xref: /linux/arch/x86/kernel/traps.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/uaccess.h>
17 #include <linux/kdebug.h>
18 #include <linux/kgdb.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/ptrace.h>
22 #include <linux/string.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/kexec.h>
26 #include <linux/sched.h>
27 #include <linux/timer.h>
28 #include <linux/init.h>
29 #include <linux/bug.h>
30 #include <linux/nmi.h>
31 #include <linux/mm.h>
32 #include <linux/smp.h>
33 #include <linux/io.h>
34 
35 #ifdef CONFIG_EISA
36 #include <linux/ioport.h>
37 #include <linux/eisa.h>
38 #endif
39 
40 #ifdef CONFIG_MCA
41 #include <linux/mca.h>
42 #endif
43 
44 #if defined(CONFIG_EDAC)
45 #include <linux/edac.h>
46 #endif
47 
48 #include <asm/kmemcheck.h>
49 #include <asm/stacktrace.h>
50 #include <asm/processor.h>
51 #include <asm/debugreg.h>
52 #include <asm/atomic.h>
53 #include <asm/system.h>
54 #include <asm/traps.h>
55 #include <asm/desc.h>
56 #include <asm/i387.h>
57 #include <asm/mce.h>
58 
59 #include <asm/mach_traps.h>
60 
61 #ifdef CONFIG_X86_64
62 #include <asm/x86_init.h>
63 #include <asm/pgalloc.h>
64 #include <asm/proto.h>
65 #else
66 #include <asm/processor-flags.h>
67 #include <asm/setup.h>
68 
69 asmlinkage int system_call(void);
70 
71 /* Do we ignore FPU interrupts ? */
72 char ignore_fpu_irq;
73 
74 /*
75  * The IDT has to be page-aligned to simplify the Pentium
76  * F0 0F bug workaround.
77  */
78 gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
79 #endif
80 
81 DECLARE_BITMAP(used_vectors, NR_VECTORS);
82 EXPORT_SYMBOL_GPL(used_vectors);
83 
84 static int ignore_nmis;
85 
86 static inline void conditional_sti(struct pt_regs *regs)
87 {
88 	if (regs->flags & X86_EFLAGS_IF)
89 		local_irq_enable();
90 }
91 
92 static inline void preempt_conditional_sti(struct pt_regs *regs)
93 {
94 	inc_preempt_count();
95 	if (regs->flags & X86_EFLAGS_IF)
96 		local_irq_enable();
97 }
98 
99 static inline void conditional_cli(struct pt_regs *regs)
100 {
101 	if (regs->flags & X86_EFLAGS_IF)
102 		local_irq_disable();
103 }
104 
105 static inline void preempt_conditional_cli(struct pt_regs *regs)
106 {
107 	if (regs->flags & X86_EFLAGS_IF)
108 		local_irq_disable();
109 	dec_preempt_count();
110 }
111 
112 static void __kprobes
113 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
114 	long error_code, siginfo_t *info)
115 {
116 	struct task_struct *tsk = current;
117 
118 #ifdef CONFIG_X86_32
119 	if (regs->flags & X86_VM_MASK) {
120 		/*
121 		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
122 		 * On nmi (interrupt 2), do_trap should not be called.
123 		 */
124 		if (trapnr < 6)
125 			goto vm86_trap;
126 		goto trap_signal;
127 	}
128 #endif
129 
130 	if (!user_mode(regs))
131 		goto kernel_trap;
132 
133 #ifdef CONFIG_X86_32
134 trap_signal:
135 #endif
136 	/*
137 	 * We want error_code and trap_no set for userspace faults and
138 	 * kernelspace faults which result in die(), but not
139 	 * kernelspace faults which are fixed up.  die() gives the
140 	 * process no chance to handle the signal and notice the
141 	 * kernel fault information, so that won't result in polluting
142 	 * the information about previously queued, but not yet
143 	 * delivered, faults.  See also do_general_protection below.
144 	 */
145 	tsk->thread.error_code = error_code;
146 	tsk->thread.trap_no = trapnr;
147 
148 #ifdef CONFIG_X86_64
149 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
150 	    printk_ratelimit()) {
151 		printk(KERN_INFO
152 		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
153 		       tsk->comm, tsk->pid, str,
154 		       regs->ip, regs->sp, error_code);
155 		print_vma_addr(" in ", regs->ip);
156 		printk("\n");
157 	}
158 #endif
159 
160 	if (info)
161 		force_sig_info(signr, info, tsk);
162 	else
163 		force_sig(signr, tsk);
164 	return;
165 
166 kernel_trap:
167 	if (!fixup_exception(regs)) {
168 		tsk->thread.error_code = error_code;
169 		tsk->thread.trap_no = trapnr;
170 		die(str, regs, error_code);
171 	}
172 	return;
173 
174 #ifdef CONFIG_X86_32
175 vm86_trap:
176 	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
177 						error_code, trapnr))
178 		goto trap_signal;
179 	return;
180 #endif
181 }
182 
183 #define DO_ERROR(trapnr, signr, str, name)				\
184 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
185 {									\
186 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
187 							== NOTIFY_STOP)	\
188 		return;							\
189 	conditional_sti(regs);						\
190 	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
191 }
192 
193 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
194 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
195 {									\
196 	siginfo_t info;							\
197 	info.si_signo = signr;						\
198 	info.si_errno = 0;						\
199 	info.si_code = sicode;						\
200 	info.si_addr = (void __user *)siaddr;				\
201 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
202 							== NOTIFY_STOP)	\
203 		return;							\
204 	conditional_sti(regs);						\
205 	do_trap(trapnr, signr, str, regs, error_code, &info);		\
206 }
207 
208 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
209 DO_ERROR(4, SIGSEGV, "overflow", overflow)
210 DO_ERROR(5, SIGSEGV, "bounds", bounds)
211 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
212 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
213 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
214 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
215 #ifdef CONFIG_X86_32
216 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
217 #endif
218 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
219 
220 #ifdef CONFIG_X86_64
221 /* Runs on IST stack */
222 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
223 {
224 	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
225 			12, SIGBUS) == NOTIFY_STOP)
226 		return;
227 	preempt_conditional_sti(regs);
228 	do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
229 	preempt_conditional_cli(regs);
230 }
231 
232 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
233 {
234 	static const char str[] = "double fault";
235 	struct task_struct *tsk = current;
236 
237 	/* Return not checked because double check cannot be ignored */
238 	notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
239 
240 	tsk->thread.error_code = error_code;
241 	tsk->thread.trap_no = 8;
242 
243 	/*
244 	 * This is always a kernel trap and never fixable (and thus must
245 	 * never return).
246 	 */
247 	for (;;)
248 		die(str, regs, error_code);
249 }
250 #endif
251 
252 dotraplinkage void __kprobes
253 do_general_protection(struct pt_regs *regs, long error_code)
254 {
255 	struct task_struct *tsk;
256 
257 	conditional_sti(regs);
258 
259 #ifdef CONFIG_X86_32
260 	if (regs->flags & X86_VM_MASK)
261 		goto gp_in_vm86;
262 #endif
263 
264 	tsk = current;
265 	if (!user_mode(regs))
266 		goto gp_in_kernel;
267 
268 	tsk->thread.error_code = error_code;
269 	tsk->thread.trap_no = 13;
270 
271 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
272 			printk_ratelimit()) {
273 		printk(KERN_INFO
274 			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
275 			tsk->comm, task_pid_nr(tsk),
276 			regs->ip, regs->sp, error_code);
277 		print_vma_addr(" in ", regs->ip);
278 		printk("\n");
279 	}
280 
281 	force_sig(SIGSEGV, tsk);
282 	return;
283 
284 #ifdef CONFIG_X86_32
285 gp_in_vm86:
286 	local_irq_enable();
287 	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
288 	return;
289 #endif
290 
291 gp_in_kernel:
292 	if (fixup_exception(regs))
293 		return;
294 
295 	tsk->thread.error_code = error_code;
296 	tsk->thread.trap_no = 13;
297 	if (notify_die(DIE_GPF, "general protection fault", regs,
298 				error_code, 13, SIGSEGV) == NOTIFY_STOP)
299 		return;
300 	die("general protection fault", regs, error_code);
301 }
302 
303 static notrace __kprobes void
304 mem_parity_error(unsigned char reason, struct pt_regs *regs)
305 {
306 	printk(KERN_EMERG
307 		"Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
308 			reason, smp_processor_id());
309 
310 	printk(KERN_EMERG
311 		"You have some hardware problem, likely on the PCI bus.\n");
312 
313 #if defined(CONFIG_EDAC)
314 	if (edac_handler_set()) {
315 		edac_atomic_assert_error();
316 		return;
317 	}
318 #endif
319 
320 	if (panic_on_unrecovered_nmi)
321 		panic("NMI: Not continuing");
322 
323 	printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
324 
325 	/* Clear and disable the memory parity error line. */
326 	reason = (reason & 0xf) | 4;
327 	outb(reason, 0x61);
328 }
329 
330 static notrace __kprobes void
331 io_check_error(unsigned char reason, struct pt_regs *regs)
332 {
333 	unsigned long i;
334 
335 	printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
336 	show_registers(regs);
337 
338 	if (panic_on_io_nmi)
339 		panic("NMI IOCK error: Not continuing");
340 
341 	/* Re-enable the IOCK line, wait for a few seconds */
342 	reason = (reason & 0xf) | 8;
343 	outb(reason, 0x61);
344 
345 	i = 2000;
346 	while (--i)
347 		udelay(1000);
348 
349 	reason &= ~8;
350 	outb(reason, 0x61);
351 }
352 
353 static notrace __kprobes void
354 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
355 {
356 	if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) ==
357 			NOTIFY_STOP)
358 		return;
359 #ifdef CONFIG_MCA
360 	/*
361 	 * Might actually be able to figure out what the guilty party
362 	 * is:
363 	 */
364 	if (MCA_bus) {
365 		mca_handle_nmi();
366 		return;
367 	}
368 #endif
369 	printk(KERN_EMERG
370 		"Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
371 			reason, smp_processor_id());
372 
373 	printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
374 	if (panic_on_unrecovered_nmi)
375 		panic("NMI: Not continuing");
376 
377 	printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
378 }
379 
380 static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
381 {
382 	unsigned char reason = 0;
383 	int cpu;
384 
385 	cpu = smp_processor_id();
386 
387 	/* Only the BSP gets external NMIs from the system. */
388 	if (!cpu)
389 		reason = get_nmi_reason();
390 
391 	if (!(reason & 0xc0)) {
392 		if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
393 								== NOTIFY_STOP)
394 			return;
395 
396 #ifdef CONFIG_X86_LOCAL_APIC
397 		if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT)
398 							== NOTIFY_STOP)
399 			return;
400 
401 #ifndef CONFIG_LOCKUP_DETECTOR
402 		/*
403 		 * Ok, so this is none of the documented NMI sources,
404 		 * so it must be the NMI watchdog.
405 		 */
406 		if (nmi_watchdog_tick(regs, reason))
407 			return;
408 		if (!do_nmi_callback(regs, cpu))
409 #endif /* !CONFIG_LOCKUP_DETECTOR */
410 			unknown_nmi_error(reason, regs);
411 #else
412 		unknown_nmi_error(reason, regs);
413 #endif
414 
415 		return;
416 	}
417 	if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
418 		return;
419 
420 	/* AK: following checks seem to be broken on modern chipsets. FIXME */
421 	if (reason & 0x80)
422 		mem_parity_error(reason, regs);
423 	if (reason & 0x40)
424 		io_check_error(reason, regs);
425 #ifdef CONFIG_X86_32
426 	/*
427 	 * Reassert NMI in case it became active meanwhile
428 	 * as it's edge-triggered:
429 	 */
430 	reassert_nmi();
431 #endif
432 }
433 
434 dotraplinkage notrace __kprobes void
435 do_nmi(struct pt_regs *regs, long error_code)
436 {
437 	nmi_enter();
438 
439 	inc_irq_stat(__nmi_count);
440 
441 	if (!ignore_nmis)
442 		default_do_nmi(regs);
443 
444 	nmi_exit();
445 }
446 
447 void stop_nmi(void)
448 {
449 	acpi_nmi_disable();
450 	ignore_nmis++;
451 }
452 
453 void restart_nmi(void)
454 {
455 	ignore_nmis--;
456 	acpi_nmi_enable();
457 }
458 
459 /* May run on IST stack. */
460 dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
461 {
462 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
463 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
464 			== NOTIFY_STOP)
465 		return;
466 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
467 #ifdef CONFIG_KPROBES
468 	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
469 			== NOTIFY_STOP)
470 		return;
471 #else
472 	if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP)
473 			== NOTIFY_STOP)
474 		return;
475 #endif
476 
477 	preempt_conditional_sti(regs);
478 	do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
479 	preempt_conditional_cli(regs);
480 }
481 
482 #ifdef CONFIG_X86_64
483 /*
484  * Help handler running on IST stack to switch back to user stack
485  * for scheduling or signal handling. The actual stack switch is done in
486  * entry.S
487  */
488 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
489 {
490 	struct pt_regs *regs = eregs;
491 	/* Did already sync */
492 	if (eregs == (struct pt_regs *)eregs->sp)
493 		;
494 	/* Exception from user space */
495 	else if (user_mode(eregs))
496 		regs = task_pt_regs(current);
497 	/*
498 	 * Exception from kernel and interrupts are enabled. Move to
499 	 * kernel process stack.
500 	 */
501 	else if (eregs->flags & X86_EFLAGS_IF)
502 		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
503 	if (eregs != regs)
504 		*regs = *eregs;
505 	return regs;
506 }
507 #endif
508 
509 /*
510  * Our handling of the processor debug registers is non-trivial.
511  * We do not clear them on entry and exit from the kernel. Therefore
512  * it is possible to get a watchpoint trap here from inside the kernel.
513  * However, the code in ./ptrace.c has ensured that the user can
514  * only set watchpoints on userspace addresses. Therefore the in-kernel
515  * watchpoint trap can only occur in code which is reading/writing
516  * from user space. Such code must not hold kernel locks (since it
517  * can equally take a page fault), therefore it is safe to call
518  * force_sig_info even though that claims and releases locks.
519  *
520  * Code in ./signal.c ensures that the debug control register
521  * is restored before we deliver any signal, and therefore that
522  * user code runs with the correct debug control register even though
523  * we clear it here.
524  *
525  * Being careful here means that we don't have to be as careful in a
526  * lot of more complicated places (task switching can be a bit lazy
527  * about restoring all the debug state, and ptrace doesn't have to
528  * find every occurrence of the TF bit that could be saved away even
529  * by user code)
530  *
531  * May run on IST stack.
532  */
533 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
534 {
535 	struct task_struct *tsk = current;
536 	int user_icebp = 0;
537 	unsigned long dr6;
538 	int si_code;
539 
540 	get_debugreg(dr6, 6);
541 
542 	/* Filter out all the reserved bits which are preset to 1 */
543 	dr6 &= ~DR6_RESERVED;
544 
545 	/*
546 	 * If dr6 has no reason to give us about the origin of this trap,
547 	 * then it's very likely the result of an icebp/int01 trap.
548 	 * User wants a sigtrap for that.
549 	 */
550 	if (!dr6 && user_mode(regs))
551 		user_icebp = 1;
552 
553 	/* Catch kmemcheck conditions first of all! */
554 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
555 		return;
556 
557 	/* DR6 may or may not be cleared by the CPU */
558 	set_debugreg(0, 6);
559 
560 	/*
561 	 * The processor cleared BTF, so don't mark that we need it set.
562 	 */
563 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
564 
565 	/* Store the virtualized DR6 value */
566 	tsk->thread.debugreg6 = dr6;
567 
568 	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
569 							SIGTRAP) == NOTIFY_STOP)
570 		return;
571 
572 	/* It's safe to allow irq's after DR6 has been saved */
573 	preempt_conditional_sti(regs);
574 
575 	if (regs->flags & X86_VM_MASK) {
576 		handle_vm86_trap((struct kernel_vm86_regs *) regs,
577 				error_code, 1);
578 		return;
579 	}
580 
581 	/*
582 	 * Single-stepping through system calls: ignore any exceptions in
583 	 * kernel space, but re-enable TF when returning to user mode.
584 	 *
585 	 * We already checked v86 mode above, so we can check for kernel mode
586 	 * by just checking the CPL of CS.
587 	 */
588 	if ((dr6 & DR_STEP) && !user_mode(regs)) {
589 		tsk->thread.debugreg6 &= ~DR_STEP;
590 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
591 		regs->flags &= ~X86_EFLAGS_TF;
592 	}
593 	si_code = get_si_code(tsk->thread.debugreg6);
594 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
595 		send_sigtrap(tsk, regs, error_code, si_code);
596 	preempt_conditional_cli(regs);
597 
598 	return;
599 }
600 
601 /*
602  * Note that we play around with the 'TS' bit in an attempt to get
603  * the correct behaviour even in the presence of the asynchronous
604  * IRQ13 behaviour
605  */
606 void math_error(struct pt_regs *regs, int error_code, int trapnr)
607 {
608 	struct task_struct *task = current;
609 	siginfo_t info;
610 	unsigned short err;
611 	char *str = (trapnr == 16) ? "fpu exception" : "simd exception";
612 
613 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
614 		return;
615 	conditional_sti(regs);
616 
617 	if (!user_mode_vm(regs))
618 	{
619 		if (!fixup_exception(regs)) {
620 			task->thread.error_code = error_code;
621 			task->thread.trap_no = trapnr;
622 			die(str, regs, error_code);
623 		}
624 		return;
625 	}
626 
627 	/*
628 	 * Save the info for the exception handler and clear the error.
629 	 */
630 	save_init_fpu(task);
631 	task->thread.trap_no = trapnr;
632 	task->thread.error_code = error_code;
633 	info.si_signo = SIGFPE;
634 	info.si_errno = 0;
635 	info.si_addr = (void __user *)regs->ip;
636 	if (trapnr == 16) {
637 		unsigned short cwd, swd;
638 		/*
639 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
640 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
641 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
642 		 * fault bit.  We should only be taking one exception at a time,
643 		 * so if this combination doesn't produce any single exception,
644 		 * then we have a bad program that isn't synchronizing its FPU usage
645 		 * and it will suffer the consequences since we won't be able to
646 		 * fully reproduce the context of the exception
647 		 */
648 		cwd = get_fpu_cwd(task);
649 		swd = get_fpu_swd(task);
650 
651 		err = swd & ~cwd;
652 	} else {
653 		/*
654 		 * The SIMD FPU exceptions are handled a little differently, as there
655 		 * is only a single status/control register.  Thus, to determine which
656 		 * unmasked exception was caught we must mask the exception mask bits
657 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
658 		 */
659 		unsigned short mxcsr = get_fpu_mxcsr(task);
660 		err = ~(mxcsr >> 7) & mxcsr;
661 	}
662 
663 	if (err & 0x001) {	/* Invalid op */
664 		/*
665 		 * swd & 0x240 == 0x040: Stack Underflow
666 		 * swd & 0x240 == 0x240: Stack Overflow
667 		 * User must clear the SF bit (0x40) if set
668 		 */
669 		info.si_code = FPE_FLTINV;
670 	} else if (err & 0x004) { /* Divide by Zero */
671 		info.si_code = FPE_FLTDIV;
672 	} else if (err & 0x008) { /* Overflow */
673 		info.si_code = FPE_FLTOVF;
674 	} else if (err & 0x012) { /* Denormal, Underflow */
675 		info.si_code = FPE_FLTUND;
676 	} else if (err & 0x020) { /* Precision */
677 		info.si_code = FPE_FLTRES;
678 	} else {
679 		/*
680 		 * If we're using IRQ 13, or supposedly even some trap 16
681 		 * implementations, it's possible we get a spurious trap...
682 		 */
683 		return;		/* Spurious trap, no error */
684 	}
685 	force_sig_info(SIGFPE, &info, task);
686 }
687 
688 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
689 {
690 #ifdef CONFIG_X86_32
691 	ignore_fpu_irq = 1;
692 #endif
693 
694 	math_error(regs, error_code, 16);
695 }
696 
697 dotraplinkage void
698 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
699 {
700 	math_error(regs, error_code, 19);
701 }
702 
703 dotraplinkage void
704 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
705 {
706 	conditional_sti(regs);
707 #if 0
708 	/* No need to warn about this any longer. */
709 	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
710 #endif
711 }
712 
713 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
714 {
715 }
716 
717 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
718 {
719 }
720 
721 /*
722  * __math_state_restore assumes that cr0.TS is already clear and the
723  * fpu state is all ready for use.  Used during context switch.
724  */
725 void __math_state_restore(void)
726 {
727 	struct thread_info *thread = current_thread_info();
728 	struct task_struct *tsk = thread->task;
729 
730 	/*
731 	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
732 	 */
733 	if (unlikely(restore_fpu_checking(tsk))) {
734 		stts();
735 		force_sig(SIGSEGV, tsk);
736 		return;
737 	}
738 
739 	thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */
740 	tsk->fpu_counter++;
741 }
742 
743 /*
744  * 'math_state_restore()' saves the current math information in the
745  * old math state array, and gets the new ones from the current task
746  *
747  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
748  * Don't touch unless you *really* know how it works.
749  *
750  * Must be called with kernel preemption disabled (in this case,
751  * local interrupts are disabled at the call-site in entry.S).
752  */
753 asmlinkage void math_state_restore(void)
754 {
755 	struct thread_info *thread = current_thread_info();
756 	struct task_struct *tsk = thread->task;
757 
758 	if (!tsk_used_math(tsk)) {
759 		local_irq_enable();
760 		/*
761 		 * does a slab alloc which can sleep
762 		 */
763 		if (init_fpu(tsk)) {
764 			/*
765 			 * ran out of memory!
766 			 */
767 			do_group_exit(SIGKILL);
768 			return;
769 		}
770 		local_irq_disable();
771 	}
772 
773 	clts();				/* Allow maths ops (or we recurse) */
774 
775 	__math_state_restore();
776 }
777 EXPORT_SYMBOL_GPL(math_state_restore);
778 
779 #ifndef CONFIG_MATH_EMULATION
780 void math_emulate(struct math_emu_info *info)
781 {
782 	printk(KERN_EMERG
783 		"math-emulation not enabled and no coprocessor found.\n");
784 	printk(KERN_EMERG "killing %s.\n", current->comm);
785 	force_sig(SIGFPE, current);
786 	schedule();
787 }
788 #endif /* CONFIG_MATH_EMULATION */
789 
790 dotraplinkage void __kprobes
791 do_device_not_available(struct pt_regs *regs, long error_code)
792 {
793 #ifdef CONFIG_X86_32
794 	if (read_cr0() & X86_CR0_EM) {
795 		struct math_emu_info info = { };
796 
797 		conditional_sti(regs);
798 
799 		info.regs = regs;
800 		math_emulate(&info);
801 	} else {
802 		math_state_restore(); /* interrupts still off */
803 		conditional_sti(regs);
804 	}
805 #else
806 	math_state_restore();
807 #endif
808 }
809 
810 #ifdef CONFIG_X86_32
811 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
812 {
813 	siginfo_t info;
814 	local_irq_enable();
815 
816 	info.si_signo = SIGILL;
817 	info.si_errno = 0;
818 	info.si_code = ILL_BADSTK;
819 	info.si_addr = NULL;
820 	if (notify_die(DIE_TRAP, "iret exception",
821 			regs, error_code, 32, SIGILL) == NOTIFY_STOP)
822 		return;
823 	do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
824 }
825 #endif
826 
827 /* Set of traps needed for early debugging. */
828 void __init early_trap_init(void)
829 {
830 	set_intr_gate_ist(1, &debug, DEBUG_STACK);
831 	/* int3 can be called from all */
832 	set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
833 	set_intr_gate(14, &page_fault);
834 	load_idt(&idt_descr);
835 }
836 
837 void __init trap_init(void)
838 {
839 	int i;
840 
841 #ifdef CONFIG_EISA
842 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
843 
844 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
845 		EISA_bus = 1;
846 	early_iounmap(p, 4);
847 #endif
848 
849 	set_intr_gate(0, &divide_error);
850 	set_intr_gate_ist(2, &nmi, NMI_STACK);
851 	/* int4 can be called from all */
852 	set_system_intr_gate(4, &overflow);
853 	set_intr_gate(5, &bounds);
854 	set_intr_gate(6, &invalid_op);
855 	set_intr_gate(7, &device_not_available);
856 #ifdef CONFIG_X86_32
857 	set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
858 #else
859 	set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
860 #endif
861 	set_intr_gate(9, &coprocessor_segment_overrun);
862 	set_intr_gate(10, &invalid_TSS);
863 	set_intr_gate(11, &segment_not_present);
864 	set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
865 	set_intr_gate(13, &general_protection);
866 	set_intr_gate(15, &spurious_interrupt_bug);
867 	set_intr_gate(16, &coprocessor_error);
868 	set_intr_gate(17, &alignment_check);
869 #ifdef CONFIG_X86_MCE
870 	set_intr_gate_ist(18, &machine_check, MCE_STACK);
871 #endif
872 	set_intr_gate(19, &simd_coprocessor_error);
873 
874 	/* Reserve all the builtin and the syscall vector: */
875 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
876 		set_bit(i, used_vectors);
877 
878 #ifdef CONFIG_IA32_EMULATION
879 	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
880 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
881 #endif
882 
883 #ifdef CONFIG_X86_32
884 	if (cpu_has_fxsr) {
885 		printk(KERN_INFO "Enabling fast FPU save and restore... ");
886 		set_in_cr4(X86_CR4_OSFXSR);
887 		printk("done.\n");
888 	}
889 	if (cpu_has_xmm) {
890 		printk(KERN_INFO
891 			"Enabling unmasked SIMD FPU exception support... ");
892 		set_in_cr4(X86_CR4_OSXMMEXCPT);
893 		printk("done.\n");
894 	}
895 
896 	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
897 	set_bit(SYSCALL_VECTOR, used_vectors);
898 #endif
899 
900 	/*
901 	 * Should be a barrier for any external CPU state:
902 	 */
903 	cpu_init();
904 
905 	x86_init.irqs.trap_init();
906 }
907