xref: /linux/arch/x86/kernel/traps.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/cpu.h>
41 #include <linux/io.h>
42 #include <linux/hardirq.h>
43 #include <linux/atomic.h>
44 #include <linux/iommu.h>
45 
46 #include <asm/stacktrace.h>
47 #include <asm/processor.h>
48 #include <asm/debugreg.h>
49 #include <asm/realmode.h>
50 #include <asm/text-patching.h>
51 #include <asm/ftrace.h>
52 #include <asm/traps.h>
53 #include <asm/desc.h>
54 #include <asm/fred.h>
55 #include <asm/fpu/api.h>
56 #include <asm/cpu.h>
57 #include <asm/cpu_entry_area.h>
58 #include <asm/mce.h>
59 #include <asm/fixmap.h>
60 #include <asm/mach_traps.h>
61 #include <asm/alternative.h>
62 #include <asm/fpu/xstate.h>
63 #include <asm/vm86.h>
64 #include <asm/umip.h>
65 #include <asm/insn.h>
66 #include <asm/insn-eval.h>
67 #include <asm/vdso.h>
68 #include <asm/tdx.h>
69 #include <asm/cfi.h>
70 
71 #ifdef CONFIG_X86_64
72 #include <asm/x86_init.h>
73 #else
74 #include <asm/processor-flags.h>
75 #include <asm/setup.h>
76 #endif
77 
78 #include <asm/proto.h>
79 
80 DECLARE_BITMAP(system_vectors, NR_VECTORS);
81 
82 __always_inline int is_valid_bugaddr(unsigned long addr)
83 {
84 	if (addr < TASK_SIZE_MAX)
85 		return 0;
86 
87 	/*
88 	 * We got #UD, if the text isn't readable we'd have gotten
89 	 * a different exception.
90 	 */
91 	return *(unsigned short *)addr == INSN_UD2;
92 }
93 
94 static nokprobe_inline int
95 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
96 		  struct pt_regs *regs,	long error_code)
97 {
98 	if (v8086_mode(regs)) {
99 		/*
100 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
101 		 * On nmi (interrupt 2), do_trap should not be called.
102 		 */
103 		if (trapnr < X86_TRAP_UD) {
104 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
105 						error_code, trapnr))
106 				return 0;
107 		}
108 	} else if (!user_mode(regs)) {
109 		if (fixup_exception(regs, trapnr, error_code, 0))
110 			return 0;
111 
112 		tsk->thread.error_code = error_code;
113 		tsk->thread.trap_nr = trapnr;
114 		die(str, regs, error_code);
115 	} else {
116 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
117 			return 0;
118 	}
119 
120 	/*
121 	 * We want error_code and trap_nr set for userspace faults and
122 	 * kernelspace faults which result in die(), but not
123 	 * kernelspace faults which are fixed up.  die() gives the
124 	 * process no chance to handle the signal and notice the
125 	 * kernel fault information, so that won't result in polluting
126 	 * the information about previously queued, but not yet
127 	 * delivered, faults.  See also exc_general_protection below.
128 	 */
129 	tsk->thread.error_code = error_code;
130 	tsk->thread.trap_nr = trapnr;
131 
132 	return -1;
133 }
134 
135 static void show_signal(struct task_struct *tsk, int signr,
136 			const char *type, const char *desc,
137 			struct pt_regs *regs, long error_code)
138 {
139 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
140 	    printk_ratelimit()) {
141 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
142 			tsk->comm, task_pid_nr(tsk), type, desc,
143 			regs->ip, regs->sp, error_code);
144 		print_vma_addr(KERN_CONT " in ", regs->ip);
145 		pr_cont("\n");
146 	}
147 }
148 
149 static void
150 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
151 	long error_code, int sicode, void __user *addr)
152 {
153 	struct task_struct *tsk = current;
154 
155 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
156 		return;
157 
158 	show_signal(tsk, signr, "trap ", str, regs, error_code);
159 
160 	if (!sicode)
161 		force_sig(signr);
162 	else
163 		force_sig_fault(signr, sicode, addr);
164 }
165 NOKPROBE_SYMBOL(do_trap);
166 
167 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
168 	unsigned long trapnr, int signr, int sicode, void __user *addr)
169 {
170 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
171 
172 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
173 			NOTIFY_STOP) {
174 		cond_local_irq_enable(regs);
175 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
176 		cond_local_irq_disable(regs);
177 	}
178 }
179 
180 /*
181  * Posix requires to provide the address of the faulting instruction for
182  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
183  *
184  * This address is usually regs->ip, but when an uprobe moved the code out
185  * of line then regs->ip points to the XOL code which would confuse
186  * anything which analyzes the fault address vs. the unmodified binary. If
187  * a trap happened in XOL code then uprobe maps regs->ip back to the
188  * original instruction address.
189  */
190 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
191 {
192 	return (void __user *)uprobe_get_trap_addr(regs);
193 }
194 
195 DEFINE_IDTENTRY(exc_divide_error)
196 {
197 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
198 		      FPE_INTDIV, error_get_trap_addr(regs));
199 }
200 
201 DEFINE_IDTENTRY(exc_overflow)
202 {
203 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
204 }
205 
206 #ifdef CONFIG_X86_F00F_BUG
207 void handle_invalid_op(struct pt_regs *regs)
208 #else
209 static inline void handle_invalid_op(struct pt_regs *regs)
210 #endif
211 {
212 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
213 		      ILL_ILLOPN, error_get_trap_addr(regs));
214 }
215 
216 static noinstr bool handle_bug(struct pt_regs *regs)
217 {
218 	bool handled = false;
219 
220 	/*
221 	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
222 	 * is a rare case that uses @regs without passing them to
223 	 * irqentry_enter().
224 	 */
225 	kmsan_unpoison_entry_regs(regs);
226 	if (!is_valid_bugaddr(regs->ip))
227 		return handled;
228 
229 	/*
230 	 * All lies, just get the WARN/BUG out.
231 	 */
232 	instrumentation_begin();
233 	/*
234 	 * Since we're emulating a CALL with exceptions, restore the interrupt
235 	 * state to what it was at the exception site.
236 	 */
237 	if (regs->flags & X86_EFLAGS_IF)
238 		raw_local_irq_enable();
239 	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
240 	    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
241 		regs->ip += LEN_UD2;
242 		handled = true;
243 	}
244 	if (regs->flags & X86_EFLAGS_IF)
245 		raw_local_irq_disable();
246 	instrumentation_end();
247 
248 	return handled;
249 }
250 
251 DEFINE_IDTENTRY_RAW(exc_invalid_op)
252 {
253 	irqentry_state_t state;
254 
255 	/*
256 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
257 	 * handle it before exception entry to avoid recursive WARN
258 	 * in case exception entry is the one triggering WARNs.
259 	 */
260 	if (!user_mode(regs) && handle_bug(regs))
261 		return;
262 
263 	state = irqentry_enter(regs);
264 	instrumentation_begin();
265 	handle_invalid_op(regs);
266 	instrumentation_end();
267 	irqentry_exit(regs, state);
268 }
269 
270 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
271 {
272 	do_error_trap(regs, 0, "coprocessor segment overrun",
273 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
274 }
275 
276 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
277 {
278 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
279 		      0, NULL);
280 }
281 
282 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
283 {
284 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
285 		      SIGBUS, 0, NULL);
286 }
287 
288 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
289 {
290 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
291 		      0, NULL);
292 }
293 
294 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
295 {
296 	char *str = "alignment check";
297 
298 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
299 		return;
300 
301 	if (!user_mode(regs))
302 		die("Split lock detected\n", regs, error_code);
303 
304 	local_irq_enable();
305 
306 	if (handle_user_split_lock(regs, error_code))
307 		goto out;
308 
309 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
310 		error_code, BUS_ADRALN, NULL);
311 
312 out:
313 	local_irq_disable();
314 }
315 
316 #ifdef CONFIG_VMAP_STACK
317 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
318 						unsigned long fault_address,
319 						struct stack_info *info)
320 {
321 	const char *name = stack_type_name(info->type);
322 
323 	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
324 	       name, (void *)fault_address, info->begin, info->end);
325 
326 	die("stack guard page", regs, 0);
327 
328 	/* Be absolutely certain we don't return. */
329 	panic("%s stack guard hit", name);
330 }
331 #endif
332 
333 /*
334  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
335  *
336  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
337  * SDM's warnings about double faults being unrecoverable, returning works as
338  * expected.  Presumably what the SDM actually means is that the CPU may get
339  * the register state wrong on entry, so returning could be a bad idea.
340  *
341  * Various CPU engineers have promised that double faults due to an IRET fault
342  * while the stack is read-only are, in fact, recoverable.
343  *
344  * On x86_32, this is entered through a task gate, and regs are synthesized
345  * from the TSS.  Returning is, in principle, okay, but changes to regs will
346  * be lost.  If, for some reason, we need to return to a context with modified
347  * regs, the shim code could be adjusted to synchronize the registers.
348  *
349  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
350  * to be read before doing anything else.
351  */
352 DEFINE_IDTENTRY_DF(exc_double_fault)
353 {
354 	static const char str[] = "double fault";
355 	struct task_struct *tsk = current;
356 
357 #ifdef CONFIG_VMAP_STACK
358 	unsigned long address = read_cr2();
359 	struct stack_info info;
360 #endif
361 
362 #ifdef CONFIG_X86_ESPFIX64
363 	extern unsigned char native_irq_return_iret[];
364 
365 	/*
366 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
367 	 * end up promoting it to a doublefault.  In that case, take
368 	 * advantage of the fact that we're not using the normal (TSS.sp0)
369 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
370 	 * and then modify our own IRET frame so that, when we return,
371 	 * we land directly at the #GP(0) vector with the stack already
372 	 * set up according to its expectations.
373 	 *
374 	 * The net result is that our #GP handler will think that we
375 	 * entered from usermode with the bad user context.
376 	 *
377 	 * No need for nmi_enter() here because we don't use RCU.
378 	 */
379 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
380 		regs->cs == __KERNEL_CS &&
381 		regs->ip == (unsigned long)native_irq_return_iret)
382 	{
383 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
384 		unsigned long *p = (unsigned long *)regs->sp;
385 
386 		/*
387 		 * regs->sp points to the failing IRET frame on the
388 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
389 		 * in gpregs->ss through gpregs->ip.
390 		 *
391 		 */
392 		gpregs->ip	= p[0];
393 		gpregs->cs	= p[1];
394 		gpregs->flags	= p[2];
395 		gpregs->sp	= p[3];
396 		gpregs->ss	= p[4];
397 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
398 
399 		/*
400 		 * Adjust our frame so that we return straight to the #GP
401 		 * vector with the expected RSP value.  This is safe because
402 		 * we won't enable interrupts or schedule before we invoke
403 		 * general_protection, so nothing will clobber the stack
404 		 * frame we just set up.
405 		 *
406 		 * We will enter general_protection with kernel GSBASE,
407 		 * which is what the stub expects, given that the faulting
408 		 * RIP will be the IRET instruction.
409 		 */
410 		regs->ip = (unsigned long)asm_exc_general_protection;
411 		regs->sp = (unsigned long)&gpregs->orig_ax;
412 
413 		return;
414 	}
415 #endif
416 
417 	irqentry_nmi_enter(regs);
418 	instrumentation_begin();
419 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
420 
421 	tsk->thread.error_code = error_code;
422 	tsk->thread.trap_nr = X86_TRAP_DF;
423 
424 #ifdef CONFIG_VMAP_STACK
425 	/*
426 	 * If we overflow the stack into a guard page, the CPU will fail
427 	 * to deliver #PF and will send #DF instead.  Similarly, if we
428 	 * take any non-IST exception while too close to the bottom of
429 	 * the stack, the processor will get a page fault while
430 	 * delivering the exception and will generate a double fault.
431 	 *
432 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
433 	 * Page-Fault Exception (#PF):
434 	 *
435 	 *   Processors update CR2 whenever a page fault is detected. If a
436 	 *   second page fault occurs while an earlier page fault is being
437 	 *   delivered, the faulting linear address of the second fault will
438 	 *   overwrite the contents of CR2 (replacing the previous
439 	 *   address). These updates to CR2 occur even if the page fault
440 	 *   results in a double fault or occurs during the delivery of a
441 	 *   double fault.
442 	 *
443 	 * The logic below has a small possibility of incorrectly diagnosing
444 	 * some errors as stack overflows.  For example, if the IDT or GDT
445 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
446 	 * causing #GP and we hit this condition while CR2 coincidentally
447 	 * points to the stack guard page, we'll think we overflowed the
448 	 * stack.  Given that we're going to panic one way or another
449 	 * if this happens, this isn't necessarily worth fixing.
450 	 *
451 	 * If necessary, we could improve the test by only diagnosing
452 	 * a stack overflow if the saved RSP points within 47 bytes of
453 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
454 	 * take an exception, the stack is already aligned and there
455 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
456 	 * possible error code, so a stack overflow would *not* double
457 	 * fault.  With any less space left, exception delivery could
458 	 * fail, and, as a practical matter, we've overflowed the
459 	 * stack even if the actual trigger for the double fault was
460 	 * something else.
461 	 */
462 	if (get_stack_guard_info((void *)address, &info))
463 		handle_stack_overflow(regs, address, &info);
464 #endif
465 
466 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
467 	die("double fault", regs, error_code);
468 	panic("Machine halted.");
469 	instrumentation_end();
470 }
471 
472 DEFINE_IDTENTRY(exc_bounds)
473 {
474 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
475 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
476 		return;
477 	cond_local_irq_enable(regs);
478 
479 	if (!user_mode(regs))
480 		die("bounds", regs, 0);
481 
482 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
483 
484 	cond_local_irq_disable(regs);
485 }
486 
487 enum kernel_gp_hint {
488 	GP_NO_HINT,
489 	GP_NON_CANONICAL,
490 	GP_CANONICAL
491 };
492 
493 /*
494  * When an uncaught #GP occurs, try to determine the memory address accessed by
495  * the instruction and return that address to the caller. Also, try to figure
496  * out whether any part of the access to that address was non-canonical.
497  */
498 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
499 						 unsigned long *addr)
500 {
501 	u8 insn_buf[MAX_INSN_SIZE];
502 	struct insn insn;
503 	int ret;
504 
505 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
506 			MAX_INSN_SIZE))
507 		return GP_NO_HINT;
508 
509 	ret = insn_decode_kernel(&insn, insn_buf);
510 	if (ret < 0)
511 		return GP_NO_HINT;
512 
513 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
514 	if (*addr == -1UL)
515 		return GP_NO_HINT;
516 
517 #ifdef CONFIG_X86_64
518 	/*
519 	 * Check that:
520 	 *  - the operand is not in the kernel half
521 	 *  - the last byte of the operand is not in the user canonical half
522 	 */
523 	if (*addr < ~__VIRTUAL_MASK &&
524 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
525 		return GP_NON_CANONICAL;
526 #endif
527 
528 	return GP_CANONICAL;
529 }
530 
531 #define GPFSTR "general protection fault"
532 
533 static bool fixup_iopl_exception(struct pt_regs *regs)
534 {
535 	struct thread_struct *t = &current->thread;
536 	unsigned char byte;
537 	unsigned long ip;
538 
539 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
540 		return false;
541 
542 	if (insn_get_effective_ip(regs, &ip))
543 		return false;
544 
545 	if (get_user(byte, (const char __user *)ip))
546 		return false;
547 
548 	if (byte != 0xfa && byte != 0xfb)
549 		return false;
550 
551 	if (!t->iopl_warn && printk_ratelimit()) {
552 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
553 		       current->comm, task_pid_nr(current), ip);
554 		print_vma_addr(KERN_CONT " in ", ip);
555 		pr_cont("\n");
556 		t->iopl_warn = 1;
557 	}
558 
559 	regs->ip += 1;
560 	return true;
561 }
562 
563 /*
564  * The unprivileged ENQCMD instruction generates #GPs if the
565  * IA32_PASID MSR has not been populated.  If possible, populate
566  * the MSR from a PASID previously allocated to the mm.
567  */
568 static bool try_fixup_enqcmd_gp(void)
569 {
570 #ifdef CONFIG_ARCH_HAS_CPU_PASID
571 	u32 pasid;
572 
573 	/*
574 	 * MSR_IA32_PASID is managed using XSAVE.  Directly
575 	 * writing to the MSR is only possible when fpregs
576 	 * are valid and the fpstate is not.  This is
577 	 * guaranteed when handling a userspace exception
578 	 * in *before* interrupts are re-enabled.
579 	 */
580 	lockdep_assert_irqs_disabled();
581 
582 	/*
583 	 * Hardware without ENQCMD will not generate
584 	 * #GPs that can be fixed up here.
585 	 */
586 	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
587 		return false;
588 
589 	/*
590 	 * If the mm has not been allocated a
591 	 * PASID, the #GP can not be fixed up.
592 	 */
593 	if (!mm_valid_pasid(current->mm))
594 		return false;
595 
596 	pasid = mm_get_enqcmd_pasid(current->mm);
597 
598 	/*
599 	 * Did this thread already have its PASID activated?
600 	 * If so, the #GP must be from something else.
601 	 */
602 	if (current->pasid_activated)
603 		return false;
604 
605 	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
606 	current->pasid_activated = 1;
607 
608 	return true;
609 #else
610 	return false;
611 #endif
612 }
613 
614 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
615 				    unsigned long error_code, const char *str,
616 				    unsigned long address)
617 {
618 	if (fixup_exception(regs, trapnr, error_code, address))
619 		return true;
620 
621 	current->thread.error_code = error_code;
622 	current->thread.trap_nr = trapnr;
623 
624 	/*
625 	 * To be potentially processing a kprobe fault and to trust the result
626 	 * from kprobe_running(), we have to be non-preemptible.
627 	 */
628 	if (!preemptible() && kprobe_running() &&
629 	    kprobe_fault_handler(regs, trapnr))
630 		return true;
631 
632 	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
633 }
634 
635 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
636 				   unsigned long error_code, const char *str)
637 {
638 	current->thread.error_code = error_code;
639 	current->thread.trap_nr = trapnr;
640 	show_signal(current, SIGSEGV, "", str, regs, error_code);
641 	force_sig(SIGSEGV);
642 }
643 
644 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
645 {
646 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
647 	enum kernel_gp_hint hint = GP_NO_HINT;
648 	unsigned long gp_addr;
649 
650 	if (user_mode(regs) && try_fixup_enqcmd_gp())
651 		return;
652 
653 	cond_local_irq_enable(regs);
654 
655 	if (static_cpu_has(X86_FEATURE_UMIP)) {
656 		if (user_mode(regs) && fixup_umip_exception(regs))
657 			goto exit;
658 	}
659 
660 	if (v8086_mode(regs)) {
661 		local_irq_enable();
662 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
663 		local_irq_disable();
664 		return;
665 	}
666 
667 	if (user_mode(regs)) {
668 		if (fixup_iopl_exception(regs))
669 			goto exit;
670 
671 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
672 			goto exit;
673 
674 		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
675 		goto exit;
676 	}
677 
678 	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
679 		goto exit;
680 
681 	if (error_code)
682 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
683 	else
684 		hint = get_kernel_gp_address(regs, &gp_addr);
685 
686 	if (hint != GP_NO_HINT)
687 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
688 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
689 						    : "maybe for address",
690 			 gp_addr);
691 
692 	/*
693 	 * KASAN is interested only in the non-canonical case, clear it
694 	 * otherwise.
695 	 */
696 	if (hint != GP_NON_CANONICAL)
697 		gp_addr = 0;
698 
699 	die_addr(desc, regs, error_code, gp_addr);
700 
701 exit:
702 	cond_local_irq_disable(regs);
703 }
704 
705 static bool do_int3(struct pt_regs *regs)
706 {
707 	int res;
708 
709 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
710 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
711 			 SIGTRAP) == NOTIFY_STOP)
712 		return true;
713 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
714 
715 #ifdef CONFIG_KPROBES
716 	if (kprobe_int3_handler(regs))
717 		return true;
718 #endif
719 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
720 
721 	return res == NOTIFY_STOP;
722 }
723 NOKPROBE_SYMBOL(do_int3);
724 
725 static void do_int3_user(struct pt_regs *regs)
726 {
727 	if (do_int3(regs))
728 		return;
729 
730 	cond_local_irq_enable(regs);
731 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
732 	cond_local_irq_disable(regs);
733 }
734 
735 DEFINE_IDTENTRY_RAW(exc_int3)
736 {
737 	/*
738 	 * poke_int3_handler() is completely self contained code; it does (and
739 	 * must) *NOT* call out to anything, lest it hits upon yet another
740 	 * INT3.
741 	 */
742 	if (poke_int3_handler(regs))
743 		return;
744 
745 	/*
746 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
747 	 * and therefore can trigger INT3, hence poke_int3_handler() must
748 	 * be done before. If the entry came from kernel mode, then use
749 	 * nmi_enter() because the INT3 could have been hit in any context
750 	 * including NMI.
751 	 */
752 	if (user_mode(regs)) {
753 		irqentry_enter_from_user_mode(regs);
754 		instrumentation_begin();
755 		do_int3_user(regs);
756 		instrumentation_end();
757 		irqentry_exit_to_user_mode(regs);
758 	} else {
759 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
760 
761 		instrumentation_begin();
762 		if (!do_int3(regs))
763 			die("int3", regs, 0);
764 		instrumentation_end();
765 		irqentry_nmi_exit(regs, irq_state);
766 	}
767 }
768 
769 #ifdef CONFIG_X86_64
770 /*
771  * Help handler running on a per-cpu (IST or entry trampoline) stack
772  * to switch to the normal thread stack if the interrupted code was in
773  * user mode. The actual stack switch is done in entry_64.S
774  */
775 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
776 {
777 	struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
778 	if (regs != eregs)
779 		*regs = *eregs;
780 	return regs;
781 }
782 
783 #ifdef CONFIG_AMD_MEM_ENCRYPT
784 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
785 {
786 	unsigned long sp, *stack;
787 	struct stack_info info;
788 	struct pt_regs *regs_ret;
789 
790 	/*
791 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
792 	 * trust it and switch to the current kernel stack
793 	 */
794 	if (ip_within_syscall_gap(regs)) {
795 		sp = current_top_of_stack();
796 		goto sync;
797 	}
798 
799 	/*
800 	 * From here on the RSP value is trusted. Now check whether entry
801 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
802 	 * use the fall-back stack instead in this case.
803 	 */
804 	sp    = regs->sp;
805 	stack = (unsigned long *)sp;
806 
807 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
808 	    info.type > STACK_TYPE_EXCEPTION_LAST)
809 		sp = __this_cpu_ist_top_va(VC2);
810 
811 sync:
812 	/*
813 	 * Found a safe stack - switch to it as if the entry didn't happen via
814 	 * IST stack. The code below only copies pt_regs, the real switch happens
815 	 * in assembly code.
816 	 */
817 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
818 
819 	regs_ret = (struct pt_regs *)sp;
820 	*regs_ret = *regs;
821 
822 	return regs_ret;
823 }
824 #endif
825 
826 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
827 {
828 	struct pt_regs tmp, *new_stack;
829 
830 	/*
831 	 * This is called from entry_64.S early in handling a fault
832 	 * caused by a bad iret to user mode.  To handle the fault
833 	 * correctly, we want to move our stack frame to where it would
834 	 * be had we entered directly on the entry stack (rather than
835 	 * just below the IRET frame) and we want to pretend that the
836 	 * exception came from the IRET target.
837 	 */
838 	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
839 
840 	/* Copy the IRET target to the temporary storage. */
841 	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
842 
843 	/* Copy the remainder of the stack from the current stack. */
844 	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
845 
846 	/* Update the entry stack */
847 	__memcpy(new_stack, &tmp, sizeof(tmp));
848 
849 	BUG_ON(!user_mode(new_stack));
850 	return new_stack;
851 }
852 #endif
853 
854 static bool is_sysenter_singlestep(struct pt_regs *regs)
855 {
856 	/*
857 	 * We don't try for precision here.  If we're anywhere in the region of
858 	 * code that can be single-stepped in the SYSENTER entry path, then
859 	 * assume that this is a useless single-step trap due to SYSENTER
860 	 * being invoked with TF set.  (We don't know in advance exactly
861 	 * which instructions will be hit because BTF could plausibly
862 	 * be set.)
863 	 */
864 #ifdef CONFIG_X86_32
865 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
866 		(unsigned long)__end_SYSENTER_singlestep_region -
867 		(unsigned long)__begin_SYSENTER_singlestep_region;
868 #elif defined(CONFIG_IA32_EMULATION)
869 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
870 		(unsigned long)__end_entry_SYSENTER_compat -
871 		(unsigned long)entry_SYSENTER_compat;
872 #else
873 	return false;
874 #endif
875 }
876 
877 static __always_inline unsigned long debug_read_clear_dr6(void)
878 {
879 	unsigned long dr6;
880 
881 	/*
882 	 * The Intel SDM says:
883 	 *
884 	 *   Certain debug exceptions may clear bits 0-3. The remaining
885 	 *   contents of the DR6 register are never cleared by the
886 	 *   processor. To avoid confusion in identifying debug
887 	 *   exceptions, debug handlers should clear the register before
888 	 *   returning to the interrupted task.
889 	 *
890 	 * Keep it simple: clear DR6 immediately.
891 	 */
892 	get_debugreg(dr6, 6);
893 	set_debugreg(DR6_RESERVED, 6);
894 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
895 
896 	return dr6;
897 }
898 
899 /*
900  * Our handling of the processor debug registers is non-trivial.
901  * We do not clear them on entry and exit from the kernel. Therefore
902  * it is possible to get a watchpoint trap here from inside the kernel.
903  * However, the code in ./ptrace.c has ensured that the user can
904  * only set watchpoints on userspace addresses. Therefore the in-kernel
905  * watchpoint trap can only occur in code which is reading/writing
906  * from user space. Such code must not hold kernel locks (since it
907  * can equally take a page fault), therefore it is safe to call
908  * force_sig_info even though that claims and releases locks.
909  *
910  * Code in ./signal.c ensures that the debug control register
911  * is restored before we deliver any signal, and therefore that
912  * user code runs with the correct debug control register even though
913  * we clear it here.
914  *
915  * Being careful here means that we don't have to be as careful in a
916  * lot of more complicated places (task switching can be a bit lazy
917  * about restoring all the debug state, and ptrace doesn't have to
918  * find every occurrence of the TF bit that could be saved away even
919  * by user code)
920  *
921  * May run on IST stack.
922  */
923 
924 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
925 {
926 	/*
927 	 * Notifiers will clear bits in @dr6 to indicate the event has been
928 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
929 	 *
930 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
931 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
932 	 */
933 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
934 		return true;
935 
936 	return false;
937 }
938 
939 static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
940 {
941 	/*
942 	 * Disable breakpoints during exception handling; recursive exceptions
943 	 * are exceedingly 'fun'.
944 	 *
945 	 * Since this function is NOKPROBE, and that also applies to
946 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
947 	 * HW_BREAKPOINT_W on our stack)
948 	 *
949 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
950 	 * includes the entry stack is excluded for everything.
951 	 *
952 	 * For FRED, nested #DB should just work fine. But when a watchpoint or
953 	 * breakpoint is set in the code path which is executed by #DB handler,
954 	 * it results in an endless recursion and stack overflow. Thus we stay
955 	 * with the IDT approach, i.e., save DR7 and disable #DB.
956 	 */
957 	unsigned long dr7 = local_db_save();
958 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
959 	instrumentation_begin();
960 
961 	/*
962 	 * If something gets miswired and we end up here for a user mode
963 	 * #DB, we will malfunction.
964 	 */
965 	WARN_ON_ONCE(user_mode(regs));
966 
967 	if (test_thread_flag(TIF_BLOCKSTEP)) {
968 		/*
969 		 * The SDM says "The processor clears the BTF flag when it
970 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
971 		 * it for userspace, but we just took a kernel #DB, so re-set
972 		 * BTF.
973 		 */
974 		unsigned long debugctl;
975 
976 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
977 		debugctl |= DEBUGCTLMSR_BTF;
978 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
979 	}
980 
981 	/*
982 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
983 	 * watchpoint at the same time then that will still be handled.
984 	 */
985 	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
986 	    (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
987 		dr6 &= ~DR_STEP;
988 
989 	/*
990 	 * The kernel doesn't use INT1
991 	 */
992 	if (!dr6)
993 		goto out;
994 
995 	if (notify_debug(regs, &dr6))
996 		goto out;
997 
998 	/*
999 	 * The kernel doesn't use TF single-step outside of:
1000 	 *
1001 	 *  - Kprobes, consumed through kprobe_debug_handler()
1002 	 *  - KGDB, consumed through notify_debug()
1003 	 *
1004 	 * So if we get here with DR_STEP set, something is wonky.
1005 	 *
1006 	 * A known way to trigger this is through QEMU's GDB stub,
1007 	 * which leaks #DB into the guest and causes IST recursion.
1008 	 */
1009 	if (WARN_ON_ONCE(dr6 & DR_STEP))
1010 		regs->flags &= ~X86_EFLAGS_TF;
1011 out:
1012 	instrumentation_end();
1013 	irqentry_nmi_exit(regs, irq_state);
1014 
1015 	local_db_restore(dr7);
1016 }
1017 
1018 static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1019 {
1020 	bool icebp;
1021 
1022 	/*
1023 	 * If something gets miswired and we end up here for a kernel mode
1024 	 * #DB, we will malfunction.
1025 	 */
1026 	WARN_ON_ONCE(!user_mode(regs));
1027 
1028 	/*
1029 	 * NB: We can't easily clear DR7 here because
1030 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1031 	 * user memory, etc.  This means that a recursive #DB is possible.  If
1032 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1033 	 * Since we're not on the IST stack right now, everything will be
1034 	 * fine.
1035 	 */
1036 
1037 	irqentry_enter_from_user_mode(regs);
1038 	instrumentation_begin();
1039 
1040 	/*
1041 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1042 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1043 	 *
1044 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1045 	 * even if it is not the result of PTRACE_SINGLESTEP.
1046 	 */
1047 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1048 
1049 	/*
1050 	 * The SDM says "The processor clears the BTF flag when it
1051 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1052 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1053 	 */
1054 	clear_thread_flag(TIF_BLOCKSTEP);
1055 
1056 	/*
1057 	 * If dr6 has no reason to give us about the origin of this trap,
1058 	 * then it's very likely the result of an icebp/int01 trap.
1059 	 * User wants a sigtrap for that.
1060 	 */
1061 	icebp = !dr6;
1062 
1063 	if (notify_debug(regs, &dr6))
1064 		goto out;
1065 
1066 	/* It's safe to allow irq's after DR6 has been saved */
1067 	local_irq_enable();
1068 
1069 	if (v8086_mode(regs)) {
1070 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1071 		goto out_irq;
1072 	}
1073 
1074 	/* #DB for bus lock can only be triggered from userspace. */
1075 	if (dr6 & DR_BUS_LOCK)
1076 		handle_bus_lock(regs);
1077 
1078 	/* Add the virtual_dr6 bits for signals. */
1079 	dr6 |= current->thread.virtual_dr6;
1080 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1081 		send_sigtrap(regs, 0, get_si_code(dr6));
1082 
1083 out_irq:
1084 	local_irq_disable();
1085 out:
1086 	instrumentation_end();
1087 	irqentry_exit_to_user_mode(regs);
1088 }
1089 
1090 #ifdef CONFIG_X86_64
1091 /* IST stack entry */
1092 DEFINE_IDTENTRY_DEBUG(exc_debug)
1093 {
1094 	exc_debug_kernel(regs, debug_read_clear_dr6());
1095 }
1096 
1097 /* User entry, runs on regular task stack */
1098 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1099 {
1100 	exc_debug_user(regs, debug_read_clear_dr6());
1101 }
1102 
1103 #ifdef CONFIG_X86_FRED
1104 /*
1105  * When occurred on different ring level, i.e., from user or kernel
1106  * context, #DB needs to be handled on different stack: User #DB on
1107  * current task stack, while kernel #DB on a dedicated stack.
1108  *
1109  * This is exactly how FRED event delivery invokes an exception
1110  * handler: ring 3 event on level 0 stack, i.e., current task stack;
1111  * ring 0 event on the #DB dedicated stack specified in the
1112  * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1113  * entry stub doesn't do stack switch.
1114  */
1115 DEFINE_FREDENTRY_DEBUG(exc_debug)
1116 {
1117 	/*
1118 	 * FRED #DB stores DR6 on the stack in the format which
1119 	 * debug_read_clear_dr6() returns for the IDT entry points.
1120 	 */
1121 	unsigned long dr6 = fred_event_data(regs);
1122 
1123 	if (user_mode(regs))
1124 		exc_debug_user(regs, dr6);
1125 	else
1126 		exc_debug_kernel(regs, dr6);
1127 }
1128 #endif /* CONFIG_X86_FRED */
1129 
1130 #else
1131 /* 32 bit does not have separate entry points. */
1132 DEFINE_IDTENTRY_RAW(exc_debug)
1133 {
1134 	unsigned long dr6 = debug_read_clear_dr6();
1135 
1136 	if (user_mode(regs))
1137 		exc_debug_user(regs, dr6);
1138 	else
1139 		exc_debug_kernel(regs, dr6);
1140 }
1141 #endif
1142 
1143 /*
1144  * Note that we play around with the 'TS' bit in an attempt to get
1145  * the correct behaviour even in the presence of the asynchronous
1146  * IRQ13 behaviour
1147  */
1148 static void math_error(struct pt_regs *regs, int trapnr)
1149 {
1150 	struct task_struct *task = current;
1151 	struct fpu *fpu = &task->thread.fpu;
1152 	int si_code;
1153 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1154 						"simd exception";
1155 
1156 	cond_local_irq_enable(regs);
1157 
1158 	if (!user_mode(regs)) {
1159 		if (fixup_exception(regs, trapnr, 0, 0))
1160 			goto exit;
1161 
1162 		task->thread.error_code = 0;
1163 		task->thread.trap_nr = trapnr;
1164 
1165 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1166 			       SIGFPE) != NOTIFY_STOP)
1167 			die(str, regs, 0);
1168 		goto exit;
1169 	}
1170 
1171 	/*
1172 	 * Synchronize the FPU register state to the memory register state
1173 	 * if necessary. This allows the exception handler to inspect it.
1174 	 */
1175 	fpu_sync_fpstate(fpu);
1176 
1177 	task->thread.trap_nr	= trapnr;
1178 	task->thread.error_code = 0;
1179 
1180 	si_code = fpu__exception_code(fpu, trapnr);
1181 	/* Retry when we get spurious exceptions: */
1182 	if (!si_code)
1183 		goto exit;
1184 
1185 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1186 		goto exit;
1187 
1188 	force_sig_fault(SIGFPE, si_code,
1189 			(void __user *)uprobe_get_trap_addr(regs));
1190 exit:
1191 	cond_local_irq_disable(regs);
1192 }
1193 
1194 DEFINE_IDTENTRY(exc_coprocessor_error)
1195 {
1196 	math_error(regs, X86_TRAP_MF);
1197 }
1198 
1199 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1200 {
1201 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1202 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1203 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1204 			__exc_general_protection(regs, 0);
1205 			return;
1206 		}
1207 	}
1208 	math_error(regs, X86_TRAP_XF);
1209 }
1210 
1211 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1212 {
1213 	/*
1214 	 * This addresses a Pentium Pro Erratum:
1215 	 *
1216 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1217 	 * Virtual Wire mode implemented through the local APIC, an
1218 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1219 	 * generated by the local APIC (Int 15).  This vector may be
1220 	 * generated upon receipt of a spurious interrupt (an interrupt
1221 	 * which is removed before the system receives the INTA sequence)
1222 	 * instead of the programmed 8259 spurious interrupt vector.
1223 	 *
1224 	 * IMPLICATION: The spurious interrupt vector programmed in the
1225 	 * 8259 is normally handled by an operating system's spurious
1226 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1227 	 * operating systems, which would crash if this erratum occurred.
1228 	 *
1229 	 * In theory this could be limited to 32bit, but the handler is not
1230 	 * hurting and who knows which other CPUs suffer from this.
1231 	 */
1232 }
1233 
1234 static bool handle_xfd_event(struct pt_regs *regs)
1235 {
1236 	u64 xfd_err;
1237 	int err;
1238 
1239 	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1240 		return false;
1241 
1242 	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1243 	if (!xfd_err)
1244 		return false;
1245 
1246 	wrmsrl(MSR_IA32_XFD_ERR, 0);
1247 
1248 	/* Die if that happens in kernel space */
1249 	if (WARN_ON(!user_mode(regs)))
1250 		return false;
1251 
1252 	local_irq_enable();
1253 
1254 	err = xfd_enable_feature(xfd_err);
1255 
1256 	switch (err) {
1257 	case -EPERM:
1258 		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1259 		break;
1260 	case -EFAULT:
1261 		force_sig(SIGSEGV);
1262 		break;
1263 	}
1264 
1265 	local_irq_disable();
1266 	return true;
1267 }
1268 
1269 DEFINE_IDTENTRY(exc_device_not_available)
1270 {
1271 	unsigned long cr0 = read_cr0();
1272 
1273 	if (handle_xfd_event(regs))
1274 		return;
1275 
1276 #ifdef CONFIG_MATH_EMULATION
1277 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1278 		struct math_emu_info info = { };
1279 
1280 		cond_local_irq_enable(regs);
1281 
1282 		info.regs = regs;
1283 		math_emulate(&info);
1284 
1285 		cond_local_irq_disable(regs);
1286 		return;
1287 	}
1288 #endif
1289 
1290 	/* This should not happen. */
1291 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1292 		/* Try to fix it up and carry on. */
1293 		write_cr0(cr0 & ~X86_CR0_TS);
1294 	} else {
1295 		/*
1296 		 * Something terrible happened, and we're better off trying
1297 		 * to kill the task than getting stuck in a never-ending
1298 		 * loop of #NM faults.
1299 		 */
1300 		die("unexpected #NM exception", regs, 0);
1301 	}
1302 }
1303 
1304 #ifdef CONFIG_INTEL_TDX_GUEST
1305 
1306 #define VE_FAULT_STR "VE fault"
1307 
1308 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1309 			   unsigned long address)
1310 {
1311 	if (user_mode(regs)) {
1312 		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1313 		return;
1314 	}
1315 
1316 	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1317 				    VE_FAULT_STR, address)) {
1318 		return;
1319 	}
1320 
1321 	die_addr(VE_FAULT_STR, regs, error_code, address);
1322 }
1323 
1324 /*
1325  * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1326  * specific guest actions which may happen in either user space or the
1327  * kernel:
1328  *
1329  *  * Specific instructions (WBINVD, for example)
1330  *  * Specific MSR accesses
1331  *  * Specific CPUID leaf accesses
1332  *  * Access to specific guest physical addresses
1333  *
1334  * In the settings that Linux will run in, virtualization exceptions are
1335  * never generated on accesses to normal, TD-private memory that has been
1336  * accepted (by BIOS or with tdx_enc_status_changed()).
1337  *
1338  * Syscall entry code has a critical window where the kernel stack is not
1339  * yet set up. Any exception in this window leads to hard to debug issues
1340  * and can be exploited for privilege escalation. Exceptions in the NMI
1341  * entry code also cause issues. Returning from the exception handler with
1342  * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1343  *
1344  * For these reasons, the kernel avoids #VEs during the syscall gap and
1345  * the NMI entry code. Entry code paths do not access TD-shared memory,
1346  * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1347  * that might generate #VE. VMM can remove memory from TD at any point,
1348  * but access to unaccepted (or missing) private memory leads to VM
1349  * termination, not to #VE.
1350  *
1351  * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1352  * handlers once the kernel is ready to deal with nested NMIs.
1353  *
1354  * During #VE delivery, all interrupts, including NMIs, are blocked until
1355  * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1356  * the VE info.
1357  *
1358  * If a guest kernel action which would normally cause a #VE occurs in
1359  * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1360  * exception) is delivered to the guest which will result in an oops.
1361  *
1362  * The entry code has been audited carefully for following these expectations.
1363  * Changes in the entry code have to be audited for correctness vs. this
1364  * aspect. Similarly to #PF, #VE in these places will expose kernel to
1365  * privilege escalation or may lead to random crashes.
1366  */
1367 DEFINE_IDTENTRY(exc_virtualization_exception)
1368 {
1369 	struct ve_info ve;
1370 
1371 	/*
1372 	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1373 	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1374 	 * info cannot be overwritten by a nested #VE.
1375 	 */
1376 	tdx_get_ve_info(&ve);
1377 
1378 	cond_local_irq_enable(regs);
1379 
1380 	/*
1381 	 * If tdx_handle_virt_exception() could not process
1382 	 * it successfully, treat it as #GP(0) and handle it.
1383 	 */
1384 	if (!tdx_handle_virt_exception(regs, &ve))
1385 		ve_raise_fault(regs, 0, ve.gla);
1386 
1387 	cond_local_irq_disable(regs);
1388 }
1389 
1390 #endif
1391 
1392 #ifdef CONFIG_X86_32
1393 DEFINE_IDTENTRY_SW(iret_error)
1394 {
1395 	local_irq_enable();
1396 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1397 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1398 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1399 			ILL_BADSTK, (void __user *)NULL);
1400 	}
1401 	local_irq_disable();
1402 }
1403 #endif
1404 
1405 /* Do not enable FRED by default yet. */
1406 static bool enable_fred __ro_after_init = false;
1407 
1408 #ifdef CONFIG_X86_FRED
1409 static int __init fred_setup(char *str)
1410 {
1411 	if (!str)
1412 		return -EINVAL;
1413 
1414 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
1415 		return 0;
1416 
1417 	if (!strcmp(str, "on"))
1418 		enable_fred = true;
1419 	else if (!strcmp(str, "off"))
1420 		enable_fred = false;
1421 	else
1422 		pr_warn("invalid FRED option: 'fred=%s'\n", str);
1423 	return 0;
1424 }
1425 early_param("fred", fred_setup);
1426 #endif
1427 
1428 void __init trap_init(void)
1429 {
1430 	if (cpu_feature_enabled(X86_FEATURE_FRED) && !enable_fred)
1431 		setup_clear_cpu_cap(X86_FEATURE_FRED);
1432 
1433 	/* Init cpu_entry_area before IST entries are set up */
1434 	setup_cpu_entry_areas();
1435 
1436 	/* Init GHCB memory pages when running as an SEV-ES guest */
1437 	sev_es_init_vc_handling();
1438 
1439 	/* Initialize TSS before setting up traps so ISTs work */
1440 	cpu_init_exception_handling();
1441 
1442 	/* Setup traps as cpu_init() might #GP */
1443 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
1444 		idt_setup_traps();
1445 
1446 	cpu_init();
1447 }
1448