1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 #include <linux/static_key.h> 15 16 #include <asm/hpet.h> 17 #include <asm/timer.h> 18 #include <asm/vgtod.h> 19 #include <asm/time.h> 20 #include <asm/delay.h> 21 #include <asm/hypervisor.h> 22 #include <asm/nmi.h> 23 #include <asm/x86_init.h> 24 #include <asm/geode.h> 25 26 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 27 EXPORT_SYMBOL(cpu_khz); 28 29 unsigned int __read_mostly tsc_khz; 30 EXPORT_SYMBOL(tsc_khz); 31 32 /* 33 * TSC can be unstable due to cpufreq or due to unsynced TSCs 34 */ 35 static int __read_mostly tsc_unstable; 36 37 /* native_sched_clock() is called before tsc_init(), so 38 we must start with the TSC soft disabled to prevent 39 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */ 40 static int __read_mostly tsc_disabled = -1; 41 42 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 43 44 int tsc_clocksource_reliable; 45 46 static u32 art_to_tsc_numerator; 47 static u32 art_to_tsc_denominator; 48 static u64 art_to_tsc_offset; 49 struct clocksource *art_related_clocksource; 50 51 /* 52 * Use a ring-buffer like data structure, where a writer advances the head by 53 * writing a new data entry and a reader advances the tail when it observes a 54 * new entry. 55 * 56 * Writers are made to wait on readers until there's space to write a new 57 * entry. 58 * 59 * This means that we can always use an {offset, mul} pair to compute a ns 60 * value that is 'roughly' in the right direction, even if we're writing a new 61 * {offset, mul} pair during the clock read. 62 * 63 * The down-side is that we can no longer guarantee strict monotonicity anymore 64 * (assuming the TSC was that to begin with), because while we compute the 65 * intersection point of the two clock slopes and make sure the time is 66 * continuous at the point of switching; we can no longer guarantee a reader is 67 * strictly before or after the switch point. 68 * 69 * It does mean a reader no longer needs to disable IRQs in order to avoid 70 * CPU-Freq updates messing with his times, and similarly an NMI reader will 71 * no longer run the risk of hitting half-written state. 72 */ 73 74 struct cyc2ns { 75 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 76 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 77 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 78 }; /* exactly fits one cacheline */ 79 80 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 81 82 struct cyc2ns_data *cyc2ns_read_begin(void) 83 { 84 struct cyc2ns_data *head; 85 86 preempt_disable(); 87 88 head = this_cpu_read(cyc2ns.head); 89 /* 90 * Ensure we observe the entry when we observe the pointer to it. 91 * matches the wmb from cyc2ns_write_end(). 92 */ 93 smp_read_barrier_depends(); 94 head->__count++; 95 barrier(); 96 97 return head; 98 } 99 100 void cyc2ns_read_end(struct cyc2ns_data *head) 101 { 102 barrier(); 103 /* 104 * If we're the outer most nested read; update the tail pointer 105 * when we're done. This notifies possible pending writers 106 * that we've observed the head pointer and that the other 107 * entry is now free. 108 */ 109 if (!--head->__count) { 110 /* 111 * x86-TSO does not reorder writes with older reads; 112 * therefore once this write becomes visible to another 113 * cpu, we must be finished reading the cyc2ns_data. 114 * 115 * matches with cyc2ns_write_begin(). 116 */ 117 this_cpu_write(cyc2ns.tail, head); 118 } 119 preempt_enable(); 120 } 121 122 /* 123 * Begin writing a new @data entry for @cpu. 124 * 125 * Assumes some sort of write side lock; currently 'provided' by the assumption 126 * that cpufreq will call its notifiers sequentially. 127 */ 128 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 129 { 130 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 131 struct cyc2ns_data *data = c2n->data; 132 133 if (data == c2n->head) 134 data++; 135 136 /* XXX send an IPI to @cpu in order to guarantee a read? */ 137 138 /* 139 * When we observe the tail write from cyc2ns_read_end(), 140 * the cpu must be done with that entry and its safe 141 * to start writing to it. 142 */ 143 while (c2n->tail == data) 144 cpu_relax(); 145 146 return data; 147 } 148 149 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 150 { 151 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 152 153 /* 154 * Ensure the @data writes are visible before we publish the 155 * entry. Matches the data-depencency in cyc2ns_read_begin(). 156 */ 157 smp_wmb(); 158 159 ACCESS_ONCE(c2n->head) = data; 160 } 161 162 /* 163 * Accelerators for sched_clock() 164 * convert from cycles(64bits) => nanoseconds (64bits) 165 * basic equation: 166 * ns = cycles / (freq / ns_per_sec) 167 * ns = cycles * (ns_per_sec / freq) 168 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 169 * ns = cycles * (10^6 / cpu_khz) 170 * 171 * Then we use scaling math (suggested by george@mvista.com) to get: 172 * ns = cycles * (10^6 * SC / cpu_khz) / SC 173 * ns = cycles * cyc2ns_scale / SC 174 * 175 * And since SC is a constant power of two, we can convert the div 176 * into a shift. The larger SC is, the more accurate the conversion, but 177 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 178 * (64-bit result) can be used. 179 * 180 * We can use khz divisor instead of mhz to keep a better precision. 181 * (mathieu.desnoyers@polymtl.ca) 182 * 183 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 184 */ 185 186 static void cyc2ns_data_init(struct cyc2ns_data *data) 187 { 188 data->cyc2ns_mul = 0; 189 data->cyc2ns_shift = 0; 190 data->cyc2ns_offset = 0; 191 data->__count = 0; 192 } 193 194 static void cyc2ns_init(int cpu) 195 { 196 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 197 198 cyc2ns_data_init(&c2n->data[0]); 199 cyc2ns_data_init(&c2n->data[1]); 200 201 c2n->head = c2n->data; 202 c2n->tail = c2n->data; 203 } 204 205 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 206 { 207 struct cyc2ns_data *data, *tail; 208 unsigned long long ns; 209 210 /* 211 * See cyc2ns_read_*() for details; replicated in order to avoid 212 * an extra few instructions that came with the abstraction. 213 * Notable, it allows us to only do the __count and tail update 214 * dance when its actually needed. 215 */ 216 217 preempt_disable_notrace(); 218 data = this_cpu_read(cyc2ns.head); 219 tail = this_cpu_read(cyc2ns.tail); 220 221 if (likely(data == tail)) { 222 ns = data->cyc2ns_offset; 223 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 224 } else { 225 data->__count++; 226 227 barrier(); 228 229 ns = data->cyc2ns_offset; 230 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 231 232 barrier(); 233 234 if (!--data->__count) 235 this_cpu_write(cyc2ns.tail, data); 236 } 237 preempt_enable_notrace(); 238 239 return ns; 240 } 241 242 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 243 { 244 unsigned long long tsc_now, ns_now; 245 struct cyc2ns_data *data; 246 unsigned long flags; 247 248 local_irq_save(flags); 249 sched_clock_idle_sleep_event(); 250 251 if (!cpu_khz) 252 goto done; 253 254 data = cyc2ns_write_begin(cpu); 255 256 tsc_now = rdtsc(); 257 ns_now = cycles_2_ns(tsc_now); 258 259 /* 260 * Compute a new multiplier as per the above comment and ensure our 261 * time function is continuous; see the comment near struct 262 * cyc2ns_data. 263 */ 264 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz, 265 NSEC_PER_MSEC, 0); 266 267 /* 268 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 269 * not expected to be greater than 31 due to the original published 270 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 271 * value) - refer perf_event_mmap_page documentation in perf_event.h. 272 */ 273 if (data->cyc2ns_shift == 32) { 274 data->cyc2ns_shift = 31; 275 data->cyc2ns_mul >>= 1; 276 } 277 278 data->cyc2ns_offset = ns_now - 279 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift); 280 281 cyc2ns_write_end(cpu, data); 282 283 done: 284 sched_clock_idle_wakeup_event(0); 285 local_irq_restore(flags); 286 } 287 /* 288 * Scheduler clock - returns current time in nanosec units. 289 */ 290 u64 native_sched_clock(void) 291 { 292 if (static_branch_likely(&__use_tsc)) { 293 u64 tsc_now = rdtsc(); 294 295 /* return the value in ns */ 296 return cycles_2_ns(tsc_now); 297 } 298 299 /* 300 * Fall back to jiffies if there's no TSC available: 301 * ( But note that we still use it if the TSC is marked 302 * unstable. We do this because unlike Time Of Day, 303 * the scheduler clock tolerates small errors and it's 304 * very important for it to be as fast as the platform 305 * can achieve it. ) 306 */ 307 308 /* No locking but a rare wrong value is not a big deal: */ 309 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 310 } 311 312 /* 313 * Generate a sched_clock if you already have a TSC value. 314 */ 315 u64 native_sched_clock_from_tsc(u64 tsc) 316 { 317 return cycles_2_ns(tsc); 318 } 319 320 /* We need to define a real function for sched_clock, to override the 321 weak default version */ 322 #ifdef CONFIG_PARAVIRT 323 unsigned long long sched_clock(void) 324 { 325 return paravirt_sched_clock(); 326 } 327 #else 328 unsigned long long 329 sched_clock(void) __attribute__((alias("native_sched_clock"))); 330 #endif 331 332 int check_tsc_unstable(void) 333 { 334 return tsc_unstable; 335 } 336 EXPORT_SYMBOL_GPL(check_tsc_unstable); 337 338 int check_tsc_disabled(void) 339 { 340 return tsc_disabled; 341 } 342 EXPORT_SYMBOL_GPL(check_tsc_disabled); 343 344 #ifdef CONFIG_X86_TSC 345 int __init notsc_setup(char *str) 346 { 347 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 348 tsc_disabled = 1; 349 return 1; 350 } 351 #else 352 /* 353 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 354 * in cpu/common.c 355 */ 356 int __init notsc_setup(char *str) 357 { 358 setup_clear_cpu_cap(X86_FEATURE_TSC); 359 return 1; 360 } 361 #endif 362 363 __setup("notsc", notsc_setup); 364 365 static int no_sched_irq_time; 366 367 static int __init tsc_setup(char *str) 368 { 369 if (!strcmp(str, "reliable")) 370 tsc_clocksource_reliable = 1; 371 if (!strncmp(str, "noirqtime", 9)) 372 no_sched_irq_time = 1; 373 return 1; 374 } 375 376 __setup("tsc=", tsc_setup); 377 378 #define MAX_RETRIES 5 379 #define SMI_TRESHOLD 50000 380 381 /* 382 * Read TSC and the reference counters. Take care of SMI disturbance 383 */ 384 static u64 tsc_read_refs(u64 *p, int hpet) 385 { 386 u64 t1, t2; 387 int i; 388 389 for (i = 0; i < MAX_RETRIES; i++) { 390 t1 = get_cycles(); 391 if (hpet) 392 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 393 else 394 *p = acpi_pm_read_early(); 395 t2 = get_cycles(); 396 if ((t2 - t1) < SMI_TRESHOLD) 397 return t2; 398 } 399 return ULLONG_MAX; 400 } 401 402 /* 403 * Calculate the TSC frequency from HPET reference 404 */ 405 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 406 { 407 u64 tmp; 408 409 if (hpet2 < hpet1) 410 hpet2 += 0x100000000ULL; 411 hpet2 -= hpet1; 412 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 413 do_div(tmp, 1000000); 414 do_div(deltatsc, tmp); 415 416 return (unsigned long) deltatsc; 417 } 418 419 /* 420 * Calculate the TSC frequency from PMTimer reference 421 */ 422 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 423 { 424 u64 tmp; 425 426 if (!pm1 && !pm2) 427 return ULONG_MAX; 428 429 if (pm2 < pm1) 430 pm2 += (u64)ACPI_PM_OVRRUN; 431 pm2 -= pm1; 432 tmp = pm2 * 1000000000LL; 433 do_div(tmp, PMTMR_TICKS_PER_SEC); 434 do_div(deltatsc, tmp); 435 436 return (unsigned long) deltatsc; 437 } 438 439 #define CAL_MS 10 440 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 441 #define CAL_PIT_LOOPS 1000 442 443 #define CAL2_MS 50 444 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 445 #define CAL2_PIT_LOOPS 5000 446 447 448 /* 449 * Try to calibrate the TSC against the Programmable 450 * Interrupt Timer and return the frequency of the TSC 451 * in kHz. 452 * 453 * Return ULONG_MAX on failure to calibrate. 454 */ 455 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 456 { 457 u64 tsc, t1, t2, delta; 458 unsigned long tscmin, tscmax; 459 int pitcnt; 460 461 /* Set the Gate high, disable speaker */ 462 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 463 464 /* 465 * Setup CTC channel 2* for mode 0, (interrupt on terminal 466 * count mode), binary count. Set the latch register to 50ms 467 * (LSB then MSB) to begin countdown. 468 */ 469 outb(0xb0, 0x43); 470 outb(latch & 0xff, 0x42); 471 outb(latch >> 8, 0x42); 472 473 tsc = t1 = t2 = get_cycles(); 474 475 pitcnt = 0; 476 tscmax = 0; 477 tscmin = ULONG_MAX; 478 while ((inb(0x61) & 0x20) == 0) { 479 t2 = get_cycles(); 480 delta = t2 - tsc; 481 tsc = t2; 482 if ((unsigned long) delta < tscmin) 483 tscmin = (unsigned int) delta; 484 if ((unsigned long) delta > tscmax) 485 tscmax = (unsigned int) delta; 486 pitcnt++; 487 } 488 489 /* 490 * Sanity checks: 491 * 492 * If we were not able to read the PIT more than loopmin 493 * times, then we have been hit by a massive SMI 494 * 495 * If the maximum is 10 times larger than the minimum, 496 * then we got hit by an SMI as well. 497 */ 498 if (pitcnt < loopmin || tscmax > 10 * tscmin) 499 return ULONG_MAX; 500 501 /* Calculate the PIT value */ 502 delta = t2 - t1; 503 do_div(delta, ms); 504 return delta; 505 } 506 507 /* 508 * This reads the current MSB of the PIT counter, and 509 * checks if we are running on sufficiently fast and 510 * non-virtualized hardware. 511 * 512 * Our expectations are: 513 * 514 * - the PIT is running at roughly 1.19MHz 515 * 516 * - each IO is going to take about 1us on real hardware, 517 * but we allow it to be much faster (by a factor of 10) or 518 * _slightly_ slower (ie we allow up to a 2us read+counter 519 * update - anything else implies a unacceptably slow CPU 520 * or PIT for the fast calibration to work. 521 * 522 * - with 256 PIT ticks to read the value, we have 214us to 523 * see the same MSB (and overhead like doing a single TSC 524 * read per MSB value etc). 525 * 526 * - We're doing 2 reads per loop (LSB, MSB), and we expect 527 * them each to take about a microsecond on real hardware. 528 * So we expect a count value of around 100. But we'll be 529 * generous, and accept anything over 50. 530 * 531 * - if the PIT is stuck, and we see *many* more reads, we 532 * return early (and the next caller of pit_expect_msb() 533 * then consider it a failure when they don't see the 534 * next expected value). 535 * 536 * These expectations mean that we know that we have seen the 537 * transition from one expected value to another with a fairly 538 * high accuracy, and we didn't miss any events. We can thus 539 * use the TSC value at the transitions to calculate a pretty 540 * good value for the TSC frequencty. 541 */ 542 static inline int pit_verify_msb(unsigned char val) 543 { 544 /* Ignore LSB */ 545 inb(0x42); 546 return inb(0x42) == val; 547 } 548 549 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 550 { 551 int count; 552 u64 tsc = 0, prev_tsc = 0; 553 554 for (count = 0; count < 50000; count++) { 555 if (!pit_verify_msb(val)) 556 break; 557 prev_tsc = tsc; 558 tsc = get_cycles(); 559 } 560 *deltap = get_cycles() - prev_tsc; 561 *tscp = tsc; 562 563 /* 564 * We require _some_ success, but the quality control 565 * will be based on the error terms on the TSC values. 566 */ 567 return count > 5; 568 } 569 570 /* 571 * How many MSB values do we want to see? We aim for 572 * a maximum error rate of 500ppm (in practice the 573 * real error is much smaller), but refuse to spend 574 * more than 50ms on it. 575 */ 576 #define MAX_QUICK_PIT_MS 50 577 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 578 579 static unsigned long quick_pit_calibrate(void) 580 { 581 int i; 582 u64 tsc, delta; 583 unsigned long d1, d2; 584 585 /* Set the Gate high, disable speaker */ 586 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 587 588 /* 589 * Counter 2, mode 0 (one-shot), binary count 590 * 591 * NOTE! Mode 2 decrements by two (and then the 592 * output is flipped each time, giving the same 593 * final output frequency as a decrement-by-one), 594 * so mode 0 is much better when looking at the 595 * individual counts. 596 */ 597 outb(0xb0, 0x43); 598 599 /* Start at 0xffff */ 600 outb(0xff, 0x42); 601 outb(0xff, 0x42); 602 603 /* 604 * The PIT starts counting at the next edge, so we 605 * need to delay for a microsecond. The easiest way 606 * to do that is to just read back the 16-bit counter 607 * once from the PIT. 608 */ 609 pit_verify_msb(0); 610 611 if (pit_expect_msb(0xff, &tsc, &d1)) { 612 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 613 if (!pit_expect_msb(0xff-i, &delta, &d2)) 614 break; 615 616 delta -= tsc; 617 618 /* 619 * Extrapolate the error and fail fast if the error will 620 * never be below 500 ppm. 621 */ 622 if (i == 1 && 623 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 624 return 0; 625 626 /* 627 * Iterate until the error is less than 500 ppm 628 */ 629 if (d1+d2 >= delta >> 11) 630 continue; 631 632 /* 633 * Check the PIT one more time to verify that 634 * all TSC reads were stable wrt the PIT. 635 * 636 * This also guarantees serialization of the 637 * last cycle read ('d2') in pit_expect_msb. 638 */ 639 if (!pit_verify_msb(0xfe - i)) 640 break; 641 goto success; 642 } 643 } 644 pr_info("Fast TSC calibration failed\n"); 645 return 0; 646 647 success: 648 /* 649 * Ok, if we get here, then we've seen the 650 * MSB of the PIT decrement 'i' times, and the 651 * error has shrunk to less than 500 ppm. 652 * 653 * As a result, we can depend on there not being 654 * any odd delays anywhere, and the TSC reads are 655 * reliable (within the error). 656 * 657 * kHz = ticks / time-in-seconds / 1000; 658 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 659 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 660 */ 661 delta *= PIT_TICK_RATE; 662 do_div(delta, i*256*1000); 663 pr_info("Fast TSC calibration using PIT\n"); 664 return delta; 665 } 666 667 /** 668 * native_calibrate_tsc - calibrate the tsc on boot 669 */ 670 unsigned long native_calibrate_tsc(void) 671 { 672 u64 tsc1, tsc2, delta, ref1, ref2; 673 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 674 unsigned long flags, latch, ms, fast_calibrate; 675 int hpet = is_hpet_enabled(), i, loopmin; 676 677 /* Calibrate TSC using MSR for Intel Atom SoCs */ 678 local_irq_save(flags); 679 fast_calibrate = try_msr_calibrate_tsc(); 680 local_irq_restore(flags); 681 if (fast_calibrate) 682 return fast_calibrate; 683 684 local_irq_save(flags); 685 fast_calibrate = quick_pit_calibrate(); 686 local_irq_restore(flags); 687 if (fast_calibrate) 688 return fast_calibrate; 689 690 /* 691 * Run 5 calibration loops to get the lowest frequency value 692 * (the best estimate). We use two different calibration modes 693 * here: 694 * 695 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 696 * load a timeout of 50ms. We read the time right after we 697 * started the timer and wait until the PIT count down reaches 698 * zero. In each wait loop iteration we read the TSC and check 699 * the delta to the previous read. We keep track of the min 700 * and max values of that delta. The delta is mostly defined 701 * by the IO time of the PIT access, so we can detect when a 702 * SMI/SMM disturbance happened between the two reads. If the 703 * maximum time is significantly larger than the minimum time, 704 * then we discard the result and have another try. 705 * 706 * 2) Reference counter. If available we use the HPET or the 707 * PMTIMER as a reference to check the sanity of that value. 708 * We use separate TSC readouts and check inside of the 709 * reference read for a SMI/SMM disturbance. We dicard 710 * disturbed values here as well. We do that around the PIT 711 * calibration delay loop as we have to wait for a certain 712 * amount of time anyway. 713 */ 714 715 /* Preset PIT loop values */ 716 latch = CAL_LATCH; 717 ms = CAL_MS; 718 loopmin = CAL_PIT_LOOPS; 719 720 for (i = 0; i < 3; i++) { 721 unsigned long tsc_pit_khz; 722 723 /* 724 * Read the start value and the reference count of 725 * hpet/pmtimer when available. Then do the PIT 726 * calibration, which will take at least 50ms, and 727 * read the end value. 728 */ 729 local_irq_save(flags); 730 tsc1 = tsc_read_refs(&ref1, hpet); 731 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 732 tsc2 = tsc_read_refs(&ref2, hpet); 733 local_irq_restore(flags); 734 735 /* Pick the lowest PIT TSC calibration so far */ 736 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 737 738 /* hpet or pmtimer available ? */ 739 if (ref1 == ref2) 740 continue; 741 742 /* Check, whether the sampling was disturbed by an SMI */ 743 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 744 continue; 745 746 tsc2 = (tsc2 - tsc1) * 1000000LL; 747 if (hpet) 748 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 749 else 750 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 751 752 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 753 754 /* Check the reference deviation */ 755 delta = ((u64) tsc_pit_min) * 100; 756 do_div(delta, tsc_ref_min); 757 758 /* 759 * If both calibration results are inside a 10% window 760 * then we can be sure, that the calibration 761 * succeeded. We break out of the loop right away. We 762 * use the reference value, as it is more precise. 763 */ 764 if (delta >= 90 && delta <= 110) { 765 pr_info("PIT calibration matches %s. %d loops\n", 766 hpet ? "HPET" : "PMTIMER", i + 1); 767 return tsc_ref_min; 768 } 769 770 /* 771 * Check whether PIT failed more than once. This 772 * happens in virtualized environments. We need to 773 * give the virtual PC a slightly longer timeframe for 774 * the HPET/PMTIMER to make the result precise. 775 */ 776 if (i == 1 && tsc_pit_min == ULONG_MAX) { 777 latch = CAL2_LATCH; 778 ms = CAL2_MS; 779 loopmin = CAL2_PIT_LOOPS; 780 } 781 } 782 783 /* 784 * Now check the results. 785 */ 786 if (tsc_pit_min == ULONG_MAX) { 787 /* PIT gave no useful value */ 788 pr_warn("Unable to calibrate against PIT\n"); 789 790 /* We don't have an alternative source, disable TSC */ 791 if (!hpet && !ref1 && !ref2) { 792 pr_notice("No reference (HPET/PMTIMER) available\n"); 793 return 0; 794 } 795 796 /* The alternative source failed as well, disable TSC */ 797 if (tsc_ref_min == ULONG_MAX) { 798 pr_warn("HPET/PMTIMER calibration failed\n"); 799 return 0; 800 } 801 802 /* Use the alternative source */ 803 pr_info("using %s reference calibration\n", 804 hpet ? "HPET" : "PMTIMER"); 805 806 return tsc_ref_min; 807 } 808 809 /* We don't have an alternative source, use the PIT calibration value */ 810 if (!hpet && !ref1 && !ref2) { 811 pr_info("Using PIT calibration value\n"); 812 return tsc_pit_min; 813 } 814 815 /* The alternative source failed, use the PIT calibration value */ 816 if (tsc_ref_min == ULONG_MAX) { 817 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 818 return tsc_pit_min; 819 } 820 821 /* 822 * The calibration values differ too much. In doubt, we use 823 * the PIT value as we know that there are PMTIMERs around 824 * running at double speed. At least we let the user know: 825 */ 826 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 827 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 828 pr_info("Using PIT calibration value\n"); 829 return tsc_pit_min; 830 } 831 832 int recalibrate_cpu_khz(void) 833 { 834 #ifndef CONFIG_SMP 835 unsigned long cpu_khz_old = cpu_khz; 836 837 if (!boot_cpu_has(X86_FEATURE_TSC)) 838 return -ENODEV; 839 840 tsc_khz = x86_platform.calibrate_tsc(); 841 cpu_khz = tsc_khz; 842 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 843 cpu_khz_old, cpu_khz); 844 845 return 0; 846 #else 847 return -ENODEV; 848 #endif 849 } 850 851 EXPORT_SYMBOL(recalibrate_cpu_khz); 852 853 854 static unsigned long long cyc2ns_suspend; 855 856 void tsc_save_sched_clock_state(void) 857 { 858 if (!sched_clock_stable()) 859 return; 860 861 cyc2ns_suspend = sched_clock(); 862 } 863 864 /* 865 * Even on processors with invariant TSC, TSC gets reset in some the 866 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 867 * arbitrary value (still sync'd across cpu's) during resume from such sleep 868 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 869 * that sched_clock() continues from the point where it was left off during 870 * suspend. 871 */ 872 void tsc_restore_sched_clock_state(void) 873 { 874 unsigned long long offset; 875 unsigned long flags; 876 int cpu; 877 878 if (!sched_clock_stable()) 879 return; 880 881 local_irq_save(flags); 882 883 /* 884 * We're coming out of suspend, there's no concurrency yet; don't 885 * bother being nice about the RCU stuff, just write to both 886 * data fields. 887 */ 888 889 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 890 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 891 892 offset = cyc2ns_suspend - sched_clock(); 893 894 for_each_possible_cpu(cpu) { 895 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 896 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 897 } 898 899 local_irq_restore(flags); 900 } 901 902 #ifdef CONFIG_CPU_FREQ 903 904 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 905 * changes. 906 * 907 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 908 * not that important because current Opteron setups do not support 909 * scaling on SMP anyroads. 910 * 911 * Should fix up last_tsc too. Currently gettimeofday in the 912 * first tick after the change will be slightly wrong. 913 */ 914 915 static unsigned int ref_freq; 916 static unsigned long loops_per_jiffy_ref; 917 static unsigned long tsc_khz_ref; 918 919 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 920 void *data) 921 { 922 struct cpufreq_freqs *freq = data; 923 unsigned long *lpj; 924 925 lpj = &boot_cpu_data.loops_per_jiffy; 926 #ifdef CONFIG_SMP 927 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 928 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 929 #endif 930 931 if (!ref_freq) { 932 ref_freq = freq->old; 933 loops_per_jiffy_ref = *lpj; 934 tsc_khz_ref = tsc_khz; 935 } 936 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 937 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 938 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 939 940 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 941 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 942 mark_tsc_unstable("cpufreq changes"); 943 944 set_cyc2ns_scale(tsc_khz, freq->cpu); 945 } 946 947 return 0; 948 } 949 950 static struct notifier_block time_cpufreq_notifier_block = { 951 .notifier_call = time_cpufreq_notifier 952 }; 953 954 static int __init cpufreq_register_tsc_scaling(void) 955 { 956 if (!boot_cpu_has(X86_FEATURE_TSC)) 957 return 0; 958 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 959 return 0; 960 cpufreq_register_notifier(&time_cpufreq_notifier_block, 961 CPUFREQ_TRANSITION_NOTIFIER); 962 return 0; 963 } 964 965 core_initcall(cpufreq_register_tsc_scaling); 966 967 #endif /* CONFIG_CPU_FREQ */ 968 969 #define ART_CPUID_LEAF (0x15) 970 #define ART_MIN_DENOMINATOR (1) 971 972 973 /* 974 * If ART is present detect the numerator:denominator to convert to TSC 975 */ 976 static void detect_art(void) 977 { 978 unsigned int unused[2]; 979 980 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 981 return; 982 983 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 984 &art_to_tsc_numerator, unused, unused+1); 985 986 /* Don't enable ART in a VM, non-stop TSC required */ 987 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 988 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 989 art_to_tsc_denominator < ART_MIN_DENOMINATOR) 990 return; 991 992 if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset)) 993 return; 994 995 /* Make this sticky over multiple CPU init calls */ 996 setup_force_cpu_cap(X86_FEATURE_ART); 997 } 998 999 1000 /* clocksource code */ 1001 1002 static struct clocksource clocksource_tsc; 1003 1004 /* 1005 * We used to compare the TSC to the cycle_last value in the clocksource 1006 * structure to avoid a nasty time-warp. This can be observed in a 1007 * very small window right after one CPU updated cycle_last under 1008 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1009 * is smaller than the cycle_last reference value due to a TSC which 1010 * is slighty behind. This delta is nowhere else observable, but in 1011 * that case it results in a forward time jump in the range of hours 1012 * due to the unsigned delta calculation of the time keeping core 1013 * code, which is necessary to support wrapping clocksources like pm 1014 * timer. 1015 * 1016 * This sanity check is now done in the core timekeeping code. 1017 * checking the result of read_tsc() - cycle_last for being negative. 1018 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1019 */ 1020 static cycle_t read_tsc(struct clocksource *cs) 1021 { 1022 return (cycle_t)rdtsc_ordered(); 1023 } 1024 1025 /* 1026 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1027 */ 1028 static struct clocksource clocksource_tsc = { 1029 .name = "tsc", 1030 .rating = 300, 1031 .read = read_tsc, 1032 .mask = CLOCKSOURCE_MASK(64), 1033 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1034 CLOCK_SOURCE_MUST_VERIFY, 1035 .archdata = { .vclock_mode = VCLOCK_TSC }, 1036 }; 1037 1038 void mark_tsc_unstable(char *reason) 1039 { 1040 if (!tsc_unstable) { 1041 tsc_unstable = 1; 1042 clear_sched_clock_stable(); 1043 disable_sched_clock_irqtime(); 1044 pr_info("Marking TSC unstable due to %s\n", reason); 1045 /* Change only the rating, when not registered */ 1046 if (clocksource_tsc.mult) 1047 clocksource_mark_unstable(&clocksource_tsc); 1048 else { 1049 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1050 clocksource_tsc.rating = 0; 1051 } 1052 } 1053 } 1054 1055 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1056 1057 static void __init check_system_tsc_reliable(void) 1058 { 1059 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1060 if (is_geode_lx()) { 1061 /* RTSC counts during suspend */ 1062 #define RTSC_SUSP 0x100 1063 unsigned long res_low, res_high; 1064 1065 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1066 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1067 if (res_low & RTSC_SUSP) 1068 tsc_clocksource_reliable = 1; 1069 } 1070 #endif 1071 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1072 tsc_clocksource_reliable = 1; 1073 } 1074 1075 /* 1076 * Make an educated guess if the TSC is trustworthy and synchronized 1077 * over all CPUs. 1078 */ 1079 int unsynchronized_tsc(void) 1080 { 1081 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1082 return 1; 1083 1084 #ifdef CONFIG_SMP 1085 if (apic_is_clustered_box()) 1086 return 1; 1087 #endif 1088 1089 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1090 return 0; 1091 1092 if (tsc_clocksource_reliable) 1093 return 0; 1094 /* 1095 * Intel systems are normally all synchronized. 1096 * Exceptions must mark TSC as unstable: 1097 */ 1098 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1099 /* assume multi socket systems are not synchronized: */ 1100 if (num_possible_cpus() > 1) 1101 return 1; 1102 } 1103 1104 return 0; 1105 } 1106 1107 /* 1108 * Convert ART to TSC given numerator/denominator found in detect_art() 1109 */ 1110 struct system_counterval_t convert_art_to_tsc(cycle_t art) 1111 { 1112 u64 tmp, res, rem; 1113 1114 rem = do_div(art, art_to_tsc_denominator); 1115 1116 res = art * art_to_tsc_numerator; 1117 tmp = rem * art_to_tsc_numerator; 1118 1119 do_div(tmp, art_to_tsc_denominator); 1120 res += tmp + art_to_tsc_offset; 1121 1122 return (struct system_counterval_t) {.cs = art_related_clocksource, 1123 .cycles = res}; 1124 } 1125 EXPORT_SYMBOL(convert_art_to_tsc); 1126 1127 static void tsc_refine_calibration_work(struct work_struct *work); 1128 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1129 /** 1130 * tsc_refine_calibration_work - Further refine tsc freq calibration 1131 * @work - ignored. 1132 * 1133 * This functions uses delayed work over a period of a 1134 * second to further refine the TSC freq value. Since this is 1135 * timer based, instead of loop based, we don't block the boot 1136 * process while this longer calibration is done. 1137 * 1138 * If there are any calibration anomalies (too many SMIs, etc), 1139 * or the refined calibration is off by 1% of the fast early 1140 * calibration, we throw out the new calibration and use the 1141 * early calibration. 1142 */ 1143 static void tsc_refine_calibration_work(struct work_struct *work) 1144 { 1145 static u64 tsc_start = -1, ref_start; 1146 static int hpet; 1147 u64 tsc_stop, ref_stop, delta; 1148 unsigned long freq; 1149 1150 /* Don't bother refining TSC on unstable systems */ 1151 if (check_tsc_unstable()) 1152 goto out; 1153 1154 /* 1155 * Since the work is started early in boot, we may be 1156 * delayed the first time we expire. So set the workqueue 1157 * again once we know timers are working. 1158 */ 1159 if (tsc_start == -1) { 1160 /* 1161 * Only set hpet once, to avoid mixing hardware 1162 * if the hpet becomes enabled later. 1163 */ 1164 hpet = is_hpet_enabled(); 1165 schedule_delayed_work(&tsc_irqwork, HZ); 1166 tsc_start = tsc_read_refs(&ref_start, hpet); 1167 return; 1168 } 1169 1170 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1171 1172 /* hpet or pmtimer available ? */ 1173 if (ref_start == ref_stop) 1174 goto out; 1175 1176 /* Check, whether the sampling was disturbed by an SMI */ 1177 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1178 goto out; 1179 1180 delta = tsc_stop - tsc_start; 1181 delta *= 1000000LL; 1182 if (hpet) 1183 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1184 else 1185 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1186 1187 /* Make sure we're within 1% */ 1188 if (abs(tsc_khz - freq) > tsc_khz/100) 1189 goto out; 1190 1191 tsc_khz = freq; 1192 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1193 (unsigned long)tsc_khz / 1000, 1194 (unsigned long)tsc_khz % 1000); 1195 1196 out: 1197 if (boot_cpu_has(X86_FEATURE_ART)) 1198 art_related_clocksource = &clocksource_tsc; 1199 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1200 } 1201 1202 1203 static int __init init_tsc_clocksource(void) 1204 { 1205 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz) 1206 return 0; 1207 1208 if (tsc_clocksource_reliable) 1209 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1210 /* lower the rating if we already know its unstable: */ 1211 if (check_tsc_unstable()) { 1212 clocksource_tsc.rating = 0; 1213 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1214 } 1215 1216 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1217 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1218 1219 /* 1220 * Trust the results of the earlier calibration on systems 1221 * exporting a reliable TSC. 1222 */ 1223 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 1224 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1225 return 0; 1226 } 1227 1228 schedule_delayed_work(&tsc_irqwork, 0); 1229 return 0; 1230 } 1231 /* 1232 * We use device_initcall here, to ensure we run after the hpet 1233 * is fully initialized, which may occur at fs_initcall time. 1234 */ 1235 device_initcall(init_tsc_clocksource); 1236 1237 void __init tsc_init(void) 1238 { 1239 u64 lpj; 1240 int cpu; 1241 1242 if (!boot_cpu_has(X86_FEATURE_TSC)) { 1243 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1244 return; 1245 } 1246 1247 tsc_khz = x86_platform.calibrate_tsc(); 1248 cpu_khz = tsc_khz; 1249 1250 if (!tsc_khz) { 1251 mark_tsc_unstable("could not calculate TSC khz"); 1252 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1253 return; 1254 } 1255 1256 pr_info("Detected %lu.%03lu MHz processor\n", 1257 (unsigned long)cpu_khz / 1000, 1258 (unsigned long)cpu_khz % 1000); 1259 1260 /* 1261 * Secondary CPUs do not run through tsc_init(), so set up 1262 * all the scale factors for all CPUs, assuming the same 1263 * speed as the bootup CPU. (cpufreq notifiers will fix this 1264 * up if their speed diverges) 1265 */ 1266 for_each_possible_cpu(cpu) { 1267 cyc2ns_init(cpu); 1268 set_cyc2ns_scale(cpu_khz, cpu); 1269 } 1270 1271 if (tsc_disabled > 0) 1272 return; 1273 1274 /* now allow native_sched_clock() to use rdtsc */ 1275 1276 tsc_disabled = 0; 1277 static_branch_enable(&__use_tsc); 1278 1279 if (!no_sched_irq_time) 1280 enable_sched_clock_irqtime(); 1281 1282 lpj = ((u64)tsc_khz * 1000); 1283 do_div(lpj, HZ); 1284 lpj_fine = lpj; 1285 1286 use_tsc_delay(); 1287 1288 if (unsynchronized_tsc()) 1289 mark_tsc_unstable("TSCs unsynchronized"); 1290 1291 check_system_tsc_reliable(); 1292 1293 detect_art(); 1294 } 1295 1296 #ifdef CONFIG_SMP 1297 /* 1298 * If we have a constant TSC and are using the TSC for the delay loop, 1299 * we can skip clock calibration if another cpu in the same socket has already 1300 * been calibrated. This assumes that CONSTANT_TSC applies to all 1301 * cpus in the socket - this should be a safe assumption. 1302 */ 1303 unsigned long calibrate_delay_is_known(void) 1304 { 1305 int sibling, cpu = smp_processor_id(); 1306 struct cpumask *mask = topology_core_cpumask(cpu); 1307 1308 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1309 return 0; 1310 1311 if (!mask) 1312 return 0; 1313 1314 sibling = cpumask_any_but(mask, cpu); 1315 if (sibling < nr_cpu_ids) 1316 return cpu_data(sibling).loops_per_jiffy; 1317 return 0; 1318 } 1319 #endif 1320