xref: /linux/arch/x86/kernel/tsc.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/export.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15 
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 
26 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
27 EXPORT_SYMBOL(cpu_khz);
28 
29 unsigned int __read_mostly tsc_khz;
30 EXPORT_SYMBOL(tsc_khz);
31 
32 /*
33  * TSC can be unstable due to cpufreq or due to unsynced TSCs
34  */
35 static int __read_mostly tsc_unstable;
36 
37 /* native_sched_clock() is called before tsc_init(), so
38    we must start with the TSC soft disabled to prevent
39    erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
40 static int __read_mostly tsc_disabled = -1;
41 
42 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
43 
44 int tsc_clocksource_reliable;
45 
46 static u32 art_to_tsc_numerator;
47 static u32 art_to_tsc_denominator;
48 static u64 art_to_tsc_offset;
49 struct clocksource *art_related_clocksource;
50 
51 /*
52  * Use a ring-buffer like data structure, where a writer advances the head by
53  * writing a new data entry and a reader advances the tail when it observes a
54  * new entry.
55  *
56  * Writers are made to wait on readers until there's space to write a new
57  * entry.
58  *
59  * This means that we can always use an {offset, mul} pair to compute a ns
60  * value that is 'roughly' in the right direction, even if we're writing a new
61  * {offset, mul} pair during the clock read.
62  *
63  * The down-side is that we can no longer guarantee strict monotonicity anymore
64  * (assuming the TSC was that to begin with), because while we compute the
65  * intersection point of the two clock slopes and make sure the time is
66  * continuous at the point of switching; we can no longer guarantee a reader is
67  * strictly before or after the switch point.
68  *
69  * It does mean a reader no longer needs to disable IRQs in order to avoid
70  * CPU-Freq updates messing with his times, and similarly an NMI reader will
71  * no longer run the risk of hitting half-written state.
72  */
73 
74 struct cyc2ns {
75 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
76 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
77 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
78 }; /* exactly fits one cacheline */
79 
80 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
81 
82 struct cyc2ns_data *cyc2ns_read_begin(void)
83 {
84 	struct cyc2ns_data *head;
85 
86 	preempt_disable();
87 
88 	head = this_cpu_read(cyc2ns.head);
89 	/*
90 	 * Ensure we observe the entry when we observe the pointer to it.
91 	 * matches the wmb from cyc2ns_write_end().
92 	 */
93 	smp_read_barrier_depends();
94 	head->__count++;
95 	barrier();
96 
97 	return head;
98 }
99 
100 void cyc2ns_read_end(struct cyc2ns_data *head)
101 {
102 	barrier();
103 	/*
104 	 * If we're the outer most nested read; update the tail pointer
105 	 * when we're done. This notifies possible pending writers
106 	 * that we've observed the head pointer and that the other
107 	 * entry is now free.
108 	 */
109 	if (!--head->__count) {
110 		/*
111 		 * x86-TSO does not reorder writes with older reads;
112 		 * therefore once this write becomes visible to another
113 		 * cpu, we must be finished reading the cyc2ns_data.
114 		 *
115 		 * matches with cyc2ns_write_begin().
116 		 */
117 		this_cpu_write(cyc2ns.tail, head);
118 	}
119 	preempt_enable();
120 }
121 
122 /*
123  * Begin writing a new @data entry for @cpu.
124  *
125  * Assumes some sort of write side lock; currently 'provided' by the assumption
126  * that cpufreq will call its notifiers sequentially.
127  */
128 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
129 {
130 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
131 	struct cyc2ns_data *data = c2n->data;
132 
133 	if (data == c2n->head)
134 		data++;
135 
136 	/* XXX send an IPI to @cpu in order to guarantee a read? */
137 
138 	/*
139 	 * When we observe the tail write from cyc2ns_read_end(),
140 	 * the cpu must be done with that entry and its safe
141 	 * to start writing to it.
142 	 */
143 	while (c2n->tail == data)
144 		cpu_relax();
145 
146 	return data;
147 }
148 
149 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
150 {
151 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
152 
153 	/*
154 	 * Ensure the @data writes are visible before we publish the
155 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
156 	 */
157 	smp_wmb();
158 
159 	ACCESS_ONCE(c2n->head) = data;
160 }
161 
162 /*
163  * Accelerators for sched_clock()
164  * convert from cycles(64bits) => nanoseconds (64bits)
165  *  basic equation:
166  *              ns = cycles / (freq / ns_per_sec)
167  *              ns = cycles * (ns_per_sec / freq)
168  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
169  *              ns = cycles * (10^6 / cpu_khz)
170  *
171  *      Then we use scaling math (suggested by george@mvista.com) to get:
172  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
173  *              ns = cycles * cyc2ns_scale / SC
174  *
175  *      And since SC is a constant power of two, we can convert the div
176  *  into a shift. The larger SC is, the more accurate the conversion, but
177  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
178  *  (64-bit result) can be used.
179  *
180  *  We can use khz divisor instead of mhz to keep a better precision.
181  *  (mathieu.desnoyers@polymtl.ca)
182  *
183  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
184  */
185 
186 static void cyc2ns_data_init(struct cyc2ns_data *data)
187 {
188 	data->cyc2ns_mul = 0;
189 	data->cyc2ns_shift = 0;
190 	data->cyc2ns_offset = 0;
191 	data->__count = 0;
192 }
193 
194 static void cyc2ns_init(int cpu)
195 {
196 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
197 
198 	cyc2ns_data_init(&c2n->data[0]);
199 	cyc2ns_data_init(&c2n->data[1]);
200 
201 	c2n->head = c2n->data;
202 	c2n->tail = c2n->data;
203 }
204 
205 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
206 {
207 	struct cyc2ns_data *data, *tail;
208 	unsigned long long ns;
209 
210 	/*
211 	 * See cyc2ns_read_*() for details; replicated in order to avoid
212 	 * an extra few instructions that came with the abstraction.
213 	 * Notable, it allows us to only do the __count and tail update
214 	 * dance when its actually needed.
215 	 */
216 
217 	preempt_disable_notrace();
218 	data = this_cpu_read(cyc2ns.head);
219 	tail = this_cpu_read(cyc2ns.tail);
220 
221 	if (likely(data == tail)) {
222 		ns = data->cyc2ns_offset;
223 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
224 	} else {
225 		data->__count++;
226 
227 		barrier();
228 
229 		ns = data->cyc2ns_offset;
230 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
231 
232 		barrier();
233 
234 		if (!--data->__count)
235 			this_cpu_write(cyc2ns.tail, data);
236 	}
237 	preempt_enable_notrace();
238 
239 	return ns;
240 }
241 
242 static void set_cyc2ns_scale(unsigned long khz, int cpu)
243 {
244 	unsigned long long tsc_now, ns_now;
245 	struct cyc2ns_data *data;
246 	unsigned long flags;
247 
248 	local_irq_save(flags);
249 	sched_clock_idle_sleep_event();
250 
251 	if (!khz)
252 		goto done;
253 
254 	data = cyc2ns_write_begin(cpu);
255 
256 	tsc_now = rdtsc();
257 	ns_now = cycles_2_ns(tsc_now);
258 
259 	/*
260 	 * Compute a new multiplier as per the above comment and ensure our
261 	 * time function is continuous; see the comment near struct
262 	 * cyc2ns_data.
263 	 */
264 	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
265 			       NSEC_PER_MSEC, 0);
266 
267 	/*
268 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
269 	 * not expected to be greater than 31 due to the original published
270 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
271 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
272 	 */
273 	if (data->cyc2ns_shift == 32) {
274 		data->cyc2ns_shift = 31;
275 		data->cyc2ns_mul >>= 1;
276 	}
277 
278 	data->cyc2ns_offset = ns_now -
279 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
280 
281 	cyc2ns_write_end(cpu, data);
282 
283 done:
284 	sched_clock_idle_wakeup_event(0);
285 	local_irq_restore(flags);
286 }
287 /*
288  * Scheduler clock - returns current time in nanosec units.
289  */
290 u64 native_sched_clock(void)
291 {
292 	if (static_branch_likely(&__use_tsc)) {
293 		u64 tsc_now = rdtsc();
294 
295 		/* return the value in ns */
296 		return cycles_2_ns(tsc_now);
297 	}
298 
299 	/*
300 	 * Fall back to jiffies if there's no TSC available:
301 	 * ( But note that we still use it if the TSC is marked
302 	 *   unstable. We do this because unlike Time Of Day,
303 	 *   the scheduler clock tolerates small errors and it's
304 	 *   very important for it to be as fast as the platform
305 	 *   can achieve it. )
306 	 */
307 
308 	/* No locking but a rare wrong value is not a big deal: */
309 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
310 }
311 
312 /*
313  * Generate a sched_clock if you already have a TSC value.
314  */
315 u64 native_sched_clock_from_tsc(u64 tsc)
316 {
317 	return cycles_2_ns(tsc);
318 }
319 
320 /* We need to define a real function for sched_clock, to override the
321    weak default version */
322 #ifdef CONFIG_PARAVIRT
323 unsigned long long sched_clock(void)
324 {
325 	return paravirt_sched_clock();
326 }
327 #else
328 unsigned long long
329 sched_clock(void) __attribute__((alias("native_sched_clock")));
330 #endif
331 
332 int check_tsc_unstable(void)
333 {
334 	return tsc_unstable;
335 }
336 EXPORT_SYMBOL_GPL(check_tsc_unstable);
337 
338 #ifdef CONFIG_X86_TSC
339 int __init notsc_setup(char *str)
340 {
341 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
342 	tsc_disabled = 1;
343 	return 1;
344 }
345 #else
346 /*
347  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
348  * in cpu/common.c
349  */
350 int __init notsc_setup(char *str)
351 {
352 	setup_clear_cpu_cap(X86_FEATURE_TSC);
353 	return 1;
354 }
355 #endif
356 
357 __setup("notsc", notsc_setup);
358 
359 static int no_sched_irq_time;
360 
361 static int __init tsc_setup(char *str)
362 {
363 	if (!strcmp(str, "reliable"))
364 		tsc_clocksource_reliable = 1;
365 	if (!strncmp(str, "noirqtime", 9))
366 		no_sched_irq_time = 1;
367 	return 1;
368 }
369 
370 __setup("tsc=", tsc_setup);
371 
372 #define MAX_RETRIES     5
373 #define SMI_TRESHOLD    50000
374 
375 /*
376  * Read TSC and the reference counters. Take care of SMI disturbance
377  */
378 static u64 tsc_read_refs(u64 *p, int hpet)
379 {
380 	u64 t1, t2;
381 	int i;
382 
383 	for (i = 0; i < MAX_RETRIES; i++) {
384 		t1 = get_cycles();
385 		if (hpet)
386 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
387 		else
388 			*p = acpi_pm_read_early();
389 		t2 = get_cycles();
390 		if ((t2 - t1) < SMI_TRESHOLD)
391 			return t2;
392 	}
393 	return ULLONG_MAX;
394 }
395 
396 /*
397  * Calculate the TSC frequency from HPET reference
398  */
399 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
400 {
401 	u64 tmp;
402 
403 	if (hpet2 < hpet1)
404 		hpet2 += 0x100000000ULL;
405 	hpet2 -= hpet1;
406 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
407 	do_div(tmp, 1000000);
408 	do_div(deltatsc, tmp);
409 
410 	return (unsigned long) deltatsc;
411 }
412 
413 /*
414  * Calculate the TSC frequency from PMTimer reference
415  */
416 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
417 {
418 	u64 tmp;
419 
420 	if (!pm1 && !pm2)
421 		return ULONG_MAX;
422 
423 	if (pm2 < pm1)
424 		pm2 += (u64)ACPI_PM_OVRRUN;
425 	pm2 -= pm1;
426 	tmp = pm2 * 1000000000LL;
427 	do_div(tmp, PMTMR_TICKS_PER_SEC);
428 	do_div(deltatsc, tmp);
429 
430 	return (unsigned long) deltatsc;
431 }
432 
433 #define CAL_MS		10
434 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
435 #define CAL_PIT_LOOPS	1000
436 
437 #define CAL2_MS		50
438 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
439 #define CAL2_PIT_LOOPS	5000
440 
441 
442 /*
443  * Try to calibrate the TSC against the Programmable
444  * Interrupt Timer and return the frequency of the TSC
445  * in kHz.
446  *
447  * Return ULONG_MAX on failure to calibrate.
448  */
449 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
450 {
451 	u64 tsc, t1, t2, delta;
452 	unsigned long tscmin, tscmax;
453 	int pitcnt;
454 
455 	/* Set the Gate high, disable speaker */
456 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
457 
458 	/*
459 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
460 	 * count mode), binary count. Set the latch register to 50ms
461 	 * (LSB then MSB) to begin countdown.
462 	 */
463 	outb(0xb0, 0x43);
464 	outb(latch & 0xff, 0x42);
465 	outb(latch >> 8, 0x42);
466 
467 	tsc = t1 = t2 = get_cycles();
468 
469 	pitcnt = 0;
470 	tscmax = 0;
471 	tscmin = ULONG_MAX;
472 	while ((inb(0x61) & 0x20) == 0) {
473 		t2 = get_cycles();
474 		delta = t2 - tsc;
475 		tsc = t2;
476 		if ((unsigned long) delta < tscmin)
477 			tscmin = (unsigned int) delta;
478 		if ((unsigned long) delta > tscmax)
479 			tscmax = (unsigned int) delta;
480 		pitcnt++;
481 	}
482 
483 	/*
484 	 * Sanity checks:
485 	 *
486 	 * If we were not able to read the PIT more than loopmin
487 	 * times, then we have been hit by a massive SMI
488 	 *
489 	 * If the maximum is 10 times larger than the minimum,
490 	 * then we got hit by an SMI as well.
491 	 */
492 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
493 		return ULONG_MAX;
494 
495 	/* Calculate the PIT value */
496 	delta = t2 - t1;
497 	do_div(delta, ms);
498 	return delta;
499 }
500 
501 /*
502  * This reads the current MSB of the PIT counter, and
503  * checks if we are running on sufficiently fast and
504  * non-virtualized hardware.
505  *
506  * Our expectations are:
507  *
508  *  - the PIT is running at roughly 1.19MHz
509  *
510  *  - each IO is going to take about 1us on real hardware,
511  *    but we allow it to be much faster (by a factor of 10) or
512  *    _slightly_ slower (ie we allow up to a 2us read+counter
513  *    update - anything else implies a unacceptably slow CPU
514  *    or PIT for the fast calibration to work.
515  *
516  *  - with 256 PIT ticks to read the value, we have 214us to
517  *    see the same MSB (and overhead like doing a single TSC
518  *    read per MSB value etc).
519  *
520  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
521  *    them each to take about a microsecond on real hardware.
522  *    So we expect a count value of around 100. But we'll be
523  *    generous, and accept anything over 50.
524  *
525  *  - if the PIT is stuck, and we see *many* more reads, we
526  *    return early (and the next caller of pit_expect_msb()
527  *    then consider it a failure when they don't see the
528  *    next expected value).
529  *
530  * These expectations mean that we know that we have seen the
531  * transition from one expected value to another with a fairly
532  * high accuracy, and we didn't miss any events. We can thus
533  * use the TSC value at the transitions to calculate a pretty
534  * good value for the TSC frequencty.
535  */
536 static inline int pit_verify_msb(unsigned char val)
537 {
538 	/* Ignore LSB */
539 	inb(0x42);
540 	return inb(0x42) == val;
541 }
542 
543 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
544 {
545 	int count;
546 	u64 tsc = 0, prev_tsc = 0;
547 
548 	for (count = 0; count < 50000; count++) {
549 		if (!pit_verify_msb(val))
550 			break;
551 		prev_tsc = tsc;
552 		tsc = get_cycles();
553 	}
554 	*deltap = get_cycles() - prev_tsc;
555 	*tscp = tsc;
556 
557 	/*
558 	 * We require _some_ success, but the quality control
559 	 * will be based on the error terms on the TSC values.
560 	 */
561 	return count > 5;
562 }
563 
564 /*
565  * How many MSB values do we want to see? We aim for
566  * a maximum error rate of 500ppm (in practice the
567  * real error is much smaller), but refuse to spend
568  * more than 50ms on it.
569  */
570 #define MAX_QUICK_PIT_MS 50
571 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
572 
573 static unsigned long quick_pit_calibrate(void)
574 {
575 	int i;
576 	u64 tsc, delta;
577 	unsigned long d1, d2;
578 
579 	/* Set the Gate high, disable speaker */
580 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
581 
582 	/*
583 	 * Counter 2, mode 0 (one-shot), binary count
584 	 *
585 	 * NOTE! Mode 2 decrements by two (and then the
586 	 * output is flipped each time, giving the same
587 	 * final output frequency as a decrement-by-one),
588 	 * so mode 0 is much better when looking at the
589 	 * individual counts.
590 	 */
591 	outb(0xb0, 0x43);
592 
593 	/* Start at 0xffff */
594 	outb(0xff, 0x42);
595 	outb(0xff, 0x42);
596 
597 	/*
598 	 * The PIT starts counting at the next edge, so we
599 	 * need to delay for a microsecond. The easiest way
600 	 * to do that is to just read back the 16-bit counter
601 	 * once from the PIT.
602 	 */
603 	pit_verify_msb(0);
604 
605 	if (pit_expect_msb(0xff, &tsc, &d1)) {
606 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
607 			if (!pit_expect_msb(0xff-i, &delta, &d2))
608 				break;
609 
610 			delta -= tsc;
611 
612 			/*
613 			 * Extrapolate the error and fail fast if the error will
614 			 * never be below 500 ppm.
615 			 */
616 			if (i == 1 &&
617 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
618 				return 0;
619 
620 			/*
621 			 * Iterate until the error is less than 500 ppm
622 			 */
623 			if (d1+d2 >= delta >> 11)
624 				continue;
625 
626 			/*
627 			 * Check the PIT one more time to verify that
628 			 * all TSC reads were stable wrt the PIT.
629 			 *
630 			 * This also guarantees serialization of the
631 			 * last cycle read ('d2') in pit_expect_msb.
632 			 */
633 			if (!pit_verify_msb(0xfe - i))
634 				break;
635 			goto success;
636 		}
637 	}
638 	pr_info("Fast TSC calibration failed\n");
639 	return 0;
640 
641 success:
642 	/*
643 	 * Ok, if we get here, then we've seen the
644 	 * MSB of the PIT decrement 'i' times, and the
645 	 * error has shrunk to less than 500 ppm.
646 	 *
647 	 * As a result, we can depend on there not being
648 	 * any odd delays anywhere, and the TSC reads are
649 	 * reliable (within the error).
650 	 *
651 	 * kHz = ticks / time-in-seconds / 1000;
652 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
653 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
654 	 */
655 	delta *= PIT_TICK_RATE;
656 	do_div(delta, i*256*1000);
657 	pr_info("Fast TSC calibration using PIT\n");
658 	return delta;
659 }
660 
661 /**
662  * native_calibrate_tsc
663  * Determine TSC frequency via CPUID, else return 0.
664  */
665 unsigned long native_calibrate_tsc(void)
666 {
667 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
668 	unsigned int crystal_khz;
669 
670 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
671 		return 0;
672 
673 	if (boot_cpu_data.cpuid_level < 0x15)
674 		return 0;
675 
676 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
677 
678 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
679 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
680 
681 	if (ebx_numerator == 0 || eax_denominator == 0)
682 		return 0;
683 
684 	crystal_khz = ecx_hz / 1000;
685 
686 	if (crystal_khz == 0) {
687 		switch (boot_cpu_data.x86_model) {
688 		case 0x4E:	/* SKL */
689 		case 0x5E:	/* SKL */
690 			crystal_khz = 24000;	/* 24.0 MHz */
691 			break;
692 		case 0x5C:	/* BXT */
693 			crystal_khz = 19200;	/* 19.2 MHz */
694 			break;
695 		}
696 	}
697 
698 	return crystal_khz * ebx_numerator / eax_denominator;
699 }
700 
701 static unsigned long cpu_khz_from_cpuid(void)
702 {
703 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
704 
705 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
706 		return 0;
707 
708 	if (boot_cpu_data.cpuid_level < 0x16)
709 		return 0;
710 
711 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
712 
713 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
714 
715 	return eax_base_mhz * 1000;
716 }
717 
718 /**
719  * native_calibrate_cpu - calibrate the cpu on boot
720  */
721 unsigned long native_calibrate_cpu(void)
722 {
723 	u64 tsc1, tsc2, delta, ref1, ref2;
724 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
725 	unsigned long flags, latch, ms, fast_calibrate;
726 	int hpet = is_hpet_enabled(), i, loopmin;
727 
728 	fast_calibrate = cpu_khz_from_cpuid();
729 	if (fast_calibrate)
730 		return fast_calibrate;
731 
732 	fast_calibrate = cpu_khz_from_msr();
733 	if (fast_calibrate)
734 		return fast_calibrate;
735 
736 	local_irq_save(flags);
737 	fast_calibrate = quick_pit_calibrate();
738 	local_irq_restore(flags);
739 	if (fast_calibrate)
740 		return fast_calibrate;
741 
742 	/*
743 	 * Run 5 calibration loops to get the lowest frequency value
744 	 * (the best estimate). We use two different calibration modes
745 	 * here:
746 	 *
747 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
748 	 * load a timeout of 50ms. We read the time right after we
749 	 * started the timer and wait until the PIT count down reaches
750 	 * zero. In each wait loop iteration we read the TSC and check
751 	 * the delta to the previous read. We keep track of the min
752 	 * and max values of that delta. The delta is mostly defined
753 	 * by the IO time of the PIT access, so we can detect when a
754 	 * SMI/SMM disturbance happened between the two reads. If the
755 	 * maximum time is significantly larger than the minimum time,
756 	 * then we discard the result and have another try.
757 	 *
758 	 * 2) Reference counter. If available we use the HPET or the
759 	 * PMTIMER as a reference to check the sanity of that value.
760 	 * We use separate TSC readouts and check inside of the
761 	 * reference read for a SMI/SMM disturbance. We dicard
762 	 * disturbed values here as well. We do that around the PIT
763 	 * calibration delay loop as we have to wait for a certain
764 	 * amount of time anyway.
765 	 */
766 
767 	/* Preset PIT loop values */
768 	latch = CAL_LATCH;
769 	ms = CAL_MS;
770 	loopmin = CAL_PIT_LOOPS;
771 
772 	for (i = 0; i < 3; i++) {
773 		unsigned long tsc_pit_khz;
774 
775 		/*
776 		 * Read the start value and the reference count of
777 		 * hpet/pmtimer when available. Then do the PIT
778 		 * calibration, which will take at least 50ms, and
779 		 * read the end value.
780 		 */
781 		local_irq_save(flags);
782 		tsc1 = tsc_read_refs(&ref1, hpet);
783 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
784 		tsc2 = tsc_read_refs(&ref2, hpet);
785 		local_irq_restore(flags);
786 
787 		/* Pick the lowest PIT TSC calibration so far */
788 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
789 
790 		/* hpet or pmtimer available ? */
791 		if (ref1 == ref2)
792 			continue;
793 
794 		/* Check, whether the sampling was disturbed by an SMI */
795 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
796 			continue;
797 
798 		tsc2 = (tsc2 - tsc1) * 1000000LL;
799 		if (hpet)
800 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
801 		else
802 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
803 
804 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
805 
806 		/* Check the reference deviation */
807 		delta = ((u64) tsc_pit_min) * 100;
808 		do_div(delta, tsc_ref_min);
809 
810 		/*
811 		 * If both calibration results are inside a 10% window
812 		 * then we can be sure, that the calibration
813 		 * succeeded. We break out of the loop right away. We
814 		 * use the reference value, as it is more precise.
815 		 */
816 		if (delta >= 90 && delta <= 110) {
817 			pr_info("PIT calibration matches %s. %d loops\n",
818 				hpet ? "HPET" : "PMTIMER", i + 1);
819 			return tsc_ref_min;
820 		}
821 
822 		/*
823 		 * Check whether PIT failed more than once. This
824 		 * happens in virtualized environments. We need to
825 		 * give the virtual PC a slightly longer timeframe for
826 		 * the HPET/PMTIMER to make the result precise.
827 		 */
828 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
829 			latch = CAL2_LATCH;
830 			ms = CAL2_MS;
831 			loopmin = CAL2_PIT_LOOPS;
832 		}
833 	}
834 
835 	/*
836 	 * Now check the results.
837 	 */
838 	if (tsc_pit_min == ULONG_MAX) {
839 		/* PIT gave no useful value */
840 		pr_warn("Unable to calibrate against PIT\n");
841 
842 		/* We don't have an alternative source, disable TSC */
843 		if (!hpet && !ref1 && !ref2) {
844 			pr_notice("No reference (HPET/PMTIMER) available\n");
845 			return 0;
846 		}
847 
848 		/* The alternative source failed as well, disable TSC */
849 		if (tsc_ref_min == ULONG_MAX) {
850 			pr_warn("HPET/PMTIMER calibration failed\n");
851 			return 0;
852 		}
853 
854 		/* Use the alternative source */
855 		pr_info("using %s reference calibration\n",
856 			hpet ? "HPET" : "PMTIMER");
857 
858 		return tsc_ref_min;
859 	}
860 
861 	/* We don't have an alternative source, use the PIT calibration value */
862 	if (!hpet && !ref1 && !ref2) {
863 		pr_info("Using PIT calibration value\n");
864 		return tsc_pit_min;
865 	}
866 
867 	/* The alternative source failed, use the PIT calibration value */
868 	if (tsc_ref_min == ULONG_MAX) {
869 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
870 		return tsc_pit_min;
871 	}
872 
873 	/*
874 	 * The calibration values differ too much. In doubt, we use
875 	 * the PIT value as we know that there are PMTIMERs around
876 	 * running at double speed. At least we let the user know:
877 	 */
878 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
879 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
880 	pr_info("Using PIT calibration value\n");
881 	return tsc_pit_min;
882 }
883 
884 int recalibrate_cpu_khz(void)
885 {
886 #ifndef CONFIG_SMP
887 	unsigned long cpu_khz_old = cpu_khz;
888 
889 	if (!boot_cpu_has(X86_FEATURE_TSC))
890 		return -ENODEV;
891 
892 	cpu_khz = x86_platform.calibrate_cpu();
893 	tsc_khz = x86_platform.calibrate_tsc();
894 	if (tsc_khz == 0)
895 		tsc_khz = cpu_khz;
896 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
897 		cpu_khz = tsc_khz;
898 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
899 						    cpu_khz_old, cpu_khz);
900 
901 	return 0;
902 #else
903 	return -ENODEV;
904 #endif
905 }
906 
907 EXPORT_SYMBOL(recalibrate_cpu_khz);
908 
909 
910 static unsigned long long cyc2ns_suspend;
911 
912 void tsc_save_sched_clock_state(void)
913 {
914 	if (!sched_clock_stable())
915 		return;
916 
917 	cyc2ns_suspend = sched_clock();
918 }
919 
920 /*
921  * Even on processors with invariant TSC, TSC gets reset in some the
922  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
923  * arbitrary value (still sync'd across cpu's) during resume from such sleep
924  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
925  * that sched_clock() continues from the point where it was left off during
926  * suspend.
927  */
928 void tsc_restore_sched_clock_state(void)
929 {
930 	unsigned long long offset;
931 	unsigned long flags;
932 	int cpu;
933 
934 	if (!sched_clock_stable())
935 		return;
936 
937 	local_irq_save(flags);
938 
939 	/*
940 	 * We're coming out of suspend, there's no concurrency yet; don't
941 	 * bother being nice about the RCU stuff, just write to both
942 	 * data fields.
943 	 */
944 
945 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
946 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
947 
948 	offset = cyc2ns_suspend - sched_clock();
949 
950 	for_each_possible_cpu(cpu) {
951 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
952 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
953 	}
954 
955 	local_irq_restore(flags);
956 }
957 
958 #ifdef CONFIG_CPU_FREQ
959 
960 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
961  * changes.
962  *
963  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
964  * not that important because current Opteron setups do not support
965  * scaling on SMP anyroads.
966  *
967  * Should fix up last_tsc too. Currently gettimeofday in the
968  * first tick after the change will be slightly wrong.
969  */
970 
971 static unsigned int  ref_freq;
972 static unsigned long loops_per_jiffy_ref;
973 static unsigned long tsc_khz_ref;
974 
975 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
976 				void *data)
977 {
978 	struct cpufreq_freqs *freq = data;
979 	unsigned long *lpj;
980 
981 	lpj = &boot_cpu_data.loops_per_jiffy;
982 #ifdef CONFIG_SMP
983 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
984 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
985 #endif
986 
987 	if (!ref_freq) {
988 		ref_freq = freq->old;
989 		loops_per_jiffy_ref = *lpj;
990 		tsc_khz_ref = tsc_khz;
991 	}
992 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
993 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
994 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
995 
996 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
997 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
998 			mark_tsc_unstable("cpufreq changes");
999 
1000 		set_cyc2ns_scale(tsc_khz, freq->cpu);
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static struct notifier_block time_cpufreq_notifier_block = {
1007 	.notifier_call  = time_cpufreq_notifier
1008 };
1009 
1010 static int __init cpufreq_register_tsc_scaling(void)
1011 {
1012 	if (!boot_cpu_has(X86_FEATURE_TSC))
1013 		return 0;
1014 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1015 		return 0;
1016 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1017 				CPUFREQ_TRANSITION_NOTIFIER);
1018 	return 0;
1019 }
1020 
1021 core_initcall(cpufreq_register_tsc_scaling);
1022 
1023 #endif /* CONFIG_CPU_FREQ */
1024 
1025 #define ART_CPUID_LEAF (0x15)
1026 #define ART_MIN_DENOMINATOR (1)
1027 
1028 
1029 /*
1030  * If ART is present detect the numerator:denominator to convert to TSC
1031  */
1032 static void detect_art(void)
1033 {
1034 	unsigned int unused[2];
1035 
1036 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1037 		return;
1038 
1039 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1040 	      &art_to_tsc_numerator, unused, unused+1);
1041 
1042 	/* Don't enable ART in a VM, non-stop TSC required */
1043 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1044 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1045 	    art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1046 		return;
1047 
1048 	if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
1049 		return;
1050 
1051 	/* Make this sticky over multiple CPU init calls */
1052 	setup_force_cpu_cap(X86_FEATURE_ART);
1053 }
1054 
1055 
1056 /* clocksource code */
1057 
1058 static struct clocksource clocksource_tsc;
1059 
1060 /*
1061  * We used to compare the TSC to the cycle_last value in the clocksource
1062  * structure to avoid a nasty time-warp. This can be observed in a
1063  * very small window right after one CPU updated cycle_last under
1064  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1065  * is smaller than the cycle_last reference value due to a TSC which
1066  * is slighty behind. This delta is nowhere else observable, but in
1067  * that case it results in a forward time jump in the range of hours
1068  * due to the unsigned delta calculation of the time keeping core
1069  * code, which is necessary to support wrapping clocksources like pm
1070  * timer.
1071  *
1072  * This sanity check is now done in the core timekeeping code.
1073  * checking the result of read_tsc() - cycle_last for being negative.
1074  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1075  */
1076 static cycle_t read_tsc(struct clocksource *cs)
1077 {
1078 	return (cycle_t)rdtsc_ordered();
1079 }
1080 
1081 /*
1082  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1083  */
1084 static struct clocksource clocksource_tsc = {
1085 	.name                   = "tsc",
1086 	.rating                 = 300,
1087 	.read                   = read_tsc,
1088 	.mask                   = CLOCKSOURCE_MASK(64),
1089 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1090 				  CLOCK_SOURCE_MUST_VERIFY,
1091 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1092 };
1093 
1094 void mark_tsc_unstable(char *reason)
1095 {
1096 	if (!tsc_unstable) {
1097 		tsc_unstable = 1;
1098 		clear_sched_clock_stable();
1099 		disable_sched_clock_irqtime();
1100 		pr_info("Marking TSC unstable due to %s\n", reason);
1101 		/* Change only the rating, when not registered */
1102 		if (clocksource_tsc.mult)
1103 			clocksource_mark_unstable(&clocksource_tsc);
1104 		else {
1105 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1106 			clocksource_tsc.rating = 0;
1107 		}
1108 	}
1109 }
1110 
1111 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1112 
1113 static void __init check_system_tsc_reliable(void)
1114 {
1115 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1116 	if (is_geode_lx()) {
1117 		/* RTSC counts during suspend */
1118 #define RTSC_SUSP 0x100
1119 		unsigned long res_low, res_high;
1120 
1121 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1122 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1123 		if (res_low & RTSC_SUSP)
1124 			tsc_clocksource_reliable = 1;
1125 	}
1126 #endif
1127 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1128 		tsc_clocksource_reliable = 1;
1129 }
1130 
1131 /*
1132  * Make an educated guess if the TSC is trustworthy and synchronized
1133  * over all CPUs.
1134  */
1135 int unsynchronized_tsc(void)
1136 {
1137 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1138 		return 1;
1139 
1140 #ifdef CONFIG_SMP
1141 	if (apic_is_clustered_box())
1142 		return 1;
1143 #endif
1144 
1145 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1146 		return 0;
1147 
1148 	if (tsc_clocksource_reliable)
1149 		return 0;
1150 	/*
1151 	 * Intel systems are normally all synchronized.
1152 	 * Exceptions must mark TSC as unstable:
1153 	 */
1154 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1155 		/* assume multi socket systems are not synchronized: */
1156 		if (num_possible_cpus() > 1)
1157 			return 1;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Convert ART to TSC given numerator/denominator found in detect_art()
1165  */
1166 struct system_counterval_t convert_art_to_tsc(cycle_t art)
1167 {
1168 	u64 tmp, res, rem;
1169 
1170 	rem = do_div(art, art_to_tsc_denominator);
1171 
1172 	res = art * art_to_tsc_numerator;
1173 	tmp = rem * art_to_tsc_numerator;
1174 
1175 	do_div(tmp, art_to_tsc_denominator);
1176 	res += tmp + art_to_tsc_offset;
1177 
1178 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1179 			.cycles = res};
1180 }
1181 EXPORT_SYMBOL(convert_art_to_tsc);
1182 
1183 static void tsc_refine_calibration_work(struct work_struct *work);
1184 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1185 /**
1186  * tsc_refine_calibration_work - Further refine tsc freq calibration
1187  * @work - ignored.
1188  *
1189  * This functions uses delayed work over a period of a
1190  * second to further refine the TSC freq value. Since this is
1191  * timer based, instead of loop based, we don't block the boot
1192  * process while this longer calibration is done.
1193  *
1194  * If there are any calibration anomalies (too many SMIs, etc),
1195  * or the refined calibration is off by 1% of the fast early
1196  * calibration, we throw out the new calibration and use the
1197  * early calibration.
1198  */
1199 static void tsc_refine_calibration_work(struct work_struct *work)
1200 {
1201 	static u64 tsc_start = -1, ref_start;
1202 	static int hpet;
1203 	u64 tsc_stop, ref_stop, delta;
1204 	unsigned long freq;
1205 
1206 	/* Don't bother refining TSC on unstable systems */
1207 	if (check_tsc_unstable())
1208 		goto out;
1209 
1210 	/*
1211 	 * Since the work is started early in boot, we may be
1212 	 * delayed the first time we expire. So set the workqueue
1213 	 * again once we know timers are working.
1214 	 */
1215 	if (tsc_start == -1) {
1216 		/*
1217 		 * Only set hpet once, to avoid mixing hardware
1218 		 * if the hpet becomes enabled later.
1219 		 */
1220 		hpet = is_hpet_enabled();
1221 		schedule_delayed_work(&tsc_irqwork, HZ);
1222 		tsc_start = tsc_read_refs(&ref_start, hpet);
1223 		return;
1224 	}
1225 
1226 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1227 
1228 	/* hpet or pmtimer available ? */
1229 	if (ref_start == ref_stop)
1230 		goto out;
1231 
1232 	/* Check, whether the sampling was disturbed by an SMI */
1233 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1234 		goto out;
1235 
1236 	delta = tsc_stop - tsc_start;
1237 	delta *= 1000000LL;
1238 	if (hpet)
1239 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1240 	else
1241 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1242 
1243 	/* Make sure we're within 1% */
1244 	if (abs(tsc_khz - freq) > tsc_khz/100)
1245 		goto out;
1246 
1247 	tsc_khz = freq;
1248 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1249 		(unsigned long)tsc_khz / 1000,
1250 		(unsigned long)tsc_khz % 1000);
1251 
1252 out:
1253 	if (boot_cpu_has(X86_FEATURE_ART))
1254 		art_related_clocksource = &clocksource_tsc;
1255 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1256 }
1257 
1258 
1259 static int __init init_tsc_clocksource(void)
1260 {
1261 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1262 		return 0;
1263 
1264 	if (tsc_clocksource_reliable)
1265 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1266 	/* lower the rating if we already know its unstable: */
1267 	if (check_tsc_unstable()) {
1268 		clocksource_tsc.rating = 0;
1269 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1270 	}
1271 
1272 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1273 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1274 
1275 	/*
1276 	 * Trust the results of the earlier calibration on systems
1277 	 * exporting a reliable TSC.
1278 	 */
1279 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1280 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1281 		return 0;
1282 	}
1283 
1284 	schedule_delayed_work(&tsc_irqwork, 0);
1285 	return 0;
1286 }
1287 /*
1288  * We use device_initcall here, to ensure we run after the hpet
1289  * is fully initialized, which may occur at fs_initcall time.
1290  */
1291 device_initcall(init_tsc_clocksource);
1292 
1293 void __init tsc_init(void)
1294 {
1295 	u64 lpj;
1296 	int cpu;
1297 
1298 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1299 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1300 		return;
1301 	}
1302 
1303 	cpu_khz = x86_platform.calibrate_cpu();
1304 	tsc_khz = x86_platform.calibrate_tsc();
1305 
1306 	/*
1307 	 * Trust non-zero tsc_khz as authorative,
1308 	 * and use it to sanity check cpu_khz,
1309 	 * which will be off if system timer is off.
1310 	 */
1311 	if (tsc_khz == 0)
1312 		tsc_khz = cpu_khz;
1313 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1314 		cpu_khz = tsc_khz;
1315 
1316 	if (!tsc_khz) {
1317 		mark_tsc_unstable("could not calculate TSC khz");
1318 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1319 		return;
1320 	}
1321 
1322 	pr_info("Detected %lu.%03lu MHz processor\n",
1323 		(unsigned long)cpu_khz / 1000,
1324 		(unsigned long)cpu_khz % 1000);
1325 
1326 	/*
1327 	 * Secondary CPUs do not run through tsc_init(), so set up
1328 	 * all the scale factors for all CPUs, assuming the same
1329 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1330 	 * up if their speed diverges)
1331 	 */
1332 	for_each_possible_cpu(cpu) {
1333 		cyc2ns_init(cpu);
1334 		set_cyc2ns_scale(tsc_khz, cpu);
1335 	}
1336 
1337 	if (tsc_disabled > 0)
1338 		return;
1339 
1340 	/* now allow native_sched_clock() to use rdtsc */
1341 
1342 	tsc_disabled = 0;
1343 	static_branch_enable(&__use_tsc);
1344 
1345 	if (!no_sched_irq_time)
1346 		enable_sched_clock_irqtime();
1347 
1348 	lpj = ((u64)tsc_khz * 1000);
1349 	do_div(lpj, HZ);
1350 	lpj_fine = lpj;
1351 
1352 	use_tsc_delay();
1353 
1354 	if (unsynchronized_tsc())
1355 		mark_tsc_unstable("TSCs unsynchronized");
1356 
1357 	check_system_tsc_reliable();
1358 
1359 	detect_art();
1360 }
1361 
1362 #ifdef CONFIG_SMP
1363 /*
1364  * If we have a constant TSC and are using the TSC for the delay loop,
1365  * we can skip clock calibration if another cpu in the same socket has already
1366  * been calibrated. This assumes that CONSTANT_TSC applies to all
1367  * cpus in the socket - this should be a safe assumption.
1368  */
1369 unsigned long calibrate_delay_is_known(void)
1370 {
1371 	int sibling, cpu = smp_processor_id();
1372 	struct cpumask *mask = topology_core_cpumask(cpu);
1373 
1374 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1375 		return 0;
1376 
1377 	if (!mask)
1378 		return 0;
1379 
1380 	sibling = cpumask_any_but(mask, cpu);
1381 	if (sibling < nr_cpu_ids)
1382 		return cpu_data(sibling).loops_per_jiffy;
1383 	return 0;
1384 }
1385 #endif
1386