xref: /linux/arch/x86/kernel/tsc.c (revision 25489a4f556414445d342951615178368ee45cde)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17 #include <linux/static_call.h>
18 
19 #include <asm/cpuid/api.h>
20 #include <asm/hpet.h>
21 #include <asm/timer.h>
22 #include <asm/vgtod.h>
23 #include <asm/time.h>
24 #include <asm/delay.h>
25 #include <asm/hypervisor.h>
26 #include <asm/nmi.h>
27 #include <asm/x86_init.h>
28 #include <asm/geode.h>
29 #include <asm/apic.h>
30 #include <asm/cpu_device_id.h>
31 #include <asm/i8259.h>
32 #include <asm/msr.h>
33 #include <asm/topology.h>
34 #include <asm/uv/uv.h>
35 #include <asm/sev.h>
36 
37 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
38 EXPORT_SYMBOL(cpu_khz);
39 
40 unsigned int __read_mostly tsc_khz;
41 EXPORT_SYMBOL(tsc_khz);
42 
43 #define KHZ	1000
44 
45 /*
46  * TSC can be unstable due to cpufreq or due to unsynced TSCs
47  */
48 static int __read_mostly tsc_unstable;
49 static unsigned int __initdata tsc_early_khz;
50 
51 static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc);
52 
53 int tsc_clocksource_reliable;
54 
55 static int __read_mostly tsc_force_recalibrate;
56 
57 static struct clocksource_base art_base_clk = {
58 	.id    = CSID_X86_ART,
59 };
60 static bool have_art;
61 
62 struct cyc2ns {
63 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
64 	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
65 
66 }; /* fits one cacheline */
67 
68 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
69 
70 static int __init tsc_early_khz_setup(char *buf)
71 {
72 	return kstrtouint(buf, 0, &tsc_early_khz);
73 }
74 early_param("tsc_early_khz", tsc_early_khz_setup);
75 
76 __always_inline void __cyc2ns_read(struct cyc2ns_data *data)
77 {
78 	int seq, idx;
79 
80 	do {
81 		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
82 		idx = seq & 1;
83 
84 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
85 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
86 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
87 
88 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
89 }
90 
91 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
92 {
93 	preempt_disable_notrace();
94 	__cyc2ns_read(data);
95 }
96 
97 __always_inline void cyc2ns_read_end(void)
98 {
99 	preempt_enable_notrace();
100 }
101 
102 /*
103  * Accelerators for sched_clock()
104  * convert from cycles(64bits) => nanoseconds (64bits)
105  *  basic equation:
106  *              ns = cycles / (freq / ns_per_sec)
107  *              ns = cycles * (ns_per_sec / freq)
108  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
109  *              ns = cycles * (10^6 / cpu_khz)
110  *
111  *      Then we use scaling math (suggested by george@mvista.com) to get:
112  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
113  *              ns = cycles * cyc2ns_scale / SC
114  *
115  *      And since SC is a constant power of two, we can convert the div
116  *  into a shift. The larger SC is, the more accurate the conversion, but
117  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
118  *  (64-bit result) can be used.
119  *
120  *  We can use khz divisor instead of mhz to keep a better precision.
121  *  (mathieu.desnoyers@polymtl.ca)
122  *
123  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
124  */
125 
126 static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
127 {
128 	struct cyc2ns_data data;
129 	unsigned long long ns;
130 
131 	__cyc2ns_read(&data);
132 
133 	ns = data.cyc2ns_offset;
134 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
135 
136 	return ns;
137 }
138 
139 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
140 {
141 	unsigned long long ns;
142 	preempt_disable_notrace();
143 	ns = __cycles_2_ns(cyc);
144 	preempt_enable_notrace();
145 	return ns;
146 }
147 
148 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
149 {
150 	unsigned long long ns_now;
151 	struct cyc2ns_data data;
152 	struct cyc2ns *c2n;
153 
154 	ns_now = cycles_2_ns(tsc_now);
155 
156 	/*
157 	 * Compute a new multiplier as per the above comment and ensure our
158 	 * time function is continuous; see the comment near struct
159 	 * cyc2ns_data.
160 	 */
161 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
162 			       NSEC_PER_MSEC, 0);
163 
164 	/*
165 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
166 	 * not expected to be greater than 31 due to the original published
167 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
168 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
169 	 */
170 	if (data.cyc2ns_shift == 32) {
171 		data.cyc2ns_shift = 31;
172 		data.cyc2ns_mul >>= 1;
173 	}
174 
175 	data.cyc2ns_offset = ns_now -
176 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
177 
178 	c2n = per_cpu_ptr(&cyc2ns, cpu);
179 
180 	write_seqcount_latch_begin(&c2n->seq);
181 	c2n->data[0] = data;
182 	write_seqcount_latch(&c2n->seq);
183 	c2n->data[1] = data;
184 	write_seqcount_latch_end(&c2n->seq);
185 }
186 
187 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
188 {
189 	unsigned long flags;
190 
191 	local_irq_save(flags);
192 	sched_clock_idle_sleep_event();
193 
194 	if (khz)
195 		__set_cyc2ns_scale(khz, cpu, tsc_now);
196 
197 	sched_clock_idle_wakeup_event();
198 	local_irq_restore(flags);
199 }
200 
201 /*
202  * Initialize cyc2ns for boot cpu
203  */
204 static void __init cyc2ns_init_boot_cpu(void)
205 {
206 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
207 
208 	seqcount_latch_init(&c2n->seq);
209 	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
210 }
211 
212 /*
213  * Secondary CPUs do not run through tsc_init(), so set up
214  * all the scale factors for all CPUs, assuming the same
215  * speed as the bootup CPU.
216  */
217 static void __init cyc2ns_init_secondary_cpus(void)
218 {
219 	unsigned int cpu, this_cpu = smp_processor_id();
220 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
221 	struct cyc2ns_data *data = c2n->data;
222 
223 	for_each_possible_cpu(cpu) {
224 		if (cpu != this_cpu) {
225 			seqcount_latch_init(&c2n->seq);
226 			c2n = per_cpu_ptr(&cyc2ns, cpu);
227 			c2n->data[0] = data[0];
228 			c2n->data[1] = data[1];
229 		}
230 	}
231 }
232 
233 /*
234  * Scheduler clock - returns current time in nanosec units.
235  */
236 noinstr u64 native_sched_clock(void)
237 {
238 	if (static_branch_likely(&__use_tsc)) {
239 		u64 tsc_now = rdtsc();
240 
241 		/* return the value in ns */
242 		return __cycles_2_ns(tsc_now);
243 	}
244 
245 	/*
246 	 * Fall back to jiffies if there's no TSC available:
247 	 * ( But note that we still use it if the TSC is marked
248 	 *   unstable. We do this because unlike Time Of Day,
249 	 *   the scheduler clock tolerates small errors and it's
250 	 *   very important for it to be as fast as the platform
251 	 *   can achieve it. )
252 	 */
253 
254 	/* No locking but a rare wrong value is not a big deal: */
255 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
256 }
257 
258 /*
259  * Generate a sched_clock if you already have a TSC value.
260  */
261 u64 native_sched_clock_from_tsc(u64 tsc)
262 {
263 	return cycles_2_ns(tsc);
264 }
265 
266 /* We need to define a real function for sched_clock, to override the
267    weak default version */
268 #ifdef CONFIG_PARAVIRT
269 noinstr u64 sched_clock_noinstr(void)
270 {
271 	return paravirt_sched_clock();
272 }
273 
274 bool using_native_sched_clock(void)
275 {
276 	return static_call_query(pv_sched_clock) == native_sched_clock;
277 }
278 #else
279 u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
280 
281 bool using_native_sched_clock(void) { return true; }
282 #endif
283 
284 notrace u64 sched_clock(void)
285 {
286 	u64 now;
287 	preempt_disable_notrace();
288 	now = sched_clock_noinstr();
289 	preempt_enable_notrace();
290 	return now;
291 }
292 
293 int check_tsc_unstable(void)
294 {
295 	return tsc_unstable;
296 }
297 EXPORT_SYMBOL_GPL(check_tsc_unstable);
298 
299 #ifdef CONFIG_X86_TSC
300 int __init notsc_setup(char *str)
301 {
302 	mark_tsc_unstable("boot parameter notsc");
303 	return 1;
304 }
305 #else
306 /*
307  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
308  * in cpu/common.c
309  */
310 int __init notsc_setup(char *str)
311 {
312 	setup_clear_cpu_cap(X86_FEATURE_TSC);
313 	return 1;
314 }
315 #endif
316 
317 __setup("notsc", notsc_setup);
318 
319 static int no_sched_irq_time;
320 static int no_tsc_watchdog;
321 static int tsc_as_watchdog;
322 
323 static int __init tsc_setup(char *str)
324 {
325 	if (!strcmp(str, "reliable"))
326 		tsc_clocksource_reliable = 1;
327 	if (!strncmp(str, "noirqtime", 9))
328 		no_sched_irq_time = 1;
329 	if (!strcmp(str, "unstable"))
330 		mark_tsc_unstable("boot parameter");
331 	if (!strcmp(str, "nowatchdog")) {
332 		no_tsc_watchdog = 1;
333 		if (tsc_as_watchdog)
334 			pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
335 				 __func__);
336 		tsc_as_watchdog = 0;
337 	}
338 	if (!strcmp(str, "recalibrate"))
339 		tsc_force_recalibrate = 1;
340 	if (!strcmp(str, "watchdog")) {
341 		if (no_tsc_watchdog)
342 			pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
343 				 __func__);
344 		else
345 			tsc_as_watchdog = 1;
346 	}
347 	return 1;
348 }
349 
350 __setup("tsc=", tsc_setup);
351 
352 #define MAX_RETRIES		5
353 #define TSC_DEFAULT_THRESHOLD	0x20000
354 
355 /*
356  * Read TSC and the reference counters. Take care of any disturbances
357  */
358 static u64 tsc_read_refs(u64 *p, int hpet)
359 {
360 	u64 t1, t2;
361 	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
362 	int i;
363 
364 	for (i = 0; i < MAX_RETRIES; i++) {
365 		t1 = get_cycles();
366 		if (hpet)
367 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
368 		else
369 			*p = acpi_pm_read_early();
370 		t2 = get_cycles();
371 		if ((t2 - t1) < thresh)
372 			return t2;
373 	}
374 	return ULLONG_MAX;
375 }
376 
377 /*
378  * Calculate the TSC frequency from HPET reference
379  */
380 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
381 {
382 	u64 tmp;
383 
384 	if (hpet2 < hpet1)
385 		hpet2 += 0x100000000ULL;
386 	hpet2 -= hpet1;
387 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
388 	do_div(tmp, 1000000);
389 	deltatsc = div64_u64(deltatsc, tmp);
390 
391 	return (unsigned long) deltatsc;
392 }
393 
394 /*
395  * Calculate the TSC frequency from PMTimer reference
396  */
397 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
398 {
399 	u64 tmp;
400 
401 	if (!pm1 && !pm2)
402 		return ULONG_MAX;
403 
404 	if (pm2 < pm1)
405 		pm2 += (u64)ACPI_PM_OVRRUN;
406 	pm2 -= pm1;
407 	tmp = pm2 * 1000000000LL;
408 	do_div(tmp, PMTMR_TICKS_PER_SEC);
409 	do_div(deltatsc, tmp);
410 
411 	return (unsigned long) deltatsc;
412 }
413 
414 #define CAL_MS		10
415 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
416 #define CAL_PIT_LOOPS	1000
417 
418 #define CAL2_MS		50
419 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
420 #define CAL2_PIT_LOOPS	5000
421 
422 
423 /*
424  * Try to calibrate the TSC against the Programmable
425  * Interrupt Timer and return the frequency of the TSC
426  * in kHz.
427  *
428  * Return ULONG_MAX on failure to calibrate.
429  */
430 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
431 {
432 	u64 tsc, t1, t2, delta;
433 	unsigned long tscmin, tscmax;
434 	int pitcnt;
435 
436 	if (!has_legacy_pic()) {
437 		/*
438 		 * Relies on tsc_early_delay_calibrate() to have given us semi
439 		 * usable udelay(), wait for the same 50ms we would have with
440 		 * the PIT loop below.
441 		 */
442 		udelay(10 * USEC_PER_MSEC);
443 		udelay(10 * USEC_PER_MSEC);
444 		udelay(10 * USEC_PER_MSEC);
445 		udelay(10 * USEC_PER_MSEC);
446 		udelay(10 * USEC_PER_MSEC);
447 		return ULONG_MAX;
448 	}
449 
450 	/* Set the Gate high, disable speaker */
451 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
452 
453 	/*
454 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
455 	 * count mode), binary count. Set the latch register to 50ms
456 	 * (LSB then MSB) to begin countdown.
457 	 */
458 	outb(0xb0, 0x43);
459 	outb(latch & 0xff, 0x42);
460 	outb(latch >> 8, 0x42);
461 
462 	tsc = t1 = t2 = get_cycles();
463 
464 	pitcnt = 0;
465 	tscmax = 0;
466 	tscmin = ULONG_MAX;
467 	while ((inb(0x61) & 0x20) == 0) {
468 		t2 = get_cycles();
469 		delta = t2 - tsc;
470 		tsc = t2;
471 		if ((unsigned long) delta < tscmin)
472 			tscmin = (unsigned int) delta;
473 		if ((unsigned long) delta > tscmax)
474 			tscmax = (unsigned int) delta;
475 		pitcnt++;
476 	}
477 
478 	/*
479 	 * Sanity checks:
480 	 *
481 	 * If we were not able to read the PIT more than loopmin
482 	 * times, then we have been hit by a massive SMI
483 	 *
484 	 * If the maximum is 10 times larger than the minimum,
485 	 * then we got hit by an SMI as well.
486 	 */
487 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
488 		return ULONG_MAX;
489 
490 	/* Calculate the PIT value */
491 	delta = t2 - t1;
492 	do_div(delta, ms);
493 	return delta;
494 }
495 
496 /*
497  * This reads the current MSB of the PIT counter, and
498  * checks if we are running on sufficiently fast and
499  * non-virtualized hardware.
500  *
501  * Our expectations are:
502  *
503  *  - the PIT is running at roughly 1.19MHz
504  *
505  *  - each IO is going to take about 1us on real hardware,
506  *    but we allow it to be much faster (by a factor of 10) or
507  *    _slightly_ slower (ie we allow up to a 2us read+counter
508  *    update - anything else implies a unacceptably slow CPU
509  *    or PIT for the fast calibration to work.
510  *
511  *  - with 256 PIT ticks to read the value, we have 214us to
512  *    see the same MSB (and overhead like doing a single TSC
513  *    read per MSB value etc).
514  *
515  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
516  *    them each to take about a microsecond on real hardware.
517  *    So we expect a count value of around 100. But we'll be
518  *    generous, and accept anything over 50.
519  *
520  *  - if the PIT is stuck, and we see *many* more reads, we
521  *    return early (and the next caller of pit_expect_msb()
522  *    then consider it a failure when they don't see the
523  *    next expected value).
524  *
525  * These expectations mean that we know that we have seen the
526  * transition from one expected value to another with a fairly
527  * high accuracy, and we didn't miss any events. We can thus
528  * use the TSC value at the transitions to calculate a pretty
529  * good value for the TSC frequency.
530  */
531 static inline int pit_verify_msb(unsigned char val)
532 {
533 	/* Ignore LSB */
534 	inb(0x42);
535 	return inb(0x42) == val;
536 }
537 
538 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
539 {
540 	int count;
541 	u64 tsc = 0, prev_tsc = 0;
542 
543 	for (count = 0; count < 50000; count++) {
544 		if (!pit_verify_msb(val))
545 			break;
546 		prev_tsc = tsc;
547 		tsc = get_cycles();
548 	}
549 	*deltap = get_cycles() - prev_tsc;
550 	*tscp = tsc;
551 
552 	/*
553 	 * We require _some_ success, but the quality control
554 	 * will be based on the error terms on the TSC values.
555 	 */
556 	return count > 5;
557 }
558 
559 /*
560  * How many MSB values do we want to see? We aim for
561  * a maximum error rate of 500ppm (in practice the
562  * real error is much smaller), but refuse to spend
563  * more than 50ms on it.
564  */
565 #define MAX_QUICK_PIT_MS 50
566 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
567 
568 static unsigned long quick_pit_calibrate(void)
569 {
570 	int i;
571 	u64 tsc, delta;
572 	unsigned long d1, d2;
573 
574 	if (!has_legacy_pic())
575 		return 0;
576 
577 	/* Set the Gate high, disable speaker */
578 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
579 
580 	/*
581 	 * Counter 2, mode 0 (one-shot), binary count
582 	 *
583 	 * NOTE! Mode 2 decrements by two (and then the
584 	 * output is flipped each time, giving the same
585 	 * final output frequency as a decrement-by-one),
586 	 * so mode 0 is much better when looking at the
587 	 * individual counts.
588 	 */
589 	outb(0xb0, 0x43);
590 
591 	/* Start at 0xffff */
592 	outb(0xff, 0x42);
593 	outb(0xff, 0x42);
594 
595 	/*
596 	 * The PIT starts counting at the next edge, so we
597 	 * need to delay for a microsecond. The easiest way
598 	 * to do that is to just read back the 16-bit counter
599 	 * once from the PIT.
600 	 */
601 	pit_verify_msb(0);
602 
603 	if (pit_expect_msb(0xff, &tsc, &d1)) {
604 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
605 			if (!pit_expect_msb(0xff-i, &delta, &d2))
606 				break;
607 
608 			delta -= tsc;
609 
610 			/*
611 			 * Extrapolate the error and fail fast if the error will
612 			 * never be below 500 ppm.
613 			 */
614 			if (i == 1 &&
615 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
616 				return 0;
617 
618 			/*
619 			 * Iterate until the error is less than 500 ppm
620 			 */
621 			if (d1+d2 >= delta >> 11)
622 				continue;
623 
624 			/*
625 			 * Check the PIT one more time to verify that
626 			 * all TSC reads were stable wrt the PIT.
627 			 *
628 			 * This also guarantees serialization of the
629 			 * last cycle read ('d2') in pit_expect_msb.
630 			 */
631 			if (!pit_verify_msb(0xfe - i))
632 				break;
633 			goto success;
634 		}
635 	}
636 	pr_info("Fast TSC calibration failed\n");
637 	return 0;
638 
639 success:
640 	/*
641 	 * Ok, if we get here, then we've seen the
642 	 * MSB of the PIT decrement 'i' times, and the
643 	 * error has shrunk to less than 500 ppm.
644 	 *
645 	 * As a result, we can depend on there not being
646 	 * any odd delays anywhere, and the TSC reads are
647 	 * reliable (within the error).
648 	 *
649 	 * kHz = ticks / time-in-seconds / 1000;
650 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
651 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
652 	 */
653 	delta *= PIT_TICK_RATE;
654 	do_div(delta, i*256*1000);
655 	pr_info("Fast TSC calibration using PIT\n");
656 	return delta;
657 }
658 
659 /**
660  * native_calibrate_tsc - determine TSC frequency
661  * Determine TSC frequency via CPUID, else return 0.
662  */
663 unsigned long native_calibrate_tsc(void)
664 {
665 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
666 	unsigned int crystal_khz;
667 
668 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
669 		return 0;
670 
671 	if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
672 		return 0;
673 
674 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
675 
676 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
677 	cpuid(CPUID_LEAF_TSC, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
678 
679 	if (ebx_numerator == 0 || eax_denominator == 0)
680 		return 0;
681 
682 	crystal_khz = ecx_hz / 1000;
683 
684 	/*
685 	 * Denverton SoCs don't report crystal clock, and also don't support
686 	 * CPUID_LEAF_FREQ for the calculation below, so hardcode the 25MHz
687 	 * crystal clock.
688 	 */
689 	if (crystal_khz == 0 &&
690 			boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D)
691 		crystal_khz = 25000;
692 
693 	/*
694 	 * TSC frequency reported directly by CPUID is a "hardware reported"
695 	 * frequency and is the most accurate one so far we have. This
696 	 * is considered a known frequency.
697 	 */
698 	if (crystal_khz != 0)
699 		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
700 
701 	/*
702 	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
703 	 * clock, but we can easily calculate it to a high degree of accuracy
704 	 * by considering the crystal ratio and the CPU speed.
705 	 */
706 	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= CPUID_LEAF_FREQ) {
707 		unsigned int eax_base_mhz, ebx, ecx, edx;
708 
709 		cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx, &ecx, &edx);
710 		crystal_khz = eax_base_mhz * 1000 *
711 			eax_denominator / ebx_numerator;
712 	}
713 
714 	if (crystal_khz == 0)
715 		return 0;
716 
717 	/*
718 	 * For Atom SoCs TSC is the only reliable clocksource.
719 	 * Mark TSC reliable so no watchdog on it.
720 	 */
721 	if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT)
722 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
723 
724 #ifdef CONFIG_X86_LOCAL_APIC
725 	/*
726 	 * The local APIC appears to be fed by the core crystal clock
727 	 * (which sounds entirely sensible). We can set the global
728 	 * lapic_timer_period here to avoid having to calibrate the APIC
729 	 * timer later.
730 	 */
731 	lapic_timer_period = crystal_khz * 1000 / HZ;
732 #endif
733 
734 	return crystal_khz * ebx_numerator / eax_denominator;
735 }
736 
737 static unsigned long cpu_khz_from_cpuid(void)
738 {
739 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
740 
741 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
742 		return 0;
743 
744 	if (boot_cpu_data.cpuid_level < CPUID_LEAF_FREQ)
745 		return 0;
746 
747 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
748 
749 	cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
750 
751 	return eax_base_mhz * 1000;
752 }
753 
754 /*
755  * calibrate cpu using pit, hpet, and ptimer methods. They are available
756  * later in boot after acpi is initialized.
757  */
758 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
759 {
760 	u64 tsc1, tsc2, delta, ref1, ref2;
761 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
762 	unsigned long flags, latch, ms;
763 	int hpet = is_hpet_enabled(), i, loopmin;
764 
765 	/*
766 	 * Run 5 calibration loops to get the lowest frequency value
767 	 * (the best estimate). We use two different calibration modes
768 	 * here:
769 	 *
770 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
771 	 * load a timeout of 50ms. We read the time right after we
772 	 * started the timer and wait until the PIT count down reaches
773 	 * zero. In each wait loop iteration we read the TSC and check
774 	 * the delta to the previous read. We keep track of the min
775 	 * and max values of that delta. The delta is mostly defined
776 	 * by the IO time of the PIT access, so we can detect when
777 	 * any disturbance happened between the two reads. If the
778 	 * maximum time is significantly larger than the minimum time,
779 	 * then we discard the result and have another try.
780 	 *
781 	 * 2) Reference counter. If available we use the HPET or the
782 	 * PMTIMER as a reference to check the sanity of that value.
783 	 * We use separate TSC readouts and check inside of the
784 	 * reference read for any possible disturbance. We discard
785 	 * disturbed values here as well. We do that around the PIT
786 	 * calibration delay loop as we have to wait for a certain
787 	 * amount of time anyway.
788 	 */
789 
790 	/* Preset PIT loop values */
791 	latch = CAL_LATCH;
792 	ms = CAL_MS;
793 	loopmin = CAL_PIT_LOOPS;
794 
795 	for (i = 0; i < 3; i++) {
796 		unsigned long tsc_pit_khz;
797 
798 		/*
799 		 * Read the start value and the reference count of
800 		 * hpet/pmtimer when available. Then do the PIT
801 		 * calibration, which will take at least 50ms, and
802 		 * read the end value.
803 		 */
804 		local_irq_save(flags);
805 		tsc1 = tsc_read_refs(&ref1, hpet);
806 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
807 		tsc2 = tsc_read_refs(&ref2, hpet);
808 		local_irq_restore(flags);
809 
810 		/* Pick the lowest PIT TSC calibration so far */
811 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
812 
813 		/* hpet or pmtimer available ? */
814 		if (ref1 == ref2)
815 			continue;
816 
817 		/* Check, whether the sampling was disturbed */
818 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
819 			continue;
820 
821 		tsc2 = (tsc2 - tsc1) * 1000000LL;
822 		if (hpet)
823 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
824 		else
825 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
826 
827 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
828 
829 		/* Check the reference deviation */
830 		delta = ((u64) tsc_pit_min) * 100;
831 		do_div(delta, tsc_ref_min);
832 
833 		/*
834 		 * If both calibration results are inside a 10% window
835 		 * then we can be sure, that the calibration
836 		 * succeeded. We break out of the loop right away. We
837 		 * use the reference value, as it is more precise.
838 		 */
839 		if (delta >= 90 && delta <= 110) {
840 			pr_info("PIT calibration matches %s. %d loops\n",
841 				hpet ? "HPET" : "PMTIMER", i + 1);
842 			return tsc_ref_min;
843 		}
844 
845 		/*
846 		 * Check whether PIT failed more than once. This
847 		 * happens in virtualized environments. We need to
848 		 * give the virtual PC a slightly longer timeframe for
849 		 * the HPET/PMTIMER to make the result precise.
850 		 */
851 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
852 			latch = CAL2_LATCH;
853 			ms = CAL2_MS;
854 			loopmin = CAL2_PIT_LOOPS;
855 		}
856 	}
857 
858 	/*
859 	 * Now check the results.
860 	 */
861 	if (tsc_pit_min == ULONG_MAX) {
862 		/* PIT gave no useful value */
863 		pr_warn("Unable to calibrate against PIT\n");
864 
865 		/* We don't have an alternative source, disable TSC */
866 		if (!hpet && !ref1 && !ref2) {
867 			pr_notice("No reference (HPET/PMTIMER) available\n");
868 			return 0;
869 		}
870 
871 		/* The alternative source failed as well, disable TSC */
872 		if (tsc_ref_min == ULONG_MAX) {
873 			pr_warn("HPET/PMTIMER calibration failed\n");
874 			return 0;
875 		}
876 
877 		/* Use the alternative source */
878 		pr_info("using %s reference calibration\n",
879 			hpet ? "HPET" : "PMTIMER");
880 
881 		return tsc_ref_min;
882 	}
883 
884 	/* We don't have an alternative source, use the PIT calibration value */
885 	if (!hpet && !ref1 && !ref2) {
886 		pr_info("Using PIT calibration value\n");
887 		return tsc_pit_min;
888 	}
889 
890 	/* The alternative source failed, use the PIT calibration value */
891 	if (tsc_ref_min == ULONG_MAX) {
892 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
893 		return tsc_pit_min;
894 	}
895 
896 	/*
897 	 * The calibration values differ too much. In doubt, we use
898 	 * the PIT value as we know that there are PMTIMERs around
899 	 * running at double speed. At least we let the user know:
900 	 */
901 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
902 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
903 	pr_info("Using PIT calibration value\n");
904 	return tsc_pit_min;
905 }
906 
907 /**
908  * native_calibrate_cpu_early - can calibrate the cpu early in boot
909  */
910 unsigned long native_calibrate_cpu_early(void)
911 {
912 	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
913 
914 	if (!fast_calibrate)
915 		fast_calibrate = cpu_khz_from_msr();
916 	if (!fast_calibrate) {
917 		local_irq_save(flags);
918 		fast_calibrate = quick_pit_calibrate();
919 		local_irq_restore(flags);
920 	}
921 	return fast_calibrate;
922 }
923 
924 
925 /**
926  * native_calibrate_cpu - calibrate the cpu
927  */
928 static unsigned long native_calibrate_cpu(void)
929 {
930 	unsigned long tsc_freq = native_calibrate_cpu_early();
931 
932 	if (!tsc_freq)
933 		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
934 
935 	return tsc_freq;
936 }
937 
938 void recalibrate_cpu_khz(void)
939 {
940 #ifndef CONFIG_SMP
941 	unsigned long cpu_khz_old = cpu_khz;
942 
943 	if (!boot_cpu_has(X86_FEATURE_TSC))
944 		return;
945 
946 	cpu_khz = x86_platform.calibrate_cpu();
947 	tsc_khz = x86_platform.calibrate_tsc();
948 	if (tsc_khz == 0)
949 		tsc_khz = cpu_khz;
950 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
951 		cpu_khz = tsc_khz;
952 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
953 						    cpu_khz_old, cpu_khz);
954 #endif
955 }
956 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
957 
958 
959 static unsigned long long cyc2ns_suspend;
960 
961 void tsc_save_sched_clock_state(void)
962 {
963 	if (!static_branch_likely(&__use_tsc) && !sched_clock_stable())
964 		return;
965 
966 	cyc2ns_suspend = sched_clock();
967 }
968 
969 /*
970  * Even on processors with invariant TSC, TSC gets reset in some the
971  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
972  * arbitrary value (still sync'd across cpu's) during resume from such sleep
973  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
974  * that sched_clock() continues from the point where it was left off during
975  * suspend.
976  */
977 void tsc_restore_sched_clock_state(void)
978 {
979 	unsigned long long offset;
980 	unsigned long flags;
981 	int cpu;
982 
983 	if (!static_branch_likely(&__use_tsc) && !sched_clock_stable())
984 		return;
985 
986 	local_irq_save(flags);
987 
988 	/*
989 	 * We're coming out of suspend, there's no concurrency yet; don't
990 	 * bother being nice about the RCU stuff, just write to both
991 	 * data fields.
992 	 */
993 
994 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
995 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
996 
997 	offset = cyc2ns_suspend - sched_clock();
998 
999 	for_each_possible_cpu(cpu) {
1000 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
1001 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
1002 	}
1003 
1004 	local_irq_restore(flags);
1005 }
1006 
1007 #ifdef CONFIG_CPU_FREQ
1008 /*
1009  * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1010  * changes.
1011  *
1012  * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1013  * as unstable and give up in those cases.
1014  *
1015  * Should fix up last_tsc too. Currently gettimeofday in the
1016  * first tick after the change will be slightly wrong.
1017  */
1018 
1019 static unsigned int  ref_freq;
1020 static unsigned long loops_per_jiffy_ref;
1021 static unsigned long tsc_khz_ref;
1022 
1023 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1024 				void *data)
1025 {
1026 	struct cpufreq_freqs *freq = data;
1027 
1028 	if (num_online_cpus() > 1) {
1029 		mark_tsc_unstable("cpufreq changes on SMP");
1030 		return 0;
1031 	}
1032 
1033 	if (!ref_freq) {
1034 		ref_freq = freq->old;
1035 		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1036 		tsc_khz_ref = tsc_khz;
1037 	}
1038 
1039 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1040 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1041 		boot_cpu_data.loops_per_jiffy =
1042 			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1043 
1044 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1045 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1046 			mark_tsc_unstable("cpufreq changes");
1047 
1048 		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 static struct notifier_block time_cpufreq_notifier_block = {
1055 	.notifier_call  = time_cpufreq_notifier
1056 };
1057 
1058 static int __init cpufreq_register_tsc_scaling(void)
1059 {
1060 	if (!boot_cpu_has(X86_FEATURE_TSC))
1061 		return 0;
1062 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1063 		return 0;
1064 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1065 				CPUFREQ_TRANSITION_NOTIFIER);
1066 	return 0;
1067 }
1068 
1069 core_initcall(cpufreq_register_tsc_scaling);
1070 
1071 #endif /* CONFIG_CPU_FREQ */
1072 
1073 #define ART_MIN_DENOMINATOR (1)
1074 
1075 /*
1076  * If ART is present detect the numerator:denominator to convert to TSC
1077  */
1078 static void __init detect_art(void)
1079 {
1080 	unsigned int unused;
1081 
1082 	if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC)
1083 		return;
1084 
1085 	/*
1086 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1087 	 * and the TSC counter resets must not occur asynchronously.
1088 	 */
1089 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1090 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1091 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1092 	    tsc_async_resets)
1093 		return;
1094 
1095 	cpuid(CPUID_LEAF_TSC, &art_base_clk.denominator,
1096 	      &art_base_clk.numerator, &art_base_clk.freq_khz, &unused);
1097 
1098 	art_base_clk.freq_khz /= KHZ;
1099 	if (art_base_clk.denominator < ART_MIN_DENOMINATOR)
1100 		return;
1101 
1102 	rdmsrq(MSR_IA32_TSC_ADJUST, art_base_clk.offset);
1103 
1104 	/* Make this sticky over multiple CPU init calls */
1105 	setup_force_cpu_cap(X86_FEATURE_ART);
1106 }
1107 
1108 
1109 /* clocksource code */
1110 
1111 static void tsc_resume(struct clocksource *cs)
1112 {
1113 	tsc_verify_tsc_adjust(true);
1114 }
1115 
1116 /*
1117  * We used to compare the TSC to the cycle_last value in the clocksource
1118  * structure to avoid a nasty time-warp. This can be observed in a
1119  * very small window right after one CPU updated cycle_last under
1120  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1121  * is smaller than the cycle_last reference value due to a TSC which
1122  * is slightly behind. This delta is nowhere else observable, but in
1123  * that case it results in a forward time jump in the range of hours
1124  * due to the unsigned delta calculation of the time keeping core
1125  * code, which is necessary to support wrapping clocksources like pm
1126  * timer.
1127  *
1128  * This sanity check is now done in the core timekeeping code.
1129  * checking the result of read_tsc() - cycle_last for being negative.
1130  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1131  */
1132 static u64 read_tsc(struct clocksource *cs)
1133 {
1134 	return (u64)rdtsc_ordered();
1135 }
1136 
1137 static void tsc_cs_mark_unstable(struct clocksource *cs)
1138 {
1139 	if (tsc_unstable)
1140 		return;
1141 
1142 	tsc_unstable = 1;
1143 	if (using_native_sched_clock())
1144 		clear_sched_clock_stable();
1145 	disable_sched_clock_irqtime();
1146 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1147 }
1148 
1149 static void tsc_cs_tick_stable(struct clocksource *cs)
1150 {
1151 	if (tsc_unstable)
1152 		return;
1153 
1154 	if (using_native_sched_clock())
1155 		sched_clock_tick_stable();
1156 }
1157 
1158 static int tsc_cs_enable(struct clocksource *cs)
1159 {
1160 	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1161 	return 0;
1162 }
1163 
1164 /*
1165  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1166  */
1167 static struct clocksource clocksource_tsc_early = {
1168 	.name			= "tsc-early",
1169 	.rating			= 299,
1170 	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1171 	.read			= read_tsc,
1172 	.mask			= CLOCKSOURCE_MASK(64),
1173 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1174 				  CLOCK_SOURCE_MUST_VERIFY,
1175 	.id			= CSID_X86_TSC_EARLY,
1176 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1177 	.enable			= tsc_cs_enable,
1178 	.resume			= tsc_resume,
1179 	.mark_unstable		= tsc_cs_mark_unstable,
1180 	.tick_stable		= tsc_cs_tick_stable,
1181 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1182 };
1183 
1184 /*
1185  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1186  * this one will immediately take over. We will only register if TSC has
1187  * been found good.
1188  */
1189 static struct clocksource clocksource_tsc = {
1190 	.name			= "tsc",
1191 	.rating			= 300,
1192 	.read			= read_tsc,
1193 	.mask			= CLOCKSOURCE_MASK(64),
1194 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1195 				  CLOCK_SOURCE_VALID_FOR_HRES |
1196 				  CLOCK_SOURCE_MUST_VERIFY |
1197 				  CLOCK_SOURCE_VERIFY_PERCPU,
1198 	.id			= CSID_X86_TSC,
1199 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1200 	.enable			= tsc_cs_enable,
1201 	.resume			= tsc_resume,
1202 	.mark_unstable		= tsc_cs_mark_unstable,
1203 	.tick_stable		= tsc_cs_tick_stable,
1204 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1205 };
1206 
1207 void mark_tsc_unstable(char *reason)
1208 {
1209 	if (tsc_unstable)
1210 		return;
1211 
1212 	tsc_unstable = 1;
1213 	if (using_native_sched_clock())
1214 		clear_sched_clock_stable();
1215 	disable_sched_clock_irqtime();
1216 	pr_info("Marking TSC unstable due to %s\n", reason);
1217 
1218 	clocksource_mark_unstable(&clocksource_tsc_early);
1219 	clocksource_mark_unstable(&clocksource_tsc);
1220 }
1221 
1222 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1223 
1224 static void __init tsc_disable_clocksource_watchdog(void)
1225 {
1226 	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1227 	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1228 }
1229 
1230 bool tsc_clocksource_watchdog_disabled(void)
1231 {
1232 	return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1233 	       tsc_as_watchdog && !no_tsc_watchdog;
1234 }
1235 
1236 static void __init check_system_tsc_reliable(void)
1237 {
1238 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1239 	if (is_geode_lx()) {
1240 		/* RTSC counts during suspend */
1241 #define RTSC_SUSP 0x100
1242 		unsigned long res_low, res_high;
1243 
1244 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1245 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1246 		if (res_low & RTSC_SUSP)
1247 			tsc_clocksource_reliable = 1;
1248 	}
1249 #endif
1250 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1251 		tsc_clocksource_reliable = 1;
1252 
1253 	/*
1254 	 * Disable the clocksource watchdog when the system has:
1255 	 *  - TSC running at constant frequency
1256 	 *  - TSC which does not stop in C-States
1257 	 *  - the TSC_ADJUST register which allows to detect even minimal
1258 	 *    modifications
1259 	 *  - not more than four packages
1260 	 */
1261 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1262 	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1263 	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1264 	    topology_max_packages() <= 4)
1265 		tsc_disable_clocksource_watchdog();
1266 }
1267 
1268 /*
1269  * Make an educated guess if the TSC is trustworthy and synchronized
1270  * over all CPUs.
1271  */
1272 int unsynchronized_tsc(void)
1273 {
1274 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1275 		return 1;
1276 
1277 #ifdef CONFIG_SMP
1278 	if (apic_is_clustered_box())
1279 		return 1;
1280 #endif
1281 
1282 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1283 		return 0;
1284 
1285 	if (tsc_clocksource_reliable)
1286 		return 0;
1287 	/*
1288 	 * Intel systems are normally all synchronized.
1289 	 * Exceptions must mark TSC as unstable:
1290 	 */
1291 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1292 		/* assume multi socket systems are not synchronized: */
1293 		if (topology_max_packages() > 1)
1294 			return 1;
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 static void tsc_refine_calibration_work(struct work_struct *work);
1301 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1302 /**
1303  * tsc_refine_calibration_work - Further refine tsc freq calibration
1304  * @work: ignored.
1305  *
1306  * This functions uses delayed work over a period of a
1307  * second to further refine the TSC freq value. Since this is
1308  * timer based, instead of loop based, we don't block the boot
1309  * process while this longer calibration is done.
1310  *
1311  * If there are any calibration anomalies (too many SMIs, etc),
1312  * or the refined calibration is off by 1% of the fast early
1313  * calibration, we throw out the new calibration and use the
1314  * early calibration.
1315  */
1316 static void tsc_refine_calibration_work(struct work_struct *work)
1317 {
1318 	static u64 tsc_start = ULLONG_MAX, ref_start;
1319 	static int hpet;
1320 	u64 tsc_stop, ref_stop, delta;
1321 	unsigned long freq;
1322 	int cpu;
1323 
1324 	/* Don't bother refining TSC on unstable systems */
1325 	if (tsc_unstable)
1326 		goto unreg;
1327 
1328 	/*
1329 	 * Since the work is started early in boot, we may be
1330 	 * delayed the first time we expire. So set the workqueue
1331 	 * again once we know timers are working.
1332 	 */
1333 	if (tsc_start == ULLONG_MAX) {
1334 restart:
1335 		/*
1336 		 * Only set hpet once, to avoid mixing hardware
1337 		 * if the hpet becomes enabled later.
1338 		 */
1339 		hpet = is_hpet_enabled();
1340 		tsc_start = tsc_read_refs(&ref_start, hpet);
1341 		schedule_delayed_work(&tsc_irqwork, HZ);
1342 		return;
1343 	}
1344 
1345 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1346 
1347 	/* hpet or pmtimer available ? */
1348 	if (ref_start == ref_stop)
1349 		goto out;
1350 
1351 	/* Check, whether the sampling was disturbed */
1352 	if (tsc_stop == ULLONG_MAX)
1353 		goto restart;
1354 
1355 	delta = tsc_stop - tsc_start;
1356 	delta *= 1000000LL;
1357 	if (hpet)
1358 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1359 	else
1360 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1361 
1362 	/* Will hit this only if tsc_force_recalibrate has been set */
1363 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1364 
1365 		/* Warn if the deviation exceeds 500 ppm */
1366 		if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1367 			pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1368 			pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1369 				(unsigned long)tsc_khz / 1000,
1370 				(unsigned long)tsc_khz % 1000);
1371 		}
1372 
1373 		pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1374 			hpet ? "HPET" : "PM_TIMER",
1375 			(unsigned long)freq / 1000,
1376 			(unsigned long)freq % 1000);
1377 
1378 		return;
1379 	}
1380 
1381 	/* Make sure we're within 1% */
1382 	if (abs(tsc_khz - freq) > tsc_khz/100)
1383 		goto out;
1384 
1385 	tsc_khz = freq;
1386 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1387 		(unsigned long)tsc_khz / 1000,
1388 		(unsigned long)tsc_khz % 1000);
1389 
1390 	/* Inform the TSC deadline clockevent devices about the recalibration */
1391 	lapic_update_tsc_freq();
1392 
1393 	/* Update the sched_clock() rate to match the clocksource one */
1394 	for_each_possible_cpu(cpu)
1395 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1396 
1397 out:
1398 	if (tsc_unstable)
1399 		goto unreg;
1400 
1401 	if (boot_cpu_has(X86_FEATURE_ART)) {
1402 		have_art = true;
1403 		clocksource_tsc.base = &art_base_clk;
1404 	}
1405 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1406 unreg:
1407 	clocksource_unregister(&clocksource_tsc_early);
1408 }
1409 
1410 
1411 static int __init init_tsc_clocksource(void)
1412 {
1413 	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1414 		return 0;
1415 
1416 	if (tsc_unstable) {
1417 		clocksource_unregister(&clocksource_tsc_early);
1418 		return 0;
1419 	}
1420 
1421 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1422 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1423 
1424 	/*
1425 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1426 	 * the refined calibration and directly register it as a clocksource.
1427 	 */
1428 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1429 		if (boot_cpu_has(X86_FEATURE_ART)) {
1430 			have_art = true;
1431 			clocksource_tsc.base = &art_base_clk;
1432 		}
1433 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1434 		clocksource_unregister(&clocksource_tsc_early);
1435 
1436 		if (!tsc_force_recalibrate)
1437 			return 0;
1438 	}
1439 
1440 	schedule_delayed_work(&tsc_irqwork, 0);
1441 	return 0;
1442 }
1443 /*
1444  * We use device_initcall here, to ensure we run after the hpet
1445  * is fully initialized, which may occur at fs_initcall time.
1446  */
1447 device_initcall(init_tsc_clocksource);
1448 
1449 static bool __init determine_cpu_tsc_frequencies(bool early)
1450 {
1451 	/* Make sure that cpu and tsc are not already calibrated */
1452 	WARN_ON(cpu_khz || tsc_khz);
1453 
1454 	if (early) {
1455 		cpu_khz = x86_platform.calibrate_cpu();
1456 		if (tsc_early_khz) {
1457 			tsc_khz = tsc_early_khz;
1458 		} else {
1459 			tsc_khz = x86_platform.calibrate_tsc();
1460 			clocksource_tsc.freq_khz = tsc_khz;
1461 		}
1462 	} else {
1463 		/* We should not be here with non-native cpu calibration */
1464 		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1465 		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1466 	}
1467 
1468 	/*
1469 	 * Trust non-zero tsc_khz as authoritative,
1470 	 * and use it to sanity check cpu_khz,
1471 	 * which will be off if system timer is off.
1472 	 */
1473 	if (tsc_khz == 0)
1474 		tsc_khz = cpu_khz;
1475 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1476 		cpu_khz = tsc_khz;
1477 
1478 	if (tsc_khz == 0)
1479 		return false;
1480 
1481 	pr_info("Detected %lu.%03lu MHz processor\n",
1482 		(unsigned long)cpu_khz / KHZ,
1483 		(unsigned long)cpu_khz % KHZ);
1484 
1485 	if (cpu_khz != tsc_khz) {
1486 		pr_info("Detected %lu.%03lu MHz TSC",
1487 			(unsigned long)tsc_khz / KHZ,
1488 			(unsigned long)tsc_khz % KHZ);
1489 	}
1490 	return true;
1491 }
1492 
1493 static unsigned long __init get_loops_per_jiffy(void)
1494 {
1495 	u64 lpj = (u64)tsc_khz * KHZ;
1496 
1497 	do_div(lpj, HZ);
1498 	return lpj;
1499 }
1500 
1501 static void __init tsc_enable_sched_clock(void)
1502 {
1503 	loops_per_jiffy = get_loops_per_jiffy();
1504 	use_tsc_delay();
1505 
1506 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1507 	tsc_store_and_check_tsc_adjust(true);
1508 	cyc2ns_init_boot_cpu();
1509 	static_branch_enable(&__use_tsc);
1510 }
1511 
1512 void __init tsc_early_init(void)
1513 {
1514 	if (!boot_cpu_has(X86_FEATURE_TSC))
1515 		return;
1516 	/* Don't change UV TSC multi-chassis synchronization */
1517 	if (is_early_uv_system())
1518 		return;
1519 
1520 	snp_secure_tsc_init();
1521 
1522 	if (!determine_cpu_tsc_frequencies(true))
1523 		return;
1524 	tsc_enable_sched_clock();
1525 }
1526 
1527 void __init tsc_init(void)
1528 {
1529 	if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1530 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1531 		return;
1532 	}
1533 
1534 	/*
1535 	 * native_calibrate_cpu_early can only calibrate using methods that are
1536 	 * available early in boot.
1537 	 */
1538 	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1539 		x86_platform.calibrate_cpu = native_calibrate_cpu;
1540 
1541 	if (!tsc_khz) {
1542 		/* We failed to determine frequencies earlier, try again */
1543 		if (!determine_cpu_tsc_frequencies(false)) {
1544 			mark_tsc_unstable("could not calculate TSC khz");
1545 			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1546 			return;
1547 		}
1548 		tsc_enable_sched_clock();
1549 	}
1550 
1551 	cyc2ns_init_secondary_cpus();
1552 
1553 	if (!no_sched_irq_time)
1554 		enable_sched_clock_irqtime();
1555 
1556 	lpj_fine = get_loops_per_jiffy();
1557 
1558 	check_system_tsc_reliable();
1559 
1560 	if (unsynchronized_tsc()) {
1561 		mark_tsc_unstable("TSCs unsynchronized");
1562 		return;
1563 	}
1564 
1565 	if (tsc_clocksource_reliable || no_tsc_watchdog)
1566 		tsc_disable_clocksource_watchdog();
1567 
1568 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1569 	detect_art();
1570 }
1571 
1572 #ifdef CONFIG_SMP
1573 /*
1574  * Check whether existing calibration data can be reused.
1575  */
1576 unsigned long calibrate_delay_is_known(void)
1577 {
1578 	int sibling, cpu = smp_processor_id();
1579 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1580 	const struct cpumask *mask = topology_core_cpumask(cpu);
1581 
1582 	/*
1583 	 * If TSC has constant frequency and TSC is synchronized across
1584 	 * sockets then reuse CPU0 calibration.
1585 	 */
1586 	if (constant_tsc && !tsc_unstable)
1587 		return cpu_data(0).loops_per_jiffy;
1588 
1589 	/*
1590 	 * If TSC has constant frequency and TSC is not synchronized across
1591 	 * sockets and this is not the first CPU in the socket, then reuse
1592 	 * the calibration value of an already online CPU on that socket.
1593 	 *
1594 	 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1595 	 * socket.
1596 	 */
1597 	if (!constant_tsc || !mask)
1598 		return 0;
1599 
1600 	sibling = cpumask_any_but(mask, cpu);
1601 	if (sibling < nr_cpu_ids)
1602 		return cpu_data(sibling).loops_per_jiffy;
1603 	return 0;
1604 }
1605 #endif
1606