1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/export.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 #include <linux/static_key.h> 15 16 #include <asm/hpet.h> 17 #include <asm/timer.h> 18 #include <asm/vgtod.h> 19 #include <asm/time.h> 20 #include <asm/delay.h> 21 #include <asm/hypervisor.h> 22 #include <asm/nmi.h> 23 #include <asm/x86_init.h> 24 #include <asm/geode.h> 25 26 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 27 EXPORT_SYMBOL(cpu_khz); 28 29 unsigned int __read_mostly tsc_khz; 30 EXPORT_SYMBOL(tsc_khz); 31 32 /* 33 * TSC can be unstable due to cpufreq or due to unsynced TSCs 34 */ 35 static int __read_mostly tsc_unstable; 36 37 /* native_sched_clock() is called before tsc_init(), so 38 we must start with the TSC soft disabled to prevent 39 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */ 40 static int __read_mostly tsc_disabled = -1; 41 42 static DEFINE_STATIC_KEY_FALSE(__use_tsc); 43 44 int tsc_clocksource_reliable; 45 46 static u32 art_to_tsc_numerator; 47 static u32 art_to_tsc_denominator; 48 static u64 art_to_tsc_offset; 49 struct clocksource *art_related_clocksource; 50 51 /* 52 * Use a ring-buffer like data structure, where a writer advances the head by 53 * writing a new data entry and a reader advances the tail when it observes a 54 * new entry. 55 * 56 * Writers are made to wait on readers until there's space to write a new 57 * entry. 58 * 59 * This means that we can always use an {offset, mul} pair to compute a ns 60 * value that is 'roughly' in the right direction, even if we're writing a new 61 * {offset, mul} pair during the clock read. 62 * 63 * The down-side is that we can no longer guarantee strict monotonicity anymore 64 * (assuming the TSC was that to begin with), because while we compute the 65 * intersection point of the two clock slopes and make sure the time is 66 * continuous at the point of switching; we can no longer guarantee a reader is 67 * strictly before or after the switch point. 68 * 69 * It does mean a reader no longer needs to disable IRQs in order to avoid 70 * CPU-Freq updates messing with his times, and similarly an NMI reader will 71 * no longer run the risk of hitting half-written state. 72 */ 73 74 struct cyc2ns { 75 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ 76 struct cyc2ns_data *head; /* 48 + 8 = 56 */ 77 struct cyc2ns_data *tail; /* 56 + 8 = 64 */ 78 }; /* exactly fits one cacheline */ 79 80 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); 81 82 struct cyc2ns_data *cyc2ns_read_begin(void) 83 { 84 struct cyc2ns_data *head; 85 86 preempt_disable(); 87 88 head = this_cpu_read(cyc2ns.head); 89 /* 90 * Ensure we observe the entry when we observe the pointer to it. 91 * matches the wmb from cyc2ns_write_end(). 92 */ 93 smp_read_barrier_depends(); 94 head->__count++; 95 barrier(); 96 97 return head; 98 } 99 100 void cyc2ns_read_end(struct cyc2ns_data *head) 101 { 102 barrier(); 103 /* 104 * If we're the outer most nested read; update the tail pointer 105 * when we're done. This notifies possible pending writers 106 * that we've observed the head pointer and that the other 107 * entry is now free. 108 */ 109 if (!--head->__count) { 110 /* 111 * x86-TSO does not reorder writes with older reads; 112 * therefore once this write becomes visible to another 113 * cpu, we must be finished reading the cyc2ns_data. 114 * 115 * matches with cyc2ns_write_begin(). 116 */ 117 this_cpu_write(cyc2ns.tail, head); 118 } 119 preempt_enable(); 120 } 121 122 /* 123 * Begin writing a new @data entry for @cpu. 124 * 125 * Assumes some sort of write side lock; currently 'provided' by the assumption 126 * that cpufreq will call its notifiers sequentially. 127 */ 128 static struct cyc2ns_data *cyc2ns_write_begin(int cpu) 129 { 130 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 131 struct cyc2ns_data *data = c2n->data; 132 133 if (data == c2n->head) 134 data++; 135 136 /* XXX send an IPI to @cpu in order to guarantee a read? */ 137 138 /* 139 * When we observe the tail write from cyc2ns_read_end(), 140 * the cpu must be done with that entry and its safe 141 * to start writing to it. 142 */ 143 while (c2n->tail == data) 144 cpu_relax(); 145 146 return data; 147 } 148 149 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) 150 { 151 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 152 153 /* 154 * Ensure the @data writes are visible before we publish the 155 * entry. Matches the data-depencency in cyc2ns_read_begin(). 156 */ 157 smp_wmb(); 158 159 ACCESS_ONCE(c2n->head) = data; 160 } 161 162 /* 163 * Accelerators for sched_clock() 164 * convert from cycles(64bits) => nanoseconds (64bits) 165 * basic equation: 166 * ns = cycles / (freq / ns_per_sec) 167 * ns = cycles * (ns_per_sec / freq) 168 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 169 * ns = cycles * (10^6 / cpu_khz) 170 * 171 * Then we use scaling math (suggested by george@mvista.com) to get: 172 * ns = cycles * (10^6 * SC / cpu_khz) / SC 173 * ns = cycles * cyc2ns_scale / SC 174 * 175 * And since SC is a constant power of two, we can convert the div 176 * into a shift. The larger SC is, the more accurate the conversion, but 177 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication 178 * (64-bit result) can be used. 179 * 180 * We can use khz divisor instead of mhz to keep a better precision. 181 * (mathieu.desnoyers@polymtl.ca) 182 * 183 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 184 */ 185 186 static void cyc2ns_data_init(struct cyc2ns_data *data) 187 { 188 data->cyc2ns_mul = 0; 189 data->cyc2ns_shift = 0; 190 data->cyc2ns_offset = 0; 191 data->__count = 0; 192 } 193 194 static void cyc2ns_init(int cpu) 195 { 196 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); 197 198 cyc2ns_data_init(&c2n->data[0]); 199 cyc2ns_data_init(&c2n->data[1]); 200 201 c2n->head = c2n->data; 202 c2n->tail = c2n->data; 203 } 204 205 static inline unsigned long long cycles_2_ns(unsigned long long cyc) 206 { 207 struct cyc2ns_data *data, *tail; 208 unsigned long long ns; 209 210 /* 211 * See cyc2ns_read_*() for details; replicated in order to avoid 212 * an extra few instructions that came with the abstraction. 213 * Notable, it allows us to only do the __count and tail update 214 * dance when its actually needed. 215 */ 216 217 preempt_disable_notrace(); 218 data = this_cpu_read(cyc2ns.head); 219 tail = this_cpu_read(cyc2ns.tail); 220 221 if (likely(data == tail)) { 222 ns = data->cyc2ns_offset; 223 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 224 } else { 225 data->__count++; 226 227 barrier(); 228 229 ns = data->cyc2ns_offset; 230 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); 231 232 barrier(); 233 234 if (!--data->__count) 235 this_cpu_write(cyc2ns.tail, data); 236 } 237 preempt_enable_notrace(); 238 239 return ns; 240 } 241 242 static void set_cyc2ns_scale(unsigned long khz, int cpu) 243 { 244 unsigned long long tsc_now, ns_now; 245 struct cyc2ns_data *data; 246 unsigned long flags; 247 248 local_irq_save(flags); 249 sched_clock_idle_sleep_event(); 250 251 if (!khz) 252 goto done; 253 254 data = cyc2ns_write_begin(cpu); 255 256 tsc_now = rdtsc(); 257 ns_now = cycles_2_ns(tsc_now); 258 259 /* 260 * Compute a new multiplier as per the above comment and ensure our 261 * time function is continuous; see the comment near struct 262 * cyc2ns_data. 263 */ 264 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz, 265 NSEC_PER_MSEC, 0); 266 267 /* 268 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is 269 * not expected to be greater than 31 due to the original published 270 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit 271 * value) - refer perf_event_mmap_page documentation in perf_event.h. 272 */ 273 if (data->cyc2ns_shift == 32) { 274 data->cyc2ns_shift = 31; 275 data->cyc2ns_mul >>= 1; 276 } 277 278 data->cyc2ns_offset = ns_now - 279 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift); 280 281 cyc2ns_write_end(cpu, data); 282 283 done: 284 sched_clock_idle_wakeup_event(0); 285 local_irq_restore(flags); 286 } 287 /* 288 * Scheduler clock - returns current time in nanosec units. 289 */ 290 u64 native_sched_clock(void) 291 { 292 if (static_branch_likely(&__use_tsc)) { 293 u64 tsc_now = rdtsc(); 294 295 /* return the value in ns */ 296 return cycles_2_ns(tsc_now); 297 } 298 299 /* 300 * Fall back to jiffies if there's no TSC available: 301 * ( But note that we still use it if the TSC is marked 302 * unstable. We do this because unlike Time Of Day, 303 * the scheduler clock tolerates small errors and it's 304 * very important for it to be as fast as the platform 305 * can achieve it. ) 306 */ 307 308 /* No locking but a rare wrong value is not a big deal: */ 309 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 310 } 311 312 /* 313 * Generate a sched_clock if you already have a TSC value. 314 */ 315 u64 native_sched_clock_from_tsc(u64 tsc) 316 { 317 return cycles_2_ns(tsc); 318 } 319 320 /* We need to define a real function for sched_clock, to override the 321 weak default version */ 322 #ifdef CONFIG_PARAVIRT 323 unsigned long long sched_clock(void) 324 { 325 return paravirt_sched_clock(); 326 } 327 #else 328 unsigned long long 329 sched_clock(void) __attribute__((alias("native_sched_clock"))); 330 #endif 331 332 int check_tsc_unstable(void) 333 { 334 return tsc_unstable; 335 } 336 EXPORT_SYMBOL_GPL(check_tsc_unstable); 337 338 #ifdef CONFIG_X86_TSC 339 int __init notsc_setup(char *str) 340 { 341 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 342 tsc_disabled = 1; 343 return 1; 344 } 345 #else 346 /* 347 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 348 * in cpu/common.c 349 */ 350 int __init notsc_setup(char *str) 351 { 352 setup_clear_cpu_cap(X86_FEATURE_TSC); 353 return 1; 354 } 355 #endif 356 357 __setup("notsc", notsc_setup); 358 359 static int no_sched_irq_time; 360 361 static int __init tsc_setup(char *str) 362 { 363 if (!strcmp(str, "reliable")) 364 tsc_clocksource_reliable = 1; 365 if (!strncmp(str, "noirqtime", 9)) 366 no_sched_irq_time = 1; 367 return 1; 368 } 369 370 __setup("tsc=", tsc_setup); 371 372 #define MAX_RETRIES 5 373 #define SMI_TRESHOLD 50000 374 375 /* 376 * Read TSC and the reference counters. Take care of SMI disturbance 377 */ 378 static u64 tsc_read_refs(u64 *p, int hpet) 379 { 380 u64 t1, t2; 381 int i; 382 383 for (i = 0; i < MAX_RETRIES; i++) { 384 t1 = get_cycles(); 385 if (hpet) 386 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 387 else 388 *p = acpi_pm_read_early(); 389 t2 = get_cycles(); 390 if ((t2 - t1) < SMI_TRESHOLD) 391 return t2; 392 } 393 return ULLONG_MAX; 394 } 395 396 /* 397 * Calculate the TSC frequency from HPET reference 398 */ 399 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 400 { 401 u64 tmp; 402 403 if (hpet2 < hpet1) 404 hpet2 += 0x100000000ULL; 405 hpet2 -= hpet1; 406 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 407 do_div(tmp, 1000000); 408 do_div(deltatsc, tmp); 409 410 return (unsigned long) deltatsc; 411 } 412 413 /* 414 * Calculate the TSC frequency from PMTimer reference 415 */ 416 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 417 { 418 u64 tmp; 419 420 if (!pm1 && !pm2) 421 return ULONG_MAX; 422 423 if (pm2 < pm1) 424 pm2 += (u64)ACPI_PM_OVRRUN; 425 pm2 -= pm1; 426 tmp = pm2 * 1000000000LL; 427 do_div(tmp, PMTMR_TICKS_PER_SEC); 428 do_div(deltatsc, tmp); 429 430 return (unsigned long) deltatsc; 431 } 432 433 #define CAL_MS 10 434 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 435 #define CAL_PIT_LOOPS 1000 436 437 #define CAL2_MS 50 438 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 439 #define CAL2_PIT_LOOPS 5000 440 441 442 /* 443 * Try to calibrate the TSC against the Programmable 444 * Interrupt Timer and return the frequency of the TSC 445 * in kHz. 446 * 447 * Return ULONG_MAX on failure to calibrate. 448 */ 449 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 450 { 451 u64 tsc, t1, t2, delta; 452 unsigned long tscmin, tscmax; 453 int pitcnt; 454 455 /* Set the Gate high, disable speaker */ 456 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 457 458 /* 459 * Setup CTC channel 2* for mode 0, (interrupt on terminal 460 * count mode), binary count. Set the latch register to 50ms 461 * (LSB then MSB) to begin countdown. 462 */ 463 outb(0xb0, 0x43); 464 outb(latch & 0xff, 0x42); 465 outb(latch >> 8, 0x42); 466 467 tsc = t1 = t2 = get_cycles(); 468 469 pitcnt = 0; 470 tscmax = 0; 471 tscmin = ULONG_MAX; 472 while ((inb(0x61) & 0x20) == 0) { 473 t2 = get_cycles(); 474 delta = t2 - tsc; 475 tsc = t2; 476 if ((unsigned long) delta < tscmin) 477 tscmin = (unsigned int) delta; 478 if ((unsigned long) delta > tscmax) 479 tscmax = (unsigned int) delta; 480 pitcnt++; 481 } 482 483 /* 484 * Sanity checks: 485 * 486 * If we were not able to read the PIT more than loopmin 487 * times, then we have been hit by a massive SMI 488 * 489 * If the maximum is 10 times larger than the minimum, 490 * then we got hit by an SMI as well. 491 */ 492 if (pitcnt < loopmin || tscmax > 10 * tscmin) 493 return ULONG_MAX; 494 495 /* Calculate the PIT value */ 496 delta = t2 - t1; 497 do_div(delta, ms); 498 return delta; 499 } 500 501 /* 502 * This reads the current MSB of the PIT counter, and 503 * checks if we are running on sufficiently fast and 504 * non-virtualized hardware. 505 * 506 * Our expectations are: 507 * 508 * - the PIT is running at roughly 1.19MHz 509 * 510 * - each IO is going to take about 1us on real hardware, 511 * but we allow it to be much faster (by a factor of 10) or 512 * _slightly_ slower (ie we allow up to a 2us read+counter 513 * update - anything else implies a unacceptably slow CPU 514 * or PIT for the fast calibration to work. 515 * 516 * - with 256 PIT ticks to read the value, we have 214us to 517 * see the same MSB (and overhead like doing a single TSC 518 * read per MSB value etc). 519 * 520 * - We're doing 2 reads per loop (LSB, MSB), and we expect 521 * them each to take about a microsecond on real hardware. 522 * So we expect a count value of around 100. But we'll be 523 * generous, and accept anything over 50. 524 * 525 * - if the PIT is stuck, and we see *many* more reads, we 526 * return early (and the next caller of pit_expect_msb() 527 * then consider it a failure when they don't see the 528 * next expected value). 529 * 530 * These expectations mean that we know that we have seen the 531 * transition from one expected value to another with a fairly 532 * high accuracy, and we didn't miss any events. We can thus 533 * use the TSC value at the transitions to calculate a pretty 534 * good value for the TSC frequencty. 535 */ 536 static inline int pit_verify_msb(unsigned char val) 537 { 538 /* Ignore LSB */ 539 inb(0x42); 540 return inb(0x42) == val; 541 } 542 543 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 544 { 545 int count; 546 u64 tsc = 0, prev_tsc = 0; 547 548 for (count = 0; count < 50000; count++) { 549 if (!pit_verify_msb(val)) 550 break; 551 prev_tsc = tsc; 552 tsc = get_cycles(); 553 } 554 *deltap = get_cycles() - prev_tsc; 555 *tscp = tsc; 556 557 /* 558 * We require _some_ success, but the quality control 559 * will be based on the error terms on the TSC values. 560 */ 561 return count > 5; 562 } 563 564 /* 565 * How many MSB values do we want to see? We aim for 566 * a maximum error rate of 500ppm (in practice the 567 * real error is much smaller), but refuse to spend 568 * more than 50ms on it. 569 */ 570 #define MAX_QUICK_PIT_MS 50 571 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 572 573 static unsigned long quick_pit_calibrate(void) 574 { 575 int i; 576 u64 tsc, delta; 577 unsigned long d1, d2; 578 579 /* Set the Gate high, disable speaker */ 580 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 581 582 /* 583 * Counter 2, mode 0 (one-shot), binary count 584 * 585 * NOTE! Mode 2 decrements by two (and then the 586 * output is flipped each time, giving the same 587 * final output frequency as a decrement-by-one), 588 * so mode 0 is much better when looking at the 589 * individual counts. 590 */ 591 outb(0xb0, 0x43); 592 593 /* Start at 0xffff */ 594 outb(0xff, 0x42); 595 outb(0xff, 0x42); 596 597 /* 598 * The PIT starts counting at the next edge, so we 599 * need to delay for a microsecond. The easiest way 600 * to do that is to just read back the 16-bit counter 601 * once from the PIT. 602 */ 603 pit_verify_msb(0); 604 605 if (pit_expect_msb(0xff, &tsc, &d1)) { 606 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 607 if (!pit_expect_msb(0xff-i, &delta, &d2)) 608 break; 609 610 delta -= tsc; 611 612 /* 613 * Extrapolate the error and fail fast if the error will 614 * never be below 500 ppm. 615 */ 616 if (i == 1 && 617 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) 618 return 0; 619 620 /* 621 * Iterate until the error is less than 500 ppm 622 */ 623 if (d1+d2 >= delta >> 11) 624 continue; 625 626 /* 627 * Check the PIT one more time to verify that 628 * all TSC reads were stable wrt the PIT. 629 * 630 * This also guarantees serialization of the 631 * last cycle read ('d2') in pit_expect_msb. 632 */ 633 if (!pit_verify_msb(0xfe - i)) 634 break; 635 goto success; 636 } 637 } 638 pr_info("Fast TSC calibration failed\n"); 639 return 0; 640 641 success: 642 /* 643 * Ok, if we get here, then we've seen the 644 * MSB of the PIT decrement 'i' times, and the 645 * error has shrunk to less than 500 ppm. 646 * 647 * As a result, we can depend on there not being 648 * any odd delays anywhere, and the TSC reads are 649 * reliable (within the error). 650 * 651 * kHz = ticks / time-in-seconds / 1000; 652 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 653 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 654 */ 655 delta *= PIT_TICK_RATE; 656 do_div(delta, i*256*1000); 657 pr_info("Fast TSC calibration using PIT\n"); 658 return delta; 659 } 660 661 /** 662 * native_calibrate_tsc 663 * Determine TSC frequency via CPUID, else return 0. 664 */ 665 unsigned long native_calibrate_tsc(void) 666 { 667 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; 668 unsigned int crystal_khz; 669 670 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 671 return 0; 672 673 if (boot_cpu_data.cpuid_level < 0x15) 674 return 0; 675 676 eax_denominator = ebx_numerator = ecx_hz = edx = 0; 677 678 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ 679 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); 680 681 if (ebx_numerator == 0 || eax_denominator == 0) 682 return 0; 683 684 crystal_khz = ecx_hz / 1000; 685 686 if (crystal_khz == 0) { 687 switch (boot_cpu_data.x86_model) { 688 case 0x4E: /* SKL */ 689 case 0x5E: /* SKL */ 690 crystal_khz = 24000; /* 24.0 MHz */ 691 break; 692 case 0x5C: /* BXT */ 693 crystal_khz = 19200; /* 19.2 MHz */ 694 break; 695 } 696 } 697 698 return crystal_khz * ebx_numerator / eax_denominator; 699 } 700 701 static unsigned long cpu_khz_from_cpuid(void) 702 { 703 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; 704 705 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 706 return 0; 707 708 if (boot_cpu_data.cpuid_level < 0x16) 709 return 0; 710 711 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; 712 713 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); 714 715 return eax_base_mhz * 1000; 716 } 717 718 /** 719 * native_calibrate_cpu - calibrate the cpu on boot 720 */ 721 unsigned long native_calibrate_cpu(void) 722 { 723 u64 tsc1, tsc2, delta, ref1, ref2; 724 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 725 unsigned long flags, latch, ms, fast_calibrate; 726 int hpet = is_hpet_enabled(), i, loopmin; 727 728 fast_calibrate = cpu_khz_from_cpuid(); 729 if (fast_calibrate) 730 return fast_calibrate; 731 732 fast_calibrate = cpu_khz_from_msr(); 733 if (fast_calibrate) 734 return fast_calibrate; 735 736 local_irq_save(flags); 737 fast_calibrate = quick_pit_calibrate(); 738 local_irq_restore(flags); 739 if (fast_calibrate) 740 return fast_calibrate; 741 742 /* 743 * Run 5 calibration loops to get the lowest frequency value 744 * (the best estimate). We use two different calibration modes 745 * here: 746 * 747 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 748 * load a timeout of 50ms. We read the time right after we 749 * started the timer and wait until the PIT count down reaches 750 * zero. In each wait loop iteration we read the TSC and check 751 * the delta to the previous read. We keep track of the min 752 * and max values of that delta. The delta is mostly defined 753 * by the IO time of the PIT access, so we can detect when a 754 * SMI/SMM disturbance happened between the two reads. If the 755 * maximum time is significantly larger than the minimum time, 756 * then we discard the result and have another try. 757 * 758 * 2) Reference counter. If available we use the HPET or the 759 * PMTIMER as a reference to check the sanity of that value. 760 * We use separate TSC readouts and check inside of the 761 * reference read for a SMI/SMM disturbance. We dicard 762 * disturbed values here as well. We do that around the PIT 763 * calibration delay loop as we have to wait for a certain 764 * amount of time anyway. 765 */ 766 767 /* Preset PIT loop values */ 768 latch = CAL_LATCH; 769 ms = CAL_MS; 770 loopmin = CAL_PIT_LOOPS; 771 772 for (i = 0; i < 3; i++) { 773 unsigned long tsc_pit_khz; 774 775 /* 776 * Read the start value and the reference count of 777 * hpet/pmtimer when available. Then do the PIT 778 * calibration, which will take at least 50ms, and 779 * read the end value. 780 */ 781 local_irq_save(flags); 782 tsc1 = tsc_read_refs(&ref1, hpet); 783 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 784 tsc2 = tsc_read_refs(&ref2, hpet); 785 local_irq_restore(flags); 786 787 /* Pick the lowest PIT TSC calibration so far */ 788 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 789 790 /* hpet or pmtimer available ? */ 791 if (ref1 == ref2) 792 continue; 793 794 /* Check, whether the sampling was disturbed by an SMI */ 795 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 796 continue; 797 798 tsc2 = (tsc2 - tsc1) * 1000000LL; 799 if (hpet) 800 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 801 else 802 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 803 804 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 805 806 /* Check the reference deviation */ 807 delta = ((u64) tsc_pit_min) * 100; 808 do_div(delta, tsc_ref_min); 809 810 /* 811 * If both calibration results are inside a 10% window 812 * then we can be sure, that the calibration 813 * succeeded. We break out of the loop right away. We 814 * use the reference value, as it is more precise. 815 */ 816 if (delta >= 90 && delta <= 110) { 817 pr_info("PIT calibration matches %s. %d loops\n", 818 hpet ? "HPET" : "PMTIMER", i + 1); 819 return tsc_ref_min; 820 } 821 822 /* 823 * Check whether PIT failed more than once. This 824 * happens in virtualized environments. We need to 825 * give the virtual PC a slightly longer timeframe for 826 * the HPET/PMTIMER to make the result precise. 827 */ 828 if (i == 1 && tsc_pit_min == ULONG_MAX) { 829 latch = CAL2_LATCH; 830 ms = CAL2_MS; 831 loopmin = CAL2_PIT_LOOPS; 832 } 833 } 834 835 /* 836 * Now check the results. 837 */ 838 if (tsc_pit_min == ULONG_MAX) { 839 /* PIT gave no useful value */ 840 pr_warn("Unable to calibrate against PIT\n"); 841 842 /* We don't have an alternative source, disable TSC */ 843 if (!hpet && !ref1 && !ref2) { 844 pr_notice("No reference (HPET/PMTIMER) available\n"); 845 return 0; 846 } 847 848 /* The alternative source failed as well, disable TSC */ 849 if (tsc_ref_min == ULONG_MAX) { 850 pr_warn("HPET/PMTIMER calibration failed\n"); 851 return 0; 852 } 853 854 /* Use the alternative source */ 855 pr_info("using %s reference calibration\n", 856 hpet ? "HPET" : "PMTIMER"); 857 858 return tsc_ref_min; 859 } 860 861 /* We don't have an alternative source, use the PIT calibration value */ 862 if (!hpet && !ref1 && !ref2) { 863 pr_info("Using PIT calibration value\n"); 864 return tsc_pit_min; 865 } 866 867 /* The alternative source failed, use the PIT calibration value */ 868 if (tsc_ref_min == ULONG_MAX) { 869 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 870 return tsc_pit_min; 871 } 872 873 /* 874 * The calibration values differ too much. In doubt, we use 875 * the PIT value as we know that there are PMTIMERs around 876 * running at double speed. At least we let the user know: 877 */ 878 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 879 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 880 pr_info("Using PIT calibration value\n"); 881 return tsc_pit_min; 882 } 883 884 int recalibrate_cpu_khz(void) 885 { 886 #ifndef CONFIG_SMP 887 unsigned long cpu_khz_old = cpu_khz; 888 889 if (!boot_cpu_has(X86_FEATURE_TSC)) 890 return -ENODEV; 891 892 cpu_khz = x86_platform.calibrate_cpu(); 893 tsc_khz = x86_platform.calibrate_tsc(); 894 if (tsc_khz == 0) 895 tsc_khz = cpu_khz; 896 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 897 cpu_khz = tsc_khz; 898 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, 899 cpu_khz_old, cpu_khz); 900 901 return 0; 902 #else 903 return -ENODEV; 904 #endif 905 } 906 907 EXPORT_SYMBOL(recalibrate_cpu_khz); 908 909 910 static unsigned long long cyc2ns_suspend; 911 912 void tsc_save_sched_clock_state(void) 913 { 914 if (!sched_clock_stable()) 915 return; 916 917 cyc2ns_suspend = sched_clock(); 918 } 919 920 /* 921 * Even on processors with invariant TSC, TSC gets reset in some the 922 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 923 * arbitrary value (still sync'd across cpu's) during resume from such sleep 924 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 925 * that sched_clock() continues from the point where it was left off during 926 * suspend. 927 */ 928 void tsc_restore_sched_clock_state(void) 929 { 930 unsigned long long offset; 931 unsigned long flags; 932 int cpu; 933 934 if (!sched_clock_stable()) 935 return; 936 937 local_irq_save(flags); 938 939 /* 940 * We're coming out of suspend, there's no concurrency yet; don't 941 * bother being nice about the RCU stuff, just write to both 942 * data fields. 943 */ 944 945 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); 946 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); 947 948 offset = cyc2ns_suspend - sched_clock(); 949 950 for_each_possible_cpu(cpu) { 951 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; 952 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; 953 } 954 955 local_irq_restore(flags); 956 } 957 958 #ifdef CONFIG_CPU_FREQ 959 960 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 961 * changes. 962 * 963 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 964 * not that important because current Opteron setups do not support 965 * scaling on SMP anyroads. 966 * 967 * Should fix up last_tsc too. Currently gettimeofday in the 968 * first tick after the change will be slightly wrong. 969 */ 970 971 static unsigned int ref_freq; 972 static unsigned long loops_per_jiffy_ref; 973 static unsigned long tsc_khz_ref; 974 975 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 976 void *data) 977 { 978 struct cpufreq_freqs *freq = data; 979 unsigned long *lpj; 980 981 lpj = &boot_cpu_data.loops_per_jiffy; 982 #ifdef CONFIG_SMP 983 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 984 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 985 #endif 986 987 if (!ref_freq) { 988 ref_freq = freq->old; 989 loops_per_jiffy_ref = *lpj; 990 tsc_khz_ref = tsc_khz; 991 } 992 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 993 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 994 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 995 996 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 997 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 998 mark_tsc_unstable("cpufreq changes"); 999 1000 set_cyc2ns_scale(tsc_khz, freq->cpu); 1001 } 1002 1003 return 0; 1004 } 1005 1006 static struct notifier_block time_cpufreq_notifier_block = { 1007 .notifier_call = time_cpufreq_notifier 1008 }; 1009 1010 static int __init cpufreq_register_tsc_scaling(void) 1011 { 1012 if (!boot_cpu_has(X86_FEATURE_TSC)) 1013 return 0; 1014 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1015 return 0; 1016 cpufreq_register_notifier(&time_cpufreq_notifier_block, 1017 CPUFREQ_TRANSITION_NOTIFIER); 1018 return 0; 1019 } 1020 1021 core_initcall(cpufreq_register_tsc_scaling); 1022 1023 #endif /* CONFIG_CPU_FREQ */ 1024 1025 #define ART_CPUID_LEAF (0x15) 1026 #define ART_MIN_DENOMINATOR (1) 1027 1028 1029 /* 1030 * If ART is present detect the numerator:denominator to convert to TSC 1031 */ 1032 static void detect_art(void) 1033 { 1034 unsigned int unused[2]; 1035 1036 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) 1037 return; 1038 1039 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, 1040 &art_to_tsc_numerator, unused, unused+1); 1041 1042 /* Don't enable ART in a VM, non-stop TSC required */ 1043 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || 1044 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || 1045 art_to_tsc_denominator < ART_MIN_DENOMINATOR) 1046 return; 1047 1048 if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset)) 1049 return; 1050 1051 /* Make this sticky over multiple CPU init calls */ 1052 setup_force_cpu_cap(X86_FEATURE_ART); 1053 } 1054 1055 1056 /* clocksource code */ 1057 1058 static struct clocksource clocksource_tsc; 1059 1060 /* 1061 * We used to compare the TSC to the cycle_last value in the clocksource 1062 * structure to avoid a nasty time-warp. This can be observed in a 1063 * very small window right after one CPU updated cycle_last under 1064 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 1065 * is smaller than the cycle_last reference value due to a TSC which 1066 * is slighty behind. This delta is nowhere else observable, but in 1067 * that case it results in a forward time jump in the range of hours 1068 * due to the unsigned delta calculation of the time keeping core 1069 * code, which is necessary to support wrapping clocksources like pm 1070 * timer. 1071 * 1072 * This sanity check is now done in the core timekeeping code. 1073 * checking the result of read_tsc() - cycle_last for being negative. 1074 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. 1075 */ 1076 static cycle_t read_tsc(struct clocksource *cs) 1077 { 1078 return (cycle_t)rdtsc_ordered(); 1079 } 1080 1081 /* 1082 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() 1083 */ 1084 static struct clocksource clocksource_tsc = { 1085 .name = "tsc", 1086 .rating = 300, 1087 .read = read_tsc, 1088 .mask = CLOCKSOURCE_MASK(64), 1089 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 1090 CLOCK_SOURCE_MUST_VERIFY, 1091 .archdata = { .vclock_mode = VCLOCK_TSC }, 1092 }; 1093 1094 void mark_tsc_unstable(char *reason) 1095 { 1096 if (!tsc_unstable) { 1097 tsc_unstable = 1; 1098 clear_sched_clock_stable(); 1099 disable_sched_clock_irqtime(); 1100 pr_info("Marking TSC unstable due to %s\n", reason); 1101 /* Change only the rating, when not registered */ 1102 if (clocksource_tsc.mult) 1103 clocksource_mark_unstable(&clocksource_tsc); 1104 else { 1105 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 1106 clocksource_tsc.rating = 0; 1107 } 1108 } 1109 } 1110 1111 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 1112 1113 static void __init check_system_tsc_reliable(void) 1114 { 1115 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 1116 if (is_geode_lx()) { 1117 /* RTSC counts during suspend */ 1118 #define RTSC_SUSP 0x100 1119 unsigned long res_low, res_high; 1120 1121 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 1122 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 1123 if (res_low & RTSC_SUSP) 1124 tsc_clocksource_reliable = 1; 1125 } 1126 #endif 1127 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 1128 tsc_clocksource_reliable = 1; 1129 } 1130 1131 /* 1132 * Make an educated guess if the TSC is trustworthy and synchronized 1133 * over all CPUs. 1134 */ 1135 int unsynchronized_tsc(void) 1136 { 1137 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) 1138 return 1; 1139 1140 #ifdef CONFIG_SMP 1141 if (apic_is_clustered_box()) 1142 return 1; 1143 #endif 1144 1145 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 1146 return 0; 1147 1148 if (tsc_clocksource_reliable) 1149 return 0; 1150 /* 1151 * Intel systems are normally all synchronized. 1152 * Exceptions must mark TSC as unstable: 1153 */ 1154 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1155 /* assume multi socket systems are not synchronized: */ 1156 if (num_possible_cpus() > 1) 1157 return 1; 1158 } 1159 1160 return 0; 1161 } 1162 1163 /* 1164 * Convert ART to TSC given numerator/denominator found in detect_art() 1165 */ 1166 struct system_counterval_t convert_art_to_tsc(cycle_t art) 1167 { 1168 u64 tmp, res, rem; 1169 1170 rem = do_div(art, art_to_tsc_denominator); 1171 1172 res = art * art_to_tsc_numerator; 1173 tmp = rem * art_to_tsc_numerator; 1174 1175 do_div(tmp, art_to_tsc_denominator); 1176 res += tmp + art_to_tsc_offset; 1177 1178 return (struct system_counterval_t) {.cs = art_related_clocksource, 1179 .cycles = res}; 1180 } 1181 EXPORT_SYMBOL(convert_art_to_tsc); 1182 1183 static void tsc_refine_calibration_work(struct work_struct *work); 1184 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 1185 /** 1186 * tsc_refine_calibration_work - Further refine tsc freq calibration 1187 * @work - ignored. 1188 * 1189 * This functions uses delayed work over a period of a 1190 * second to further refine the TSC freq value. Since this is 1191 * timer based, instead of loop based, we don't block the boot 1192 * process while this longer calibration is done. 1193 * 1194 * If there are any calibration anomalies (too many SMIs, etc), 1195 * or the refined calibration is off by 1% of the fast early 1196 * calibration, we throw out the new calibration and use the 1197 * early calibration. 1198 */ 1199 static void tsc_refine_calibration_work(struct work_struct *work) 1200 { 1201 static u64 tsc_start = -1, ref_start; 1202 static int hpet; 1203 u64 tsc_stop, ref_stop, delta; 1204 unsigned long freq; 1205 1206 /* Don't bother refining TSC on unstable systems */ 1207 if (check_tsc_unstable()) 1208 goto out; 1209 1210 /* 1211 * Since the work is started early in boot, we may be 1212 * delayed the first time we expire. So set the workqueue 1213 * again once we know timers are working. 1214 */ 1215 if (tsc_start == -1) { 1216 /* 1217 * Only set hpet once, to avoid mixing hardware 1218 * if the hpet becomes enabled later. 1219 */ 1220 hpet = is_hpet_enabled(); 1221 schedule_delayed_work(&tsc_irqwork, HZ); 1222 tsc_start = tsc_read_refs(&ref_start, hpet); 1223 return; 1224 } 1225 1226 tsc_stop = tsc_read_refs(&ref_stop, hpet); 1227 1228 /* hpet or pmtimer available ? */ 1229 if (ref_start == ref_stop) 1230 goto out; 1231 1232 /* Check, whether the sampling was disturbed by an SMI */ 1233 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 1234 goto out; 1235 1236 delta = tsc_stop - tsc_start; 1237 delta *= 1000000LL; 1238 if (hpet) 1239 freq = calc_hpet_ref(delta, ref_start, ref_stop); 1240 else 1241 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 1242 1243 /* Make sure we're within 1% */ 1244 if (abs(tsc_khz - freq) > tsc_khz/100) 1245 goto out; 1246 1247 tsc_khz = freq; 1248 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 1249 (unsigned long)tsc_khz / 1000, 1250 (unsigned long)tsc_khz % 1000); 1251 1252 out: 1253 if (boot_cpu_has(X86_FEATURE_ART)) 1254 art_related_clocksource = &clocksource_tsc; 1255 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1256 } 1257 1258 1259 static int __init init_tsc_clocksource(void) 1260 { 1261 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz) 1262 return 0; 1263 1264 if (tsc_clocksource_reliable) 1265 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 1266 /* lower the rating if we already know its unstable: */ 1267 if (check_tsc_unstable()) { 1268 clocksource_tsc.rating = 0; 1269 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 1270 } 1271 1272 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 1273 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1274 1275 /* 1276 * Trust the results of the earlier calibration on systems 1277 * exporting a reliable TSC. 1278 */ 1279 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 1280 clocksource_register_khz(&clocksource_tsc, tsc_khz); 1281 return 0; 1282 } 1283 1284 schedule_delayed_work(&tsc_irqwork, 0); 1285 return 0; 1286 } 1287 /* 1288 * We use device_initcall here, to ensure we run after the hpet 1289 * is fully initialized, which may occur at fs_initcall time. 1290 */ 1291 device_initcall(init_tsc_clocksource); 1292 1293 void __init tsc_init(void) 1294 { 1295 u64 lpj; 1296 int cpu; 1297 1298 if (!boot_cpu_has(X86_FEATURE_TSC)) { 1299 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1300 return; 1301 } 1302 1303 cpu_khz = x86_platform.calibrate_cpu(); 1304 tsc_khz = x86_platform.calibrate_tsc(); 1305 1306 /* 1307 * Trust non-zero tsc_khz as authorative, 1308 * and use it to sanity check cpu_khz, 1309 * which will be off if system timer is off. 1310 */ 1311 if (tsc_khz == 0) 1312 tsc_khz = cpu_khz; 1313 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) 1314 cpu_khz = tsc_khz; 1315 1316 if (!tsc_khz) { 1317 mark_tsc_unstable("could not calculate TSC khz"); 1318 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 1319 return; 1320 } 1321 1322 pr_info("Detected %lu.%03lu MHz processor\n", 1323 (unsigned long)cpu_khz / 1000, 1324 (unsigned long)cpu_khz % 1000); 1325 1326 /* 1327 * Secondary CPUs do not run through tsc_init(), so set up 1328 * all the scale factors for all CPUs, assuming the same 1329 * speed as the bootup CPU. (cpufreq notifiers will fix this 1330 * up if their speed diverges) 1331 */ 1332 for_each_possible_cpu(cpu) { 1333 cyc2ns_init(cpu); 1334 set_cyc2ns_scale(tsc_khz, cpu); 1335 } 1336 1337 if (tsc_disabled > 0) 1338 return; 1339 1340 /* now allow native_sched_clock() to use rdtsc */ 1341 1342 tsc_disabled = 0; 1343 static_branch_enable(&__use_tsc); 1344 1345 if (!no_sched_irq_time) 1346 enable_sched_clock_irqtime(); 1347 1348 lpj = ((u64)tsc_khz * 1000); 1349 do_div(lpj, HZ); 1350 lpj_fine = lpj; 1351 1352 use_tsc_delay(); 1353 1354 if (unsynchronized_tsc()) 1355 mark_tsc_unstable("TSCs unsynchronized"); 1356 1357 check_system_tsc_reliable(); 1358 1359 detect_art(); 1360 } 1361 1362 #ifdef CONFIG_SMP 1363 /* 1364 * If we have a constant TSC and are using the TSC for the delay loop, 1365 * we can skip clock calibration if another cpu in the same socket has already 1366 * been calibrated. This assumes that CONSTANT_TSC applies to all 1367 * cpus in the socket - this should be a safe assumption. 1368 */ 1369 unsigned long calibrate_delay_is_known(void) 1370 { 1371 int sibling, cpu = smp_processor_id(); 1372 struct cpumask *mask = topology_core_cpumask(cpu); 1373 1374 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1375 return 0; 1376 1377 if (!mask) 1378 return 0; 1379 1380 sibling = cpumask_any_but(mask, cpu); 1381 if (sibling < nr_cpu_ids) 1382 return cpu_data(sibling).loops_per_jiffy; 1383 return 0; 1384 } 1385 #endif 1386