xref: /linux/arch/x86/kernel/tsc.c (revision 1d39d02a1535658962f9370312be7b2d634946a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17 #include <linux/static_call.h>
18 
19 #include <asm/hpet.h>
20 #include <asm/timer.h>
21 #include <asm/vgtod.h>
22 #include <asm/time.h>
23 #include <asm/delay.h>
24 #include <asm/hypervisor.h>
25 #include <asm/nmi.h>
26 #include <asm/x86_init.h>
27 #include <asm/geode.h>
28 #include <asm/apic.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/i8259.h>
31 #include <asm/topology.h>
32 #include <asm/uv/uv.h>
33 
34 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
35 EXPORT_SYMBOL(cpu_khz);
36 
37 unsigned int __read_mostly tsc_khz;
38 EXPORT_SYMBOL(tsc_khz);
39 
40 #define KHZ	1000
41 
42 /*
43  * TSC can be unstable due to cpufreq or due to unsynced TSCs
44  */
45 static int __read_mostly tsc_unstable;
46 static unsigned int __initdata tsc_early_khz;
47 
48 static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc);
49 
50 int tsc_clocksource_reliable;
51 
52 static int __read_mostly tsc_force_recalibrate;
53 
54 static struct clocksource_base art_base_clk = {
55 	.id    = CSID_X86_ART,
56 };
57 static bool have_art;
58 
59 struct cyc2ns {
60 	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
61 	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
62 
63 }; /* fits one cacheline */
64 
65 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
66 
67 static int __init tsc_early_khz_setup(char *buf)
68 {
69 	return kstrtouint(buf, 0, &tsc_early_khz);
70 }
71 early_param("tsc_early_khz", tsc_early_khz_setup);
72 
73 __always_inline void __cyc2ns_read(struct cyc2ns_data *data)
74 {
75 	int seq, idx;
76 
77 	do {
78 		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
79 		idx = seq & 1;
80 
81 		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
82 		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
83 		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
84 
85 	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
86 }
87 
88 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
89 {
90 	preempt_disable_notrace();
91 	__cyc2ns_read(data);
92 }
93 
94 __always_inline void cyc2ns_read_end(void)
95 {
96 	preempt_enable_notrace();
97 }
98 
99 /*
100  * Accelerators for sched_clock()
101  * convert from cycles(64bits) => nanoseconds (64bits)
102  *  basic equation:
103  *              ns = cycles / (freq / ns_per_sec)
104  *              ns = cycles * (ns_per_sec / freq)
105  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
106  *              ns = cycles * (10^6 / cpu_khz)
107  *
108  *      Then we use scaling math (suggested by george@mvista.com) to get:
109  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
110  *              ns = cycles * cyc2ns_scale / SC
111  *
112  *      And since SC is a constant power of two, we can convert the div
113  *  into a shift. The larger SC is, the more accurate the conversion, but
114  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
115  *  (64-bit result) can be used.
116  *
117  *  We can use khz divisor instead of mhz to keep a better precision.
118  *  (mathieu.desnoyers@polymtl.ca)
119  *
120  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
121  */
122 
123 static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
124 {
125 	struct cyc2ns_data data;
126 	unsigned long long ns;
127 
128 	__cyc2ns_read(&data);
129 
130 	ns = data.cyc2ns_offset;
131 	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
132 
133 	return ns;
134 }
135 
136 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
137 {
138 	unsigned long long ns;
139 	preempt_disable_notrace();
140 	ns = __cycles_2_ns(cyc);
141 	preempt_enable_notrace();
142 	return ns;
143 }
144 
145 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
146 {
147 	unsigned long long ns_now;
148 	struct cyc2ns_data data;
149 	struct cyc2ns *c2n;
150 
151 	ns_now = cycles_2_ns(tsc_now);
152 
153 	/*
154 	 * Compute a new multiplier as per the above comment and ensure our
155 	 * time function is continuous; see the comment near struct
156 	 * cyc2ns_data.
157 	 */
158 	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
159 			       NSEC_PER_MSEC, 0);
160 
161 	/*
162 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
163 	 * not expected to be greater than 31 due to the original published
164 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
165 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
166 	 */
167 	if (data.cyc2ns_shift == 32) {
168 		data.cyc2ns_shift = 31;
169 		data.cyc2ns_mul >>= 1;
170 	}
171 
172 	data.cyc2ns_offset = ns_now -
173 		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
174 
175 	c2n = per_cpu_ptr(&cyc2ns, cpu);
176 
177 	raw_write_seqcount_latch(&c2n->seq);
178 	c2n->data[0] = data;
179 	raw_write_seqcount_latch(&c2n->seq);
180 	c2n->data[1] = data;
181 }
182 
183 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
184 {
185 	unsigned long flags;
186 
187 	local_irq_save(flags);
188 	sched_clock_idle_sleep_event();
189 
190 	if (khz)
191 		__set_cyc2ns_scale(khz, cpu, tsc_now);
192 
193 	sched_clock_idle_wakeup_event();
194 	local_irq_restore(flags);
195 }
196 
197 /*
198  * Initialize cyc2ns for boot cpu
199  */
200 static void __init cyc2ns_init_boot_cpu(void)
201 {
202 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
203 
204 	seqcount_latch_init(&c2n->seq);
205 	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
206 }
207 
208 /*
209  * Secondary CPUs do not run through tsc_init(), so set up
210  * all the scale factors for all CPUs, assuming the same
211  * speed as the bootup CPU.
212  */
213 static void __init cyc2ns_init_secondary_cpus(void)
214 {
215 	unsigned int cpu, this_cpu = smp_processor_id();
216 	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
217 	struct cyc2ns_data *data = c2n->data;
218 
219 	for_each_possible_cpu(cpu) {
220 		if (cpu != this_cpu) {
221 			seqcount_latch_init(&c2n->seq);
222 			c2n = per_cpu_ptr(&cyc2ns, cpu);
223 			c2n->data[0] = data[0];
224 			c2n->data[1] = data[1];
225 		}
226 	}
227 }
228 
229 /*
230  * Scheduler clock - returns current time in nanosec units.
231  */
232 noinstr u64 native_sched_clock(void)
233 {
234 	if (static_branch_likely(&__use_tsc)) {
235 		u64 tsc_now = rdtsc();
236 
237 		/* return the value in ns */
238 		return __cycles_2_ns(tsc_now);
239 	}
240 
241 	/*
242 	 * Fall back to jiffies if there's no TSC available:
243 	 * ( But note that we still use it if the TSC is marked
244 	 *   unstable. We do this because unlike Time Of Day,
245 	 *   the scheduler clock tolerates small errors and it's
246 	 *   very important for it to be as fast as the platform
247 	 *   can achieve it. )
248 	 */
249 
250 	/* No locking but a rare wrong value is not a big deal: */
251 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
252 }
253 
254 /*
255  * Generate a sched_clock if you already have a TSC value.
256  */
257 u64 native_sched_clock_from_tsc(u64 tsc)
258 {
259 	return cycles_2_ns(tsc);
260 }
261 
262 /* We need to define a real function for sched_clock, to override the
263    weak default version */
264 #ifdef CONFIG_PARAVIRT
265 noinstr u64 sched_clock_noinstr(void)
266 {
267 	return paravirt_sched_clock();
268 }
269 
270 bool using_native_sched_clock(void)
271 {
272 	return static_call_query(pv_sched_clock) == native_sched_clock;
273 }
274 #else
275 u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
276 
277 bool using_native_sched_clock(void) { return true; }
278 #endif
279 
280 notrace u64 sched_clock(void)
281 {
282 	u64 now;
283 	preempt_disable_notrace();
284 	now = sched_clock_noinstr();
285 	preempt_enable_notrace();
286 	return now;
287 }
288 
289 int check_tsc_unstable(void)
290 {
291 	return tsc_unstable;
292 }
293 EXPORT_SYMBOL_GPL(check_tsc_unstable);
294 
295 #ifdef CONFIG_X86_TSC
296 int __init notsc_setup(char *str)
297 {
298 	mark_tsc_unstable("boot parameter notsc");
299 	return 1;
300 }
301 #else
302 /*
303  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
304  * in cpu/common.c
305  */
306 int __init notsc_setup(char *str)
307 {
308 	setup_clear_cpu_cap(X86_FEATURE_TSC);
309 	return 1;
310 }
311 #endif
312 
313 __setup("notsc", notsc_setup);
314 
315 static int no_sched_irq_time;
316 static int no_tsc_watchdog;
317 static int tsc_as_watchdog;
318 
319 static int __init tsc_setup(char *str)
320 {
321 	if (!strcmp(str, "reliable"))
322 		tsc_clocksource_reliable = 1;
323 	if (!strncmp(str, "noirqtime", 9))
324 		no_sched_irq_time = 1;
325 	if (!strcmp(str, "unstable"))
326 		mark_tsc_unstable("boot parameter");
327 	if (!strcmp(str, "nowatchdog")) {
328 		no_tsc_watchdog = 1;
329 		if (tsc_as_watchdog)
330 			pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
331 				 __func__);
332 		tsc_as_watchdog = 0;
333 	}
334 	if (!strcmp(str, "recalibrate"))
335 		tsc_force_recalibrate = 1;
336 	if (!strcmp(str, "watchdog")) {
337 		if (no_tsc_watchdog)
338 			pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
339 				 __func__);
340 		else
341 			tsc_as_watchdog = 1;
342 	}
343 	return 1;
344 }
345 
346 __setup("tsc=", tsc_setup);
347 
348 #define MAX_RETRIES		5
349 #define TSC_DEFAULT_THRESHOLD	0x20000
350 
351 /*
352  * Read TSC and the reference counters. Take care of any disturbances
353  */
354 static u64 tsc_read_refs(u64 *p, int hpet)
355 {
356 	u64 t1, t2;
357 	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
358 	int i;
359 
360 	for (i = 0; i < MAX_RETRIES; i++) {
361 		t1 = get_cycles();
362 		if (hpet)
363 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
364 		else
365 			*p = acpi_pm_read_early();
366 		t2 = get_cycles();
367 		if ((t2 - t1) < thresh)
368 			return t2;
369 	}
370 	return ULLONG_MAX;
371 }
372 
373 /*
374  * Calculate the TSC frequency from HPET reference
375  */
376 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
377 {
378 	u64 tmp;
379 
380 	if (hpet2 < hpet1)
381 		hpet2 += 0x100000000ULL;
382 	hpet2 -= hpet1;
383 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
384 	do_div(tmp, 1000000);
385 	deltatsc = div64_u64(deltatsc, tmp);
386 
387 	return (unsigned long) deltatsc;
388 }
389 
390 /*
391  * Calculate the TSC frequency from PMTimer reference
392  */
393 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
394 {
395 	u64 tmp;
396 
397 	if (!pm1 && !pm2)
398 		return ULONG_MAX;
399 
400 	if (pm2 < pm1)
401 		pm2 += (u64)ACPI_PM_OVRRUN;
402 	pm2 -= pm1;
403 	tmp = pm2 * 1000000000LL;
404 	do_div(tmp, PMTMR_TICKS_PER_SEC);
405 	do_div(deltatsc, tmp);
406 
407 	return (unsigned long) deltatsc;
408 }
409 
410 #define CAL_MS		10
411 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
412 #define CAL_PIT_LOOPS	1000
413 
414 #define CAL2_MS		50
415 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
416 #define CAL2_PIT_LOOPS	5000
417 
418 
419 /*
420  * Try to calibrate the TSC against the Programmable
421  * Interrupt Timer and return the frequency of the TSC
422  * in kHz.
423  *
424  * Return ULONG_MAX on failure to calibrate.
425  */
426 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
427 {
428 	u64 tsc, t1, t2, delta;
429 	unsigned long tscmin, tscmax;
430 	int pitcnt;
431 
432 	if (!has_legacy_pic()) {
433 		/*
434 		 * Relies on tsc_early_delay_calibrate() to have given us semi
435 		 * usable udelay(), wait for the same 50ms we would have with
436 		 * the PIT loop below.
437 		 */
438 		udelay(10 * USEC_PER_MSEC);
439 		udelay(10 * USEC_PER_MSEC);
440 		udelay(10 * USEC_PER_MSEC);
441 		udelay(10 * USEC_PER_MSEC);
442 		udelay(10 * USEC_PER_MSEC);
443 		return ULONG_MAX;
444 	}
445 
446 	/* Set the Gate high, disable speaker */
447 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
448 
449 	/*
450 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
451 	 * count mode), binary count. Set the latch register to 50ms
452 	 * (LSB then MSB) to begin countdown.
453 	 */
454 	outb(0xb0, 0x43);
455 	outb(latch & 0xff, 0x42);
456 	outb(latch >> 8, 0x42);
457 
458 	tsc = t1 = t2 = get_cycles();
459 
460 	pitcnt = 0;
461 	tscmax = 0;
462 	tscmin = ULONG_MAX;
463 	while ((inb(0x61) & 0x20) == 0) {
464 		t2 = get_cycles();
465 		delta = t2 - tsc;
466 		tsc = t2;
467 		if ((unsigned long) delta < tscmin)
468 			tscmin = (unsigned int) delta;
469 		if ((unsigned long) delta > tscmax)
470 			tscmax = (unsigned int) delta;
471 		pitcnt++;
472 	}
473 
474 	/*
475 	 * Sanity checks:
476 	 *
477 	 * If we were not able to read the PIT more than loopmin
478 	 * times, then we have been hit by a massive SMI
479 	 *
480 	 * If the maximum is 10 times larger than the minimum,
481 	 * then we got hit by an SMI as well.
482 	 */
483 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
484 		return ULONG_MAX;
485 
486 	/* Calculate the PIT value */
487 	delta = t2 - t1;
488 	do_div(delta, ms);
489 	return delta;
490 }
491 
492 /*
493  * This reads the current MSB of the PIT counter, and
494  * checks if we are running on sufficiently fast and
495  * non-virtualized hardware.
496  *
497  * Our expectations are:
498  *
499  *  - the PIT is running at roughly 1.19MHz
500  *
501  *  - each IO is going to take about 1us on real hardware,
502  *    but we allow it to be much faster (by a factor of 10) or
503  *    _slightly_ slower (ie we allow up to a 2us read+counter
504  *    update - anything else implies a unacceptably slow CPU
505  *    or PIT for the fast calibration to work.
506  *
507  *  - with 256 PIT ticks to read the value, we have 214us to
508  *    see the same MSB (and overhead like doing a single TSC
509  *    read per MSB value etc).
510  *
511  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
512  *    them each to take about a microsecond on real hardware.
513  *    So we expect a count value of around 100. But we'll be
514  *    generous, and accept anything over 50.
515  *
516  *  - if the PIT is stuck, and we see *many* more reads, we
517  *    return early (and the next caller of pit_expect_msb()
518  *    then consider it a failure when they don't see the
519  *    next expected value).
520  *
521  * These expectations mean that we know that we have seen the
522  * transition from one expected value to another with a fairly
523  * high accuracy, and we didn't miss any events. We can thus
524  * use the TSC value at the transitions to calculate a pretty
525  * good value for the TSC frequency.
526  */
527 static inline int pit_verify_msb(unsigned char val)
528 {
529 	/* Ignore LSB */
530 	inb(0x42);
531 	return inb(0x42) == val;
532 }
533 
534 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
535 {
536 	int count;
537 	u64 tsc = 0, prev_tsc = 0;
538 
539 	for (count = 0; count < 50000; count++) {
540 		if (!pit_verify_msb(val))
541 			break;
542 		prev_tsc = tsc;
543 		tsc = get_cycles();
544 	}
545 	*deltap = get_cycles() - prev_tsc;
546 	*tscp = tsc;
547 
548 	/*
549 	 * We require _some_ success, but the quality control
550 	 * will be based on the error terms on the TSC values.
551 	 */
552 	return count > 5;
553 }
554 
555 /*
556  * How many MSB values do we want to see? We aim for
557  * a maximum error rate of 500ppm (in practice the
558  * real error is much smaller), but refuse to spend
559  * more than 50ms on it.
560  */
561 #define MAX_QUICK_PIT_MS 50
562 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
563 
564 static unsigned long quick_pit_calibrate(void)
565 {
566 	int i;
567 	u64 tsc, delta;
568 	unsigned long d1, d2;
569 
570 	if (!has_legacy_pic())
571 		return 0;
572 
573 	/* Set the Gate high, disable speaker */
574 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
575 
576 	/*
577 	 * Counter 2, mode 0 (one-shot), binary count
578 	 *
579 	 * NOTE! Mode 2 decrements by two (and then the
580 	 * output is flipped each time, giving the same
581 	 * final output frequency as a decrement-by-one),
582 	 * so mode 0 is much better when looking at the
583 	 * individual counts.
584 	 */
585 	outb(0xb0, 0x43);
586 
587 	/* Start at 0xffff */
588 	outb(0xff, 0x42);
589 	outb(0xff, 0x42);
590 
591 	/*
592 	 * The PIT starts counting at the next edge, so we
593 	 * need to delay for a microsecond. The easiest way
594 	 * to do that is to just read back the 16-bit counter
595 	 * once from the PIT.
596 	 */
597 	pit_verify_msb(0);
598 
599 	if (pit_expect_msb(0xff, &tsc, &d1)) {
600 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
601 			if (!pit_expect_msb(0xff-i, &delta, &d2))
602 				break;
603 
604 			delta -= tsc;
605 
606 			/*
607 			 * Extrapolate the error and fail fast if the error will
608 			 * never be below 500 ppm.
609 			 */
610 			if (i == 1 &&
611 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
612 				return 0;
613 
614 			/*
615 			 * Iterate until the error is less than 500 ppm
616 			 */
617 			if (d1+d2 >= delta >> 11)
618 				continue;
619 
620 			/*
621 			 * Check the PIT one more time to verify that
622 			 * all TSC reads were stable wrt the PIT.
623 			 *
624 			 * This also guarantees serialization of the
625 			 * last cycle read ('d2') in pit_expect_msb.
626 			 */
627 			if (!pit_verify_msb(0xfe - i))
628 				break;
629 			goto success;
630 		}
631 	}
632 	pr_info("Fast TSC calibration failed\n");
633 	return 0;
634 
635 success:
636 	/*
637 	 * Ok, if we get here, then we've seen the
638 	 * MSB of the PIT decrement 'i' times, and the
639 	 * error has shrunk to less than 500 ppm.
640 	 *
641 	 * As a result, we can depend on there not being
642 	 * any odd delays anywhere, and the TSC reads are
643 	 * reliable (within the error).
644 	 *
645 	 * kHz = ticks / time-in-seconds / 1000;
646 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
647 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
648 	 */
649 	delta *= PIT_TICK_RATE;
650 	do_div(delta, i*256*1000);
651 	pr_info("Fast TSC calibration using PIT\n");
652 	return delta;
653 }
654 
655 /**
656  * native_calibrate_tsc - determine TSC frequency
657  * Determine TSC frequency via CPUID, else return 0.
658  */
659 unsigned long native_calibrate_tsc(void)
660 {
661 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
662 	unsigned int crystal_khz;
663 
664 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
665 		return 0;
666 
667 	if (boot_cpu_data.cpuid_level < 0x15)
668 		return 0;
669 
670 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
671 
672 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
673 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
674 
675 	if (ebx_numerator == 0 || eax_denominator == 0)
676 		return 0;
677 
678 	crystal_khz = ecx_hz / 1000;
679 
680 	/*
681 	 * Denverton SoCs don't report crystal clock, and also don't support
682 	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
683 	 * clock.
684 	 */
685 	if (crystal_khz == 0 &&
686 			boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D)
687 		crystal_khz = 25000;
688 
689 	/*
690 	 * TSC frequency reported directly by CPUID is a "hardware reported"
691 	 * frequency and is the most accurate one so far we have. This
692 	 * is considered a known frequency.
693 	 */
694 	if (crystal_khz != 0)
695 		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
696 
697 	/*
698 	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
699 	 * clock, but we can easily calculate it to a high degree of accuracy
700 	 * by considering the crystal ratio and the CPU speed.
701 	 */
702 	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
703 		unsigned int eax_base_mhz, ebx, ecx, edx;
704 
705 		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
706 		crystal_khz = eax_base_mhz * 1000 *
707 			eax_denominator / ebx_numerator;
708 	}
709 
710 	if (crystal_khz == 0)
711 		return 0;
712 
713 	/*
714 	 * For Atom SoCs TSC is the only reliable clocksource.
715 	 * Mark TSC reliable so no watchdog on it.
716 	 */
717 	if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT)
718 		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
719 
720 #ifdef CONFIG_X86_LOCAL_APIC
721 	/*
722 	 * The local APIC appears to be fed by the core crystal clock
723 	 * (which sounds entirely sensible). We can set the global
724 	 * lapic_timer_period here to avoid having to calibrate the APIC
725 	 * timer later.
726 	 */
727 	lapic_timer_period = crystal_khz * 1000 / HZ;
728 #endif
729 
730 	return crystal_khz * ebx_numerator / eax_denominator;
731 }
732 
733 static unsigned long cpu_khz_from_cpuid(void)
734 {
735 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
736 
737 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
738 		return 0;
739 
740 	if (boot_cpu_data.cpuid_level < 0x16)
741 		return 0;
742 
743 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
744 
745 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
746 
747 	return eax_base_mhz * 1000;
748 }
749 
750 /*
751  * calibrate cpu using pit, hpet, and ptimer methods. They are available
752  * later in boot after acpi is initialized.
753  */
754 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
755 {
756 	u64 tsc1, tsc2, delta, ref1, ref2;
757 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
758 	unsigned long flags, latch, ms;
759 	int hpet = is_hpet_enabled(), i, loopmin;
760 
761 	/*
762 	 * Run 5 calibration loops to get the lowest frequency value
763 	 * (the best estimate). We use two different calibration modes
764 	 * here:
765 	 *
766 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
767 	 * load a timeout of 50ms. We read the time right after we
768 	 * started the timer and wait until the PIT count down reaches
769 	 * zero. In each wait loop iteration we read the TSC and check
770 	 * the delta to the previous read. We keep track of the min
771 	 * and max values of that delta. The delta is mostly defined
772 	 * by the IO time of the PIT access, so we can detect when
773 	 * any disturbance happened between the two reads. If the
774 	 * maximum time is significantly larger than the minimum time,
775 	 * then we discard the result and have another try.
776 	 *
777 	 * 2) Reference counter. If available we use the HPET or the
778 	 * PMTIMER as a reference to check the sanity of that value.
779 	 * We use separate TSC readouts and check inside of the
780 	 * reference read for any possible disturbance. We discard
781 	 * disturbed values here as well. We do that around the PIT
782 	 * calibration delay loop as we have to wait for a certain
783 	 * amount of time anyway.
784 	 */
785 
786 	/* Preset PIT loop values */
787 	latch = CAL_LATCH;
788 	ms = CAL_MS;
789 	loopmin = CAL_PIT_LOOPS;
790 
791 	for (i = 0; i < 3; i++) {
792 		unsigned long tsc_pit_khz;
793 
794 		/*
795 		 * Read the start value and the reference count of
796 		 * hpet/pmtimer when available. Then do the PIT
797 		 * calibration, which will take at least 50ms, and
798 		 * read the end value.
799 		 */
800 		local_irq_save(flags);
801 		tsc1 = tsc_read_refs(&ref1, hpet);
802 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
803 		tsc2 = tsc_read_refs(&ref2, hpet);
804 		local_irq_restore(flags);
805 
806 		/* Pick the lowest PIT TSC calibration so far */
807 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
808 
809 		/* hpet or pmtimer available ? */
810 		if (ref1 == ref2)
811 			continue;
812 
813 		/* Check, whether the sampling was disturbed */
814 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
815 			continue;
816 
817 		tsc2 = (tsc2 - tsc1) * 1000000LL;
818 		if (hpet)
819 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
820 		else
821 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
822 
823 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
824 
825 		/* Check the reference deviation */
826 		delta = ((u64) tsc_pit_min) * 100;
827 		do_div(delta, tsc_ref_min);
828 
829 		/*
830 		 * If both calibration results are inside a 10% window
831 		 * then we can be sure, that the calibration
832 		 * succeeded. We break out of the loop right away. We
833 		 * use the reference value, as it is more precise.
834 		 */
835 		if (delta >= 90 && delta <= 110) {
836 			pr_info("PIT calibration matches %s. %d loops\n",
837 				hpet ? "HPET" : "PMTIMER", i + 1);
838 			return tsc_ref_min;
839 		}
840 
841 		/*
842 		 * Check whether PIT failed more than once. This
843 		 * happens in virtualized environments. We need to
844 		 * give the virtual PC a slightly longer timeframe for
845 		 * the HPET/PMTIMER to make the result precise.
846 		 */
847 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
848 			latch = CAL2_LATCH;
849 			ms = CAL2_MS;
850 			loopmin = CAL2_PIT_LOOPS;
851 		}
852 	}
853 
854 	/*
855 	 * Now check the results.
856 	 */
857 	if (tsc_pit_min == ULONG_MAX) {
858 		/* PIT gave no useful value */
859 		pr_warn("Unable to calibrate against PIT\n");
860 
861 		/* We don't have an alternative source, disable TSC */
862 		if (!hpet && !ref1 && !ref2) {
863 			pr_notice("No reference (HPET/PMTIMER) available\n");
864 			return 0;
865 		}
866 
867 		/* The alternative source failed as well, disable TSC */
868 		if (tsc_ref_min == ULONG_MAX) {
869 			pr_warn("HPET/PMTIMER calibration failed\n");
870 			return 0;
871 		}
872 
873 		/* Use the alternative source */
874 		pr_info("using %s reference calibration\n",
875 			hpet ? "HPET" : "PMTIMER");
876 
877 		return tsc_ref_min;
878 	}
879 
880 	/* We don't have an alternative source, use the PIT calibration value */
881 	if (!hpet && !ref1 && !ref2) {
882 		pr_info("Using PIT calibration value\n");
883 		return tsc_pit_min;
884 	}
885 
886 	/* The alternative source failed, use the PIT calibration value */
887 	if (tsc_ref_min == ULONG_MAX) {
888 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
889 		return tsc_pit_min;
890 	}
891 
892 	/*
893 	 * The calibration values differ too much. In doubt, we use
894 	 * the PIT value as we know that there are PMTIMERs around
895 	 * running at double speed. At least we let the user know:
896 	 */
897 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
898 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
899 	pr_info("Using PIT calibration value\n");
900 	return tsc_pit_min;
901 }
902 
903 /**
904  * native_calibrate_cpu_early - can calibrate the cpu early in boot
905  */
906 unsigned long native_calibrate_cpu_early(void)
907 {
908 	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
909 
910 	if (!fast_calibrate)
911 		fast_calibrate = cpu_khz_from_msr();
912 	if (!fast_calibrate) {
913 		local_irq_save(flags);
914 		fast_calibrate = quick_pit_calibrate();
915 		local_irq_restore(flags);
916 	}
917 	return fast_calibrate;
918 }
919 
920 
921 /**
922  * native_calibrate_cpu - calibrate the cpu
923  */
924 static unsigned long native_calibrate_cpu(void)
925 {
926 	unsigned long tsc_freq = native_calibrate_cpu_early();
927 
928 	if (!tsc_freq)
929 		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
930 
931 	return tsc_freq;
932 }
933 
934 void recalibrate_cpu_khz(void)
935 {
936 #ifndef CONFIG_SMP
937 	unsigned long cpu_khz_old = cpu_khz;
938 
939 	if (!boot_cpu_has(X86_FEATURE_TSC))
940 		return;
941 
942 	cpu_khz = x86_platform.calibrate_cpu();
943 	tsc_khz = x86_platform.calibrate_tsc();
944 	if (tsc_khz == 0)
945 		tsc_khz = cpu_khz;
946 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
947 		cpu_khz = tsc_khz;
948 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
949 						    cpu_khz_old, cpu_khz);
950 #endif
951 }
952 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
953 
954 
955 static unsigned long long cyc2ns_suspend;
956 
957 void tsc_save_sched_clock_state(void)
958 {
959 	if (!sched_clock_stable())
960 		return;
961 
962 	cyc2ns_suspend = sched_clock();
963 }
964 
965 /*
966  * Even on processors with invariant TSC, TSC gets reset in some the
967  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
968  * arbitrary value (still sync'd across cpu's) during resume from such sleep
969  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
970  * that sched_clock() continues from the point where it was left off during
971  * suspend.
972  */
973 void tsc_restore_sched_clock_state(void)
974 {
975 	unsigned long long offset;
976 	unsigned long flags;
977 	int cpu;
978 
979 	if (!sched_clock_stable())
980 		return;
981 
982 	local_irq_save(flags);
983 
984 	/*
985 	 * We're coming out of suspend, there's no concurrency yet; don't
986 	 * bother being nice about the RCU stuff, just write to both
987 	 * data fields.
988 	 */
989 
990 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
991 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
992 
993 	offset = cyc2ns_suspend - sched_clock();
994 
995 	for_each_possible_cpu(cpu) {
996 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
997 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
998 	}
999 
1000 	local_irq_restore(flags);
1001 }
1002 
1003 #ifdef CONFIG_CPU_FREQ
1004 /*
1005  * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1006  * changes.
1007  *
1008  * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1009  * as unstable and give up in those cases.
1010  *
1011  * Should fix up last_tsc too. Currently gettimeofday in the
1012  * first tick after the change will be slightly wrong.
1013  */
1014 
1015 static unsigned int  ref_freq;
1016 static unsigned long loops_per_jiffy_ref;
1017 static unsigned long tsc_khz_ref;
1018 
1019 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1020 				void *data)
1021 {
1022 	struct cpufreq_freqs *freq = data;
1023 
1024 	if (num_online_cpus() > 1) {
1025 		mark_tsc_unstable("cpufreq changes on SMP");
1026 		return 0;
1027 	}
1028 
1029 	if (!ref_freq) {
1030 		ref_freq = freq->old;
1031 		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1032 		tsc_khz_ref = tsc_khz;
1033 	}
1034 
1035 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1036 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1037 		boot_cpu_data.loops_per_jiffy =
1038 			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1039 
1040 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1041 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1042 			mark_tsc_unstable("cpufreq changes");
1043 
1044 		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static struct notifier_block time_cpufreq_notifier_block = {
1051 	.notifier_call  = time_cpufreq_notifier
1052 };
1053 
1054 static int __init cpufreq_register_tsc_scaling(void)
1055 {
1056 	if (!boot_cpu_has(X86_FEATURE_TSC))
1057 		return 0;
1058 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1059 		return 0;
1060 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1061 				CPUFREQ_TRANSITION_NOTIFIER);
1062 	return 0;
1063 }
1064 
1065 core_initcall(cpufreq_register_tsc_scaling);
1066 
1067 #endif /* CONFIG_CPU_FREQ */
1068 
1069 #define ART_CPUID_LEAF (0x15)
1070 #define ART_MIN_DENOMINATOR (1)
1071 
1072 
1073 /*
1074  * If ART is present detect the numerator:denominator to convert to TSC
1075  */
1076 static void __init detect_art(void)
1077 {
1078 	unsigned int unused;
1079 
1080 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1081 		return;
1082 
1083 	/*
1084 	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1085 	 * and the TSC counter resets must not occur asynchronously.
1086 	 */
1087 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1088 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1089 	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1090 	    tsc_async_resets)
1091 		return;
1092 
1093 	cpuid(ART_CPUID_LEAF, &art_base_clk.denominator,
1094 	      &art_base_clk.numerator, &art_base_clk.freq_khz, &unused);
1095 
1096 	art_base_clk.freq_khz /= KHZ;
1097 	if (art_base_clk.denominator < ART_MIN_DENOMINATOR)
1098 		return;
1099 
1100 	rdmsrl(MSR_IA32_TSC_ADJUST, art_base_clk.offset);
1101 
1102 	/* Make this sticky over multiple CPU init calls */
1103 	setup_force_cpu_cap(X86_FEATURE_ART);
1104 }
1105 
1106 
1107 /* clocksource code */
1108 
1109 static void tsc_resume(struct clocksource *cs)
1110 {
1111 	tsc_verify_tsc_adjust(true);
1112 }
1113 
1114 /*
1115  * We used to compare the TSC to the cycle_last value in the clocksource
1116  * structure to avoid a nasty time-warp. This can be observed in a
1117  * very small window right after one CPU updated cycle_last under
1118  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1119  * is smaller than the cycle_last reference value due to a TSC which
1120  * is slightly behind. This delta is nowhere else observable, but in
1121  * that case it results in a forward time jump in the range of hours
1122  * due to the unsigned delta calculation of the time keeping core
1123  * code, which is necessary to support wrapping clocksources like pm
1124  * timer.
1125  *
1126  * This sanity check is now done in the core timekeeping code.
1127  * checking the result of read_tsc() - cycle_last for being negative.
1128  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1129  */
1130 static u64 read_tsc(struct clocksource *cs)
1131 {
1132 	return (u64)rdtsc_ordered();
1133 }
1134 
1135 static void tsc_cs_mark_unstable(struct clocksource *cs)
1136 {
1137 	if (tsc_unstable)
1138 		return;
1139 
1140 	tsc_unstable = 1;
1141 	if (using_native_sched_clock())
1142 		clear_sched_clock_stable();
1143 	disable_sched_clock_irqtime();
1144 	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1145 }
1146 
1147 static void tsc_cs_tick_stable(struct clocksource *cs)
1148 {
1149 	if (tsc_unstable)
1150 		return;
1151 
1152 	if (using_native_sched_clock())
1153 		sched_clock_tick_stable();
1154 }
1155 
1156 static int tsc_cs_enable(struct clocksource *cs)
1157 {
1158 	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1159 	return 0;
1160 }
1161 
1162 /*
1163  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1164  */
1165 static struct clocksource clocksource_tsc_early = {
1166 	.name			= "tsc-early",
1167 	.rating			= 299,
1168 	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1169 	.read			= read_tsc,
1170 	.mask			= CLOCKSOURCE_MASK(64),
1171 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1172 				  CLOCK_SOURCE_MUST_VERIFY,
1173 	.id			= CSID_X86_TSC_EARLY,
1174 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1175 	.enable			= tsc_cs_enable,
1176 	.resume			= tsc_resume,
1177 	.mark_unstable		= tsc_cs_mark_unstable,
1178 	.tick_stable		= tsc_cs_tick_stable,
1179 	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1180 };
1181 
1182 /*
1183  * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1184  * this one will immediately take over. We will only register if TSC has
1185  * been found good.
1186  */
1187 static struct clocksource clocksource_tsc = {
1188 	.name			= "tsc",
1189 	.rating			= 300,
1190 	.read			= read_tsc,
1191 	.mask			= CLOCKSOURCE_MASK(64),
1192 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1193 				  CLOCK_SOURCE_VALID_FOR_HRES |
1194 				  CLOCK_SOURCE_MUST_VERIFY |
1195 				  CLOCK_SOURCE_VERIFY_PERCPU,
1196 	.id			= CSID_X86_TSC,
1197 	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1198 	.enable			= tsc_cs_enable,
1199 	.resume			= tsc_resume,
1200 	.mark_unstable		= tsc_cs_mark_unstable,
1201 	.tick_stable		= tsc_cs_tick_stable,
1202 	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1203 };
1204 
1205 void mark_tsc_unstable(char *reason)
1206 {
1207 	if (tsc_unstable)
1208 		return;
1209 
1210 	tsc_unstable = 1;
1211 	if (using_native_sched_clock())
1212 		clear_sched_clock_stable();
1213 	disable_sched_clock_irqtime();
1214 	pr_info("Marking TSC unstable due to %s\n", reason);
1215 
1216 	clocksource_mark_unstable(&clocksource_tsc_early);
1217 	clocksource_mark_unstable(&clocksource_tsc);
1218 }
1219 
1220 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1221 
1222 static void __init tsc_disable_clocksource_watchdog(void)
1223 {
1224 	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1225 	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1226 }
1227 
1228 bool tsc_clocksource_watchdog_disabled(void)
1229 {
1230 	return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1231 	       tsc_as_watchdog && !no_tsc_watchdog;
1232 }
1233 
1234 static void __init check_system_tsc_reliable(void)
1235 {
1236 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1237 	if (is_geode_lx()) {
1238 		/* RTSC counts during suspend */
1239 #define RTSC_SUSP 0x100
1240 		unsigned long res_low, res_high;
1241 
1242 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1243 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1244 		if (res_low & RTSC_SUSP)
1245 			tsc_clocksource_reliable = 1;
1246 	}
1247 #endif
1248 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1249 		tsc_clocksource_reliable = 1;
1250 
1251 	/*
1252 	 * Disable the clocksource watchdog when the system has:
1253 	 *  - TSC running at constant frequency
1254 	 *  - TSC which does not stop in C-States
1255 	 *  - the TSC_ADJUST register which allows to detect even minimal
1256 	 *    modifications
1257 	 *  - not more than four packages
1258 	 */
1259 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1260 	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1261 	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1262 	    topology_max_packages() <= 4)
1263 		tsc_disable_clocksource_watchdog();
1264 }
1265 
1266 /*
1267  * Make an educated guess if the TSC is trustworthy and synchronized
1268  * over all CPUs.
1269  */
1270 int unsynchronized_tsc(void)
1271 {
1272 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1273 		return 1;
1274 
1275 #ifdef CONFIG_SMP
1276 	if (apic_is_clustered_box())
1277 		return 1;
1278 #endif
1279 
1280 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1281 		return 0;
1282 
1283 	if (tsc_clocksource_reliable)
1284 		return 0;
1285 	/*
1286 	 * Intel systems are normally all synchronized.
1287 	 * Exceptions must mark TSC as unstable:
1288 	 */
1289 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1290 		/* assume multi socket systems are not synchronized: */
1291 		if (topology_max_packages() > 1)
1292 			return 1;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 static void tsc_refine_calibration_work(struct work_struct *work);
1299 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1300 /**
1301  * tsc_refine_calibration_work - Further refine tsc freq calibration
1302  * @work: ignored.
1303  *
1304  * This functions uses delayed work over a period of a
1305  * second to further refine the TSC freq value. Since this is
1306  * timer based, instead of loop based, we don't block the boot
1307  * process while this longer calibration is done.
1308  *
1309  * If there are any calibration anomalies (too many SMIs, etc),
1310  * or the refined calibration is off by 1% of the fast early
1311  * calibration, we throw out the new calibration and use the
1312  * early calibration.
1313  */
1314 static void tsc_refine_calibration_work(struct work_struct *work)
1315 {
1316 	static u64 tsc_start = ULLONG_MAX, ref_start;
1317 	static int hpet;
1318 	u64 tsc_stop, ref_stop, delta;
1319 	unsigned long freq;
1320 	int cpu;
1321 
1322 	/* Don't bother refining TSC on unstable systems */
1323 	if (tsc_unstable)
1324 		goto unreg;
1325 
1326 	/*
1327 	 * Since the work is started early in boot, we may be
1328 	 * delayed the first time we expire. So set the workqueue
1329 	 * again once we know timers are working.
1330 	 */
1331 	if (tsc_start == ULLONG_MAX) {
1332 restart:
1333 		/*
1334 		 * Only set hpet once, to avoid mixing hardware
1335 		 * if the hpet becomes enabled later.
1336 		 */
1337 		hpet = is_hpet_enabled();
1338 		tsc_start = tsc_read_refs(&ref_start, hpet);
1339 		schedule_delayed_work(&tsc_irqwork, HZ);
1340 		return;
1341 	}
1342 
1343 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1344 
1345 	/* hpet or pmtimer available ? */
1346 	if (ref_start == ref_stop)
1347 		goto out;
1348 
1349 	/* Check, whether the sampling was disturbed */
1350 	if (tsc_stop == ULLONG_MAX)
1351 		goto restart;
1352 
1353 	delta = tsc_stop - tsc_start;
1354 	delta *= 1000000LL;
1355 	if (hpet)
1356 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1357 	else
1358 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1359 
1360 	/* Will hit this only if tsc_force_recalibrate has been set */
1361 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1362 
1363 		/* Warn if the deviation exceeds 500 ppm */
1364 		if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1365 			pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1366 			pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1367 				(unsigned long)tsc_khz / 1000,
1368 				(unsigned long)tsc_khz % 1000);
1369 		}
1370 
1371 		pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1372 			hpet ? "HPET" : "PM_TIMER",
1373 			(unsigned long)freq / 1000,
1374 			(unsigned long)freq % 1000);
1375 
1376 		return;
1377 	}
1378 
1379 	/* Make sure we're within 1% */
1380 	if (abs(tsc_khz - freq) > tsc_khz/100)
1381 		goto out;
1382 
1383 	tsc_khz = freq;
1384 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1385 		(unsigned long)tsc_khz / 1000,
1386 		(unsigned long)tsc_khz % 1000);
1387 
1388 	/* Inform the TSC deadline clockevent devices about the recalibration */
1389 	lapic_update_tsc_freq();
1390 
1391 	/* Update the sched_clock() rate to match the clocksource one */
1392 	for_each_possible_cpu(cpu)
1393 		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1394 
1395 out:
1396 	if (tsc_unstable)
1397 		goto unreg;
1398 
1399 	if (boot_cpu_has(X86_FEATURE_ART)) {
1400 		have_art = true;
1401 		clocksource_tsc.base = &art_base_clk;
1402 	}
1403 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1404 unreg:
1405 	clocksource_unregister(&clocksource_tsc_early);
1406 }
1407 
1408 
1409 static int __init init_tsc_clocksource(void)
1410 {
1411 	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1412 		return 0;
1413 
1414 	if (tsc_unstable) {
1415 		clocksource_unregister(&clocksource_tsc_early);
1416 		return 0;
1417 	}
1418 
1419 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1420 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1421 
1422 	/*
1423 	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1424 	 * the refined calibration and directly register it as a clocksource.
1425 	 */
1426 	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1427 		if (boot_cpu_has(X86_FEATURE_ART)) {
1428 			have_art = true;
1429 			clocksource_tsc.base = &art_base_clk;
1430 		}
1431 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1432 		clocksource_unregister(&clocksource_tsc_early);
1433 
1434 		if (!tsc_force_recalibrate)
1435 			return 0;
1436 	}
1437 
1438 	schedule_delayed_work(&tsc_irqwork, 0);
1439 	return 0;
1440 }
1441 /*
1442  * We use device_initcall here, to ensure we run after the hpet
1443  * is fully initialized, which may occur at fs_initcall time.
1444  */
1445 device_initcall(init_tsc_clocksource);
1446 
1447 static bool __init determine_cpu_tsc_frequencies(bool early)
1448 {
1449 	/* Make sure that cpu and tsc are not already calibrated */
1450 	WARN_ON(cpu_khz || tsc_khz);
1451 
1452 	if (early) {
1453 		cpu_khz = x86_platform.calibrate_cpu();
1454 		if (tsc_early_khz) {
1455 			tsc_khz = tsc_early_khz;
1456 		} else {
1457 			tsc_khz = x86_platform.calibrate_tsc();
1458 			clocksource_tsc.freq_khz = tsc_khz;
1459 		}
1460 	} else {
1461 		/* We should not be here with non-native cpu calibration */
1462 		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1463 		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1464 	}
1465 
1466 	/*
1467 	 * Trust non-zero tsc_khz as authoritative,
1468 	 * and use it to sanity check cpu_khz,
1469 	 * which will be off if system timer is off.
1470 	 */
1471 	if (tsc_khz == 0)
1472 		tsc_khz = cpu_khz;
1473 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1474 		cpu_khz = tsc_khz;
1475 
1476 	if (tsc_khz == 0)
1477 		return false;
1478 
1479 	pr_info("Detected %lu.%03lu MHz processor\n",
1480 		(unsigned long)cpu_khz / KHZ,
1481 		(unsigned long)cpu_khz % KHZ);
1482 
1483 	if (cpu_khz != tsc_khz) {
1484 		pr_info("Detected %lu.%03lu MHz TSC",
1485 			(unsigned long)tsc_khz / KHZ,
1486 			(unsigned long)tsc_khz % KHZ);
1487 	}
1488 	return true;
1489 }
1490 
1491 static unsigned long __init get_loops_per_jiffy(void)
1492 {
1493 	u64 lpj = (u64)tsc_khz * KHZ;
1494 
1495 	do_div(lpj, HZ);
1496 	return lpj;
1497 }
1498 
1499 static void __init tsc_enable_sched_clock(void)
1500 {
1501 	loops_per_jiffy = get_loops_per_jiffy();
1502 	use_tsc_delay();
1503 
1504 	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1505 	tsc_store_and_check_tsc_adjust(true);
1506 	cyc2ns_init_boot_cpu();
1507 	static_branch_enable(&__use_tsc);
1508 }
1509 
1510 void __init tsc_early_init(void)
1511 {
1512 	if (!boot_cpu_has(X86_FEATURE_TSC))
1513 		return;
1514 	/* Don't change UV TSC multi-chassis synchronization */
1515 	if (is_early_uv_system())
1516 		return;
1517 	if (!determine_cpu_tsc_frequencies(true))
1518 		return;
1519 	tsc_enable_sched_clock();
1520 }
1521 
1522 void __init tsc_init(void)
1523 {
1524 	if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1525 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1526 		return;
1527 	}
1528 
1529 	/*
1530 	 * native_calibrate_cpu_early can only calibrate using methods that are
1531 	 * available early in boot.
1532 	 */
1533 	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1534 		x86_platform.calibrate_cpu = native_calibrate_cpu;
1535 
1536 	if (!tsc_khz) {
1537 		/* We failed to determine frequencies earlier, try again */
1538 		if (!determine_cpu_tsc_frequencies(false)) {
1539 			mark_tsc_unstable("could not calculate TSC khz");
1540 			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1541 			return;
1542 		}
1543 		tsc_enable_sched_clock();
1544 	}
1545 
1546 	cyc2ns_init_secondary_cpus();
1547 
1548 	if (!no_sched_irq_time)
1549 		enable_sched_clock_irqtime();
1550 
1551 	lpj_fine = get_loops_per_jiffy();
1552 
1553 	check_system_tsc_reliable();
1554 
1555 	if (unsynchronized_tsc()) {
1556 		mark_tsc_unstable("TSCs unsynchronized");
1557 		return;
1558 	}
1559 
1560 	if (tsc_clocksource_reliable || no_tsc_watchdog)
1561 		tsc_disable_clocksource_watchdog();
1562 
1563 	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1564 	detect_art();
1565 }
1566 
1567 #ifdef CONFIG_SMP
1568 /*
1569  * Check whether existing calibration data can be reused.
1570  */
1571 unsigned long calibrate_delay_is_known(void)
1572 {
1573 	int sibling, cpu = smp_processor_id();
1574 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1575 	const struct cpumask *mask = topology_core_cpumask(cpu);
1576 
1577 	/*
1578 	 * If TSC has constant frequency and TSC is synchronized across
1579 	 * sockets then reuse CPU0 calibration.
1580 	 */
1581 	if (constant_tsc && !tsc_unstable)
1582 		return cpu_data(0).loops_per_jiffy;
1583 
1584 	/*
1585 	 * If TSC has constant frequency and TSC is not synchronized across
1586 	 * sockets and this is not the first CPU in the socket, then reuse
1587 	 * the calibration value of an already online CPU on that socket.
1588 	 *
1589 	 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1590 	 * socket.
1591 	 */
1592 	if (!constant_tsc || !mask)
1593 		return 0;
1594 
1595 	sibling = cpumask_any_but(mask, cpu);
1596 	if (sibling < nr_cpu_ids)
1597 		return cpu_data(sibling).loops_per_jiffy;
1598 	return 0;
1599 }
1600 #endif
1601