller than the cycle_last reference value due to a TSC which 1082 * is slighty behind. This delta is nowhere else observable, but in 1083 * that case it results in a forward time jump in the range of hours 1084 * due to the unsigned delta calculation of the time keeping core 1085 * code, which is necessary to support wrapping clocksources like pm 1086 * timer. 1087 * 1088 * This sanity check is now done in the core timekeeping code. 1089 * checking the result of read_tsc() - cycle_last for being negative. 1090 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1091 */ 1092 static u64 read_tsc(struct clocksource *cs) 1093 { 1094 return (u64)rdtsc_ordered(); 1095 } 1096 1097 static void tsc_cs_mark_unstable(struct clocksource *cs) 1098 { 1099 if (tsc_unstable) 1100 return; 1101 1102 tsc_unstable = 1; 1103 if (using_native_sched_clock()) 1104 clear_sched_clock_stable(); 1105 disable_sched_clock_irqtime(); 1106 pr_info("Marking TSC unstable due to clocksource watchdog\n"); 1107 } 1108 1109 static void tsc_cs_tick_stable(struct clocksource *cs) 1110 { 1111 if (tsc_unstable) 1112 return; 1113 1114 if (using_native_sched_clock()) 1115 sched_clock_tick_stable(); 1116 } 1117 1118 static int tsc_cs_enable(struct clocksource *cs) 1119 { 1120 vclocks_set_used(VDSO_CLOCKMODE_TSC); 1121 return 0; 1122 } 1123 1124 /* 1125 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1126 */ 1127 static struct clocksource clocksource_tsc_early = { 1128 .name = "tsc-early", 1129 .rating = 299, 1130 .read = read_tsc, 1131 .mask = CLOCKSOURCE_MASK(64), 1132 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1133 CLOCK_SOURCE_MUST_VERIFY, 1134 .vdso_clock_mode = VDSO_CLOCKMODE_TSC, 1135 .enable = tsc_cs_enable, 1136 .resume = tsc_resume, 1137 .mark_unstable = tsc_cs_mark_unstable, 1138 .tick_stable = tsc_cs_tick_stable, 1139 .list = LIST_HEAD_INIT(clocksource_tsc_early.list), 1140 }; 1141 1142 /* 1143 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early 1144 * this one will immediately take over. We will only register if TSC has 1145 * been found good. 1146 */ 1147 static struct clocksource clocksource_tsc = { 1148 .name = "tsc", 1149 .rating = 300, 1150 .read = read_tsc, 1151 .mask = CLOCKSOURCE_MASK(64), 1152 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1153 CLOCK_SOURCE_VALID_FOR_HRES | 1154 CLOCK_SOURCE_MUST_VERIFY, 1155 .vdso_clock_mode = VDSO_CLOCKMODE_TSC, 1156 .enable = tsc_cs_enable, 1157 .resume = tsc_resume, 1158 .mark_unstable = tsc_cs_mark_unstable, 1159 .tick_stable = tsc_cs_tick_stable, 1160 .list = LIST_HEAD_INIT(clocksource_tsc.list), 1161 }; 1162 1163 void mark_tsc_unstable(char *reason) 1164 { 1165 if (tsc_unstable) 1166 return; 1167 1168 tsc_unstable = 1; 1169 if (using_native_sched_clock()) 1170 clear_sched_clock_stable(); 1171 disable_sched_clock_irqtime(); 1172 pr_info("Marking TSC unstable due to %s\n", reason); 1173 1174 clocksource_mark_unstable(&clocksource_tsc_early); 1175 clocksource_mark_unstable(&clocksource_tsc); 1176 } 1177 1178 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1179 1180 static void __init check_system_tsc_reliable(void) 1181 { 1182 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1183 if (is_geode_lx()) { 1184 /* RTSC counts during suspend */ 1185 #define RTSC_SUSP 0x100 1186 unsigned long res_low, res_high; 1187 1188 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1189 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1190 if (res_low & RTSC_SUSP) 1191 tsc_clocksource_reliable = 1; 1192 } 1193 #endif 1194 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1195 tsc_clocksource_reliable = 1; 1196 } 1197 1198 /* 1199 * Make an educated guess if the TSC is trustworthy and synchronized 1200 * over all CPUs. 1201 */ 1202 int unsynchronized_tsc(void) 1203 { 1204 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1205 return 1; 1206 1207 #ifdef CONFIG_SMP 1208 if (apic_is_clustered_box()) 1209 return 1; 1210 #endif 1211 1212 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1213 return 0; 1214 1215 if (tsc_clocksource_reliable) 1216 return 0; 1217 /* 1218 * Intel systems are normally all synchronized. 1219 * Exceptions must mark TSC as unstable: 1220 */ 1221 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1222 /* assume multi socket systems are not synchronized: */ 1223 if (num_possible_cpus() > 1) 1224 return 1; 1225 } 1226 1227 return 0; 1228 } 1229 1230 /* 1231 * Convert ART to TSC given numerator/denominator found in detect_art() 1232 */ 1233 struct system_counterval_t convert_art_to_tsc(u64 art) 1234 { 1235 u64 tmp, res, rem; 1236 1237 rem = do_div(art, art_to_tsc_denominator); 1238 1239 res = art * art_to_tsc_numerator; 1240 tmp = rem * art_to_tsc_numerator; 1241 1242 do_div(tmp, art_to_tsc_denominator); 1243 res += tmp + art_to_tsc_offset; 1244 1245 return (struct system_counterval_t) {.cs = art_related_clocksource, 1246 .cycles = res}; 1247 } 1248 EXPORT_SYMBOL(convert_art_to_tsc); 1249 1250 /** 1251 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC. 1252 * @art_ns: ART (Always Running Timer) in unit of nanoseconds 1253 * 1254 * PTM requires all timestamps to be in units of nanoseconds. When user 1255 * software requests a cross-timestamp, this function converts system timestamp 1256 * to TSC. 1257 * 1258 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set 1259 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check 1260 * that this flag is set before conversion to TSC is attempted. 1261 * 1262 * Return: 1263 * struct system_counterval_t - system counter value with the pointer to the 1264 * corresponding clocksource 1265 * @cycles: System counter value 1266 * @cs: Clocksource corresponding to system counter value. Used 1267 * by timekeeping code to verify comparibility of two cycle 1268 * values. 1269 */ 1270 1271 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns) 1272 { 1273 u64 tmp, res, rem; 1274 1275 rem = do_div(art_ns, USEC_PER_SEC); 1276 1277 res = art_ns * tsc_khz; 1278 tmp = rem * tsc_khz; 1279 1280 do_div(tmp, USEC_PER_SEC); 1281 res += tmp; 1282 1283 return (struct system_counterval_t) { .cs = art_related_clocksource, 1284 .cycles = res}; 1285 } 1286 EXPORT_SYMBOL(convert_art_ns_to_tsc); 1287 1288 1289 static void tsc_refine_calibration_work(struct work_struct *work); 1290 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1291 /** 1292 * tsc_refine_calibration_work - Further refine tsc freq calibration 1293 * @work - ignored. 1294 * 1295 * This functions uses delayed work over a period of a 1296 * second to further refine the TSC freq value. Since this is 1297 * timer based, instead of loop based, we don't block the boot 1298 * process while this longer calibration is done. 1299 * 1300 * If there are any calibration anomalies (too many SMIs, etc), 1301 * or the refined calibration is off by 1% of the fast early 1302 * calibration, we throw out the new calibration and use the 1303 * early calibration. 1304 */ 1305 static void tsc_refine_calibration_work(struct work_struct *work) 1306 { 1307 static u64 tsc_start = ULLONG_MAX, ref_start; 1308 static int hpet; 1309 u64 tsc_stop, ref_stop, delta; 1310 unsigned long freq; 1311 int cpu; 1312 1313 /* Don't bother refining TSC on unstable systems */ 1314 if (tsc_unstable) 1315 goto unreg; 1316 1317 /* 1318 * Since the work is started early in boot, we may be 1319 * delayed the first time we expire. So set the workqueue 1320 * again once we know timers are working. 1321 */ 1322 if (tsc_start == ULLONG_MAX) { 1323 restart: 1324 /* 1325 * Only set hpet once, to avoid mixing hardware 1326 * if the hpet becomes enabled later. 1327 */ 1328 hpet = is_hpet_enabled(); 1329 tsc_start = tsc_read_refs(&ref_start, hpet); 1330 schedule_delayed_work(&tsc_irqwork, HZ); 1331 return; 1332 } 1333 1334 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1335 1336 /* hpet or pmtimer available ? */ 1337 if (ref_start == ref_stop) 1338 goto out; 1339 1340 /* Check, whether the sampling was disturbed */ 1341 if (tsc_stop == ULLONG_MAX) 1342 goto restart; 1343 1344 delta = tsc_stop - tsc_start; 1345 delta *= 1000000LL; 1346 if (hpet) 1347 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1348 else 1349 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1350 1351 /* Make sure we're within 1% */ 1352 if (abs(tsc_khz - freq) > tsc_khz/100) 1353 goto out; 1354 1355 tsc_khz = freq; 1356 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1357 (unsigned long)tsc_khz / 1000, 1358 (unsigned long)tsc_khz % 1000); 1359 1360 /* Inform the TSC deadline clockevent devices about the recalibration */ 1361 lapic_update_tsc_freq(); 1362 1363 /* Update the sched_clock() rate to match the clocksource one */ 1364 for_each_possible_cpu(cpu) 1365 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); 1366 1367 out: 1368 if (tsc_unstable) 1369 goto unreg; 1370 1371 if (boot_cpu_has(X86_FEATURE_ART)) 1372 art_related_clocksource = &clocksource_tsc; 1373 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1374 unreg: 1375 clocksource_unregister(&clocksource_tsc_early); 1376 } 1377 1378 1379 static int __init init_tsc_clocksource(void) 1380 { 1381 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) 1382 return 0; 1383 1384 if (tsc_unstable) 1385 goto unreg; 1386 1387 if (tsc_clocksource_reliable || no_tsc_watchdog) 1388 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1389 1390 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1391 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1392 1393 /* 1394 * When TSC frequency is known (retrieved via MSR or CPUID), we skip 1395 * the refined calibration and directly register it as a clocksource. 1396 */ 1397 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { 1398 if (boot_cpu_has(X86_FEATURE_ART)) 1399 art_related_clocksource = &clocksource_tsc; 1400 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1401 unreg: 1402 clocksource_unregister(&clocksource_tsc_early); 1403 return 0; 1404 } 1405 1406 schedule_delayed_work(&tsc_irqwork, 0); 1407 return 0; 1408 } 1409 /* 1410 * We use device_initcall here, to ensure we run after the hpet 1411 * is fully initialized, which may occur at fs_initcall time. 1412 */ 1413 device_initcall(init_tsc_clocksource); 1414 1415 static bool __init determine_cpu_tsc_frequencies(bool early) 1416 { 1417 /* Make sure that cpu and tsc are not already calibrated */ 1418 WARN_ON(cpu_khz || tsc_khz); 1419 1420 if (early) { 1421 cpu_khz = x86_platform.calibrate_cpu(); 1422 if (tsc_early_khz) 1423 tsc_khz = tsc_early_khz; 1424 else 1425 tsc_khz = x86_platform.calibrate_tsc(); 1426 } else { 1427 /* We should not be here with non-native cpu calibration */ 1428 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); 1429 cpu_khz = pit_hpet_ptimer_calibrate_cpu(); 1430 } 1431 1432 /* 1433 * Trust non-zero tsc_khz as authoritative, 1434 * and use it to sanity check cpu_khz, 1435 * which will be off if system timer is off. 1436 */ 1437 if (tsc_khz == 0) 1438 tsc_khz = cpu_khz; 1439 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1440 cpu_khz = tsc_khz; 1441 1442 if (tsc_khz == 0) 1443 return false; 1444 1445 pr_info("Detected %lu.%03lu MHz processor\n", 1446 (unsigned long)cpu_khz / KHZ, 1447 (unsigned long)cpu_khz % KHZ); 1448 1449 if (cpu_khz != tsc_khz) { 1450 pr_info("Detected %lu.%03lu MHz TSC", 1451 (unsigned long)tsc_khz / KHZ, 1452 (unsigned long)tsc_khz % KHZ); 1453 } 1454 return true; 1455 } 1456 1457 static unsigned long __init get_loops_per_jiffy(void) 1458 { 1459 u64 lpj = (u64)tsc_khz * KHZ; 1460 1461 do_div(lpj, HZ); 1462 return lpj; 1463 } 1464 1465 static void __init tsc_enable_sched_clock(void) 1466 { 1467 /* Sanitize TSC ADJUST before cyc2ns gets initialized */ 1468 tsc_store_and_check_tsc_adjust(true); 1469 cyc2ns_init_boot_cpu(); 1470 static_branch_enable(&__use_tsc); 1471 } 1472 1473 void __init tsc_early_init(void) 1474 { 1475 if (!boot_cpu_has(X86_FEATURE_TSC)) 1476 return; 1477 /* Don't change UV TSC multi-chassis synchronization */ 1478 if (is_early_uv_system()) 1479 return; 1480 if (!determine_cpu_tsc_frequencies(true)) 1481 return; 1482 loops_per_jiffy = get_loops_per_jiffy(); 1483 1484 tsc_enable_sched_clock(); 1485 } 1486 1487 void __init tsc_init(void) 1488 { 1489 /* 1490 * native_calibrate_cpu_early can only calibrate using methods that are 1491 * available early in boot. 1492 */ 1493 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) 1494 x86_platform.calibrate_cpu = native_calibrate_cpu; 1495 1496 if (!boot_cpu_has(X86_FEATURE_TSC)) { 1497 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1498 return; 1499 } 1500 1501 if (!tsc_khz) { 1502 /* We failed to determine frequencies earlier, try again */ 1503 if (!determine_cpu_tsc_frequencies(false)) { 1504 mark_tsc_unstable("could not calculate TSC khz"); 1505 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1506 return; 1507 } 1508 tsc_enable_sched_clock(); 1509 } 1510 1511 cyc2ns_init_secondary_cpus(); 1512 1513 if (!no_sched_irq_time) 1514 enable_sched_clock_irqtime(); 1515 1516 lpj_fine = get_loops_per_jiffy(); 1517 use_tsc_delay(); 1518 1519 check_system_tsc_reliable(); 1520 1521 if (unsynchronized_tsc()) { 1522 mark_tsc_unstable("TSCs unsynchronized"); 1523 return; 1524 } 1525 1526 if (tsc_clocksource_reliable || no_tsc_watchdog) 1527 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1528 1529 clocksource_register_khz(&clocksource_tsc_early, tsc_khz); 1530 detect_art(); 1531 } 1532 1533 #ifdef CONFIG_SMP 1534 /* 1535 * If we have a constant TSC and are using the TSC for the delay loop, 1536 * we can skip clock calibration if another cpu in the same socket has already 1537 * been calibrated. This assumes that CONSTANT_TSC applies to all 1538 * cpus in the socket - this should be a safe assumption. 1539 */ 1540 unsigned long calibrate_delay_is_known(void) 1541 { 1542 int sibling, cpu = smp_processor_id(); 1543 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); 1544 const struct cpumask *mask = topology_core_cpumask(cpu); 1545 1546 if (!constant_tsc || !mask) 1547 return 0; 1548 1549 sibling = cpumask_any_but(mask, cpu); 1550 if (sibling < nr_cpu_ids) 1551 return cpu_data(sibling).loops_per_jiffy; 1552 return 0; 1553 } 1554 #endif 1555