xref: /linux/arch/x86/kernel/traps.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/uaccess.h>
17 #include <linux/utsname.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/ptrace.h>
22 #include <linux/string.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/kexec.h>
26 #include <linux/sched.h>
27 #include <linux/timer.h>
28 #include <linux/init.h>
29 #include <linux/bug.h>
30 #include <linux/nmi.h>
31 #include <linux/mm.h>
32 #include <linux/smp.h>
33 #include <linux/io.h>
34 
35 #ifdef CONFIG_EISA
36 #include <linux/ioport.h>
37 #include <linux/eisa.h>
38 #endif
39 
40 #ifdef CONFIG_MCA
41 #include <linux/mca.h>
42 #endif
43 
44 #if defined(CONFIG_EDAC)
45 #include <linux/edac.h>
46 #endif
47 
48 #include <asm/stacktrace.h>
49 #include <asm/processor.h>
50 #include <asm/debugreg.h>
51 #include <asm/atomic.h>
52 #include <asm/system.h>
53 #include <asm/traps.h>
54 #include <asm/desc.h>
55 #include <asm/i387.h>
56 
57 #include <mach_traps.h>
58 
59 #ifdef CONFIG_X86_64
60 #include <asm/pgalloc.h>
61 #include <asm/proto.h>
62 #include <asm/pda.h>
63 #else
64 #include <asm/processor-flags.h>
65 #include <asm/arch_hooks.h>
66 #include <asm/traps.h>
67 
68 #include "cpu/mcheck/mce.h"
69 
70 asmlinkage int system_call(void);
71 
72 /* Do we ignore FPU interrupts ? */
73 char ignore_fpu_irq;
74 
75 /*
76  * The IDT has to be page-aligned to simplify the Pentium
77  * F0 0F bug workaround.. We have a special link segment
78  * for this.
79  */
80 gate_desc idt_table[256]
81 	__attribute__((__section__(".data.idt"))) = { { { { 0, 0 } } }, };
82 #endif
83 
84 DECLARE_BITMAP(used_vectors, NR_VECTORS);
85 EXPORT_SYMBOL_GPL(used_vectors);
86 
87 static int ignore_nmis;
88 
89 static inline void conditional_sti(struct pt_regs *regs)
90 {
91 	if (regs->flags & X86_EFLAGS_IF)
92 		local_irq_enable();
93 }
94 
95 static inline void preempt_conditional_sti(struct pt_regs *regs)
96 {
97 	inc_preempt_count();
98 	if (regs->flags & X86_EFLAGS_IF)
99 		local_irq_enable();
100 }
101 
102 static inline void preempt_conditional_cli(struct pt_regs *regs)
103 {
104 	if (regs->flags & X86_EFLAGS_IF)
105 		local_irq_disable();
106 	dec_preempt_count();
107 }
108 
109 #ifdef CONFIG_X86_32
110 static inline void
111 die_if_kernel(const char *str, struct pt_regs *regs, long err)
112 {
113 	if (!user_mode_vm(regs))
114 		die(str, regs, err);
115 }
116 
117 /*
118  * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
119  * invalid offset set (the LAZY one) and the faulting thread has
120  * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS,
121  * we set the offset field correctly and return 1.
122  */
123 static int lazy_iobitmap_copy(void)
124 {
125 	struct thread_struct *thread;
126 	struct tss_struct *tss;
127 	int cpu;
128 
129 	cpu = get_cpu();
130 	tss = &per_cpu(init_tss, cpu);
131 	thread = &current->thread;
132 
133 	if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
134 	    thread->io_bitmap_ptr) {
135 		memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
136 		       thread->io_bitmap_max);
137 		/*
138 		 * If the previously set map was extending to higher ports
139 		 * than the current one, pad extra space with 0xff (no access).
140 		 */
141 		if (thread->io_bitmap_max < tss->io_bitmap_max) {
142 			memset((char *) tss->io_bitmap +
143 				thread->io_bitmap_max, 0xff,
144 				tss->io_bitmap_max - thread->io_bitmap_max);
145 		}
146 		tss->io_bitmap_max = thread->io_bitmap_max;
147 		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
148 		tss->io_bitmap_owner = thread;
149 		put_cpu();
150 
151 		return 1;
152 	}
153 	put_cpu();
154 
155 	return 0;
156 }
157 #endif
158 
159 static void __kprobes
160 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
161 	long error_code, siginfo_t *info)
162 {
163 	struct task_struct *tsk = current;
164 
165 #ifdef CONFIG_X86_32
166 	if (regs->flags & X86_VM_MASK) {
167 		/*
168 		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
169 		 * On nmi (interrupt 2), do_trap should not be called.
170 		 */
171 		if (trapnr < 6)
172 			goto vm86_trap;
173 		goto trap_signal;
174 	}
175 #endif
176 
177 	if (!user_mode(regs))
178 		goto kernel_trap;
179 
180 #ifdef CONFIG_X86_32
181 trap_signal:
182 #endif
183 	/*
184 	 * We want error_code and trap_no set for userspace faults and
185 	 * kernelspace faults which result in die(), but not
186 	 * kernelspace faults which are fixed up.  die() gives the
187 	 * process no chance to handle the signal and notice the
188 	 * kernel fault information, so that won't result in polluting
189 	 * the information about previously queued, but not yet
190 	 * delivered, faults.  See also do_general_protection below.
191 	 */
192 	tsk->thread.error_code = error_code;
193 	tsk->thread.trap_no = trapnr;
194 
195 #ifdef CONFIG_X86_64
196 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
197 	    printk_ratelimit()) {
198 		printk(KERN_INFO
199 		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
200 		       tsk->comm, tsk->pid, str,
201 		       regs->ip, regs->sp, error_code);
202 		print_vma_addr(" in ", regs->ip);
203 		printk("\n");
204 	}
205 #endif
206 
207 	if (info)
208 		force_sig_info(signr, info, tsk);
209 	else
210 		force_sig(signr, tsk);
211 	return;
212 
213 kernel_trap:
214 	if (!fixup_exception(regs)) {
215 		tsk->thread.error_code = error_code;
216 		tsk->thread.trap_no = trapnr;
217 		die(str, regs, error_code);
218 	}
219 	return;
220 
221 #ifdef CONFIG_X86_32
222 vm86_trap:
223 	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
224 						error_code, trapnr))
225 		goto trap_signal;
226 	return;
227 #endif
228 }
229 
230 #define DO_ERROR(trapnr, signr, str, name)				\
231 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
232 {									\
233 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
234 							== NOTIFY_STOP)	\
235 		return;							\
236 	conditional_sti(regs);						\
237 	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
238 }
239 
240 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
241 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
242 {									\
243 	siginfo_t info;							\
244 	info.si_signo = signr;						\
245 	info.si_errno = 0;						\
246 	info.si_code = sicode;						\
247 	info.si_addr = (void __user *)siaddr;				\
248 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
249 							== NOTIFY_STOP)	\
250 		return;							\
251 	conditional_sti(regs);						\
252 	do_trap(trapnr, signr, str, regs, error_code, &info);		\
253 }
254 
255 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
256 DO_ERROR(4, SIGSEGV, "overflow", overflow)
257 DO_ERROR(5, SIGSEGV, "bounds", bounds)
258 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
259 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
260 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
261 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
262 #ifdef CONFIG_X86_32
263 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
264 #endif
265 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
266 
267 #ifdef CONFIG_X86_64
268 /* Runs on IST stack */
269 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
270 {
271 	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
272 			12, SIGBUS) == NOTIFY_STOP)
273 		return;
274 	preempt_conditional_sti(regs);
275 	do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
276 	preempt_conditional_cli(regs);
277 }
278 
279 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
280 {
281 	static const char str[] = "double fault";
282 	struct task_struct *tsk = current;
283 
284 	/* Return not checked because double check cannot be ignored */
285 	notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
286 
287 	tsk->thread.error_code = error_code;
288 	tsk->thread.trap_no = 8;
289 
290 	/*
291 	 * This is always a kernel trap and never fixable (and thus must
292 	 * never return).
293 	 */
294 	for (;;)
295 		die(str, regs, error_code);
296 }
297 #endif
298 
299 dotraplinkage void __kprobes
300 do_general_protection(struct pt_regs *regs, long error_code)
301 {
302 	struct task_struct *tsk;
303 
304 	conditional_sti(regs);
305 
306 #ifdef CONFIG_X86_32
307 	if (lazy_iobitmap_copy()) {
308 		/* restart the faulting instruction */
309 		return;
310 	}
311 
312 	if (regs->flags & X86_VM_MASK)
313 		goto gp_in_vm86;
314 #endif
315 
316 	tsk = current;
317 	if (!user_mode(regs))
318 		goto gp_in_kernel;
319 
320 	tsk->thread.error_code = error_code;
321 	tsk->thread.trap_no = 13;
322 
323 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
324 			printk_ratelimit()) {
325 		printk(KERN_INFO
326 			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
327 			tsk->comm, task_pid_nr(tsk),
328 			regs->ip, regs->sp, error_code);
329 		print_vma_addr(" in ", regs->ip);
330 		printk("\n");
331 	}
332 
333 	force_sig(SIGSEGV, tsk);
334 	return;
335 
336 #ifdef CONFIG_X86_32
337 gp_in_vm86:
338 	local_irq_enable();
339 	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
340 	return;
341 #endif
342 
343 gp_in_kernel:
344 	if (fixup_exception(regs))
345 		return;
346 
347 	tsk->thread.error_code = error_code;
348 	tsk->thread.trap_no = 13;
349 	if (notify_die(DIE_GPF, "general protection fault", regs,
350 				error_code, 13, SIGSEGV) == NOTIFY_STOP)
351 		return;
352 	die("general protection fault", regs, error_code);
353 }
354 
355 static notrace __kprobes void
356 mem_parity_error(unsigned char reason, struct pt_regs *regs)
357 {
358 	printk(KERN_EMERG
359 		"Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
360 			reason, smp_processor_id());
361 
362 	printk(KERN_EMERG
363 		"You have some hardware problem, likely on the PCI bus.\n");
364 
365 #if defined(CONFIG_EDAC)
366 	if (edac_handler_set()) {
367 		edac_atomic_assert_error();
368 		return;
369 	}
370 #endif
371 
372 	if (panic_on_unrecovered_nmi)
373 		panic("NMI: Not continuing");
374 
375 	printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
376 
377 	/* Clear and disable the memory parity error line. */
378 	reason = (reason & 0xf) | 4;
379 	outb(reason, 0x61);
380 }
381 
382 static notrace __kprobes void
383 io_check_error(unsigned char reason, struct pt_regs *regs)
384 {
385 	unsigned long i;
386 
387 	printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
388 	show_registers(regs);
389 
390 	/* Re-enable the IOCK line, wait for a few seconds */
391 	reason = (reason & 0xf) | 8;
392 	outb(reason, 0x61);
393 
394 	i = 2000;
395 	while (--i)
396 		udelay(1000);
397 
398 	reason &= ~8;
399 	outb(reason, 0x61);
400 }
401 
402 static notrace __kprobes void
403 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
404 {
405 	if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) ==
406 			NOTIFY_STOP)
407 		return;
408 #ifdef CONFIG_MCA
409 	/*
410 	 * Might actually be able to figure out what the guilty party
411 	 * is:
412 	 */
413 	if (MCA_bus) {
414 		mca_handle_nmi();
415 		return;
416 	}
417 #endif
418 	printk(KERN_EMERG
419 		"Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
420 			reason, smp_processor_id());
421 
422 	printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
423 	if (panic_on_unrecovered_nmi)
424 		panic("NMI: Not continuing");
425 
426 	printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
427 }
428 
429 static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
430 {
431 	unsigned char reason = 0;
432 	int cpu;
433 
434 	cpu = smp_processor_id();
435 
436 	/* Only the BSP gets external NMIs from the system. */
437 	if (!cpu)
438 		reason = get_nmi_reason();
439 
440 	if (!(reason & 0xc0)) {
441 		if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
442 								== NOTIFY_STOP)
443 			return;
444 #ifdef CONFIG_X86_LOCAL_APIC
445 		/*
446 		 * Ok, so this is none of the documented NMI sources,
447 		 * so it must be the NMI watchdog.
448 		 */
449 		if (nmi_watchdog_tick(regs, reason))
450 			return;
451 		if (!do_nmi_callback(regs, cpu))
452 			unknown_nmi_error(reason, regs);
453 #else
454 		unknown_nmi_error(reason, regs);
455 #endif
456 
457 		return;
458 	}
459 	if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
460 		return;
461 
462 	/* AK: following checks seem to be broken on modern chipsets. FIXME */
463 	if (reason & 0x80)
464 		mem_parity_error(reason, regs);
465 	if (reason & 0x40)
466 		io_check_error(reason, regs);
467 #ifdef CONFIG_X86_32
468 	/*
469 	 * Reassert NMI in case it became active meanwhile
470 	 * as it's edge-triggered:
471 	 */
472 	reassert_nmi();
473 #endif
474 }
475 
476 dotraplinkage notrace __kprobes void
477 do_nmi(struct pt_regs *regs, long error_code)
478 {
479 	nmi_enter();
480 
481 	inc_irq_stat(__nmi_count);
482 
483 	if (!ignore_nmis)
484 		default_do_nmi(regs);
485 
486 	nmi_exit();
487 }
488 
489 void stop_nmi(void)
490 {
491 	acpi_nmi_disable();
492 	ignore_nmis++;
493 }
494 
495 void restart_nmi(void)
496 {
497 	ignore_nmis--;
498 	acpi_nmi_enable();
499 }
500 
501 /* May run on IST stack. */
502 dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
503 {
504 #ifdef CONFIG_KPROBES
505 	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
506 			== NOTIFY_STOP)
507 		return;
508 #else
509 	if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP)
510 			== NOTIFY_STOP)
511 		return;
512 #endif
513 
514 	preempt_conditional_sti(regs);
515 	do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
516 	preempt_conditional_cli(regs);
517 }
518 
519 #ifdef CONFIG_X86_64
520 /*
521  * Help handler running on IST stack to switch back to user stack
522  * for scheduling or signal handling. The actual stack switch is done in
523  * entry.S
524  */
525 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
526 {
527 	struct pt_regs *regs = eregs;
528 	/* Did already sync */
529 	if (eregs == (struct pt_regs *)eregs->sp)
530 		;
531 	/* Exception from user space */
532 	else if (user_mode(eregs))
533 		regs = task_pt_regs(current);
534 	/*
535 	 * Exception from kernel and interrupts are enabled. Move to
536 	 * kernel process stack.
537 	 */
538 	else if (eregs->flags & X86_EFLAGS_IF)
539 		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
540 	if (eregs != regs)
541 		*regs = *eregs;
542 	return regs;
543 }
544 #endif
545 
546 /*
547  * Our handling of the processor debug registers is non-trivial.
548  * We do not clear them on entry and exit from the kernel. Therefore
549  * it is possible to get a watchpoint trap here from inside the kernel.
550  * However, the code in ./ptrace.c has ensured that the user can
551  * only set watchpoints on userspace addresses. Therefore the in-kernel
552  * watchpoint trap can only occur in code which is reading/writing
553  * from user space. Such code must not hold kernel locks (since it
554  * can equally take a page fault), therefore it is safe to call
555  * force_sig_info even though that claims and releases locks.
556  *
557  * Code in ./signal.c ensures that the debug control register
558  * is restored before we deliver any signal, and therefore that
559  * user code runs with the correct debug control register even though
560  * we clear it here.
561  *
562  * Being careful here means that we don't have to be as careful in a
563  * lot of more complicated places (task switching can be a bit lazy
564  * about restoring all the debug state, and ptrace doesn't have to
565  * find every occurrence of the TF bit that could be saved away even
566  * by user code)
567  *
568  * May run on IST stack.
569  */
570 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
571 {
572 	struct task_struct *tsk = current;
573 	unsigned long condition;
574 	int si_code;
575 
576 	get_debugreg(condition, 6);
577 
578 	/*
579 	 * The processor cleared BTF, so don't mark that we need it set.
580 	 */
581 	clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
582 	tsk->thread.debugctlmsr = 0;
583 
584 	if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
585 						SIGTRAP) == NOTIFY_STOP)
586 		return;
587 
588 	/* It's safe to allow irq's after DR6 has been saved */
589 	preempt_conditional_sti(regs);
590 
591 	/* Mask out spurious debug traps due to lazy DR7 setting */
592 	if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
593 		if (!tsk->thread.debugreg7)
594 			goto clear_dr7;
595 	}
596 
597 #ifdef CONFIG_X86_32
598 	if (regs->flags & X86_VM_MASK)
599 		goto debug_vm86;
600 #endif
601 
602 	/* Save debug status register where ptrace can see it */
603 	tsk->thread.debugreg6 = condition;
604 
605 	/*
606 	 * Single-stepping through TF: make sure we ignore any events in
607 	 * kernel space (but re-enable TF when returning to user mode).
608 	 */
609 	if (condition & DR_STEP) {
610 		if (!user_mode(regs))
611 			goto clear_TF_reenable;
612 	}
613 
614 	si_code = get_si_code(condition);
615 	/* Ok, finally something we can handle */
616 	send_sigtrap(tsk, regs, error_code, si_code);
617 
618 	/*
619 	 * Disable additional traps. They'll be re-enabled when
620 	 * the signal is delivered.
621 	 */
622 clear_dr7:
623 	set_debugreg(0, 7);
624 	preempt_conditional_cli(regs);
625 	return;
626 
627 #ifdef CONFIG_X86_32
628 debug_vm86:
629 	handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
630 	preempt_conditional_cli(regs);
631 	return;
632 #endif
633 
634 clear_TF_reenable:
635 	set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
636 	regs->flags &= ~X86_EFLAGS_TF;
637 	preempt_conditional_cli(regs);
638 	return;
639 }
640 
641 #ifdef CONFIG_X86_64
642 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
643 {
644 	if (fixup_exception(regs))
645 		return 1;
646 
647 	notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
648 	/* Illegal floating point operation in the kernel */
649 	current->thread.trap_no = trapnr;
650 	die(str, regs, 0);
651 	return 0;
652 }
653 #endif
654 
655 /*
656  * Note that we play around with the 'TS' bit in an attempt to get
657  * the correct behaviour even in the presence of the asynchronous
658  * IRQ13 behaviour
659  */
660 void math_error(void __user *ip)
661 {
662 	struct task_struct *task;
663 	siginfo_t info;
664 	unsigned short cwd, swd, err;
665 
666 	/*
667 	 * Save the info for the exception handler and clear the error.
668 	 */
669 	task = current;
670 	save_init_fpu(task);
671 	task->thread.trap_no = 16;
672 	task->thread.error_code = 0;
673 	info.si_signo = SIGFPE;
674 	info.si_errno = 0;
675 	info.si_addr = ip;
676 	/*
677 	 * (~cwd & swd) will mask out exceptions that are not set to unmasked
678 	 * status.  0x3f is the exception bits in these regs, 0x200 is the
679 	 * C1 reg you need in case of a stack fault, 0x040 is the stack
680 	 * fault bit.  We should only be taking one exception at a time,
681 	 * so if this combination doesn't produce any single exception,
682 	 * then we have a bad program that isn't synchronizing its FPU usage
683 	 * and it will suffer the consequences since we won't be able to
684 	 * fully reproduce the context of the exception
685 	 */
686 	cwd = get_fpu_cwd(task);
687 	swd = get_fpu_swd(task);
688 
689 	err = swd & ~cwd;
690 
691 	if (err & 0x001) {	/* Invalid op */
692 		/*
693 		 * swd & 0x240 == 0x040: Stack Underflow
694 		 * swd & 0x240 == 0x240: Stack Overflow
695 		 * User must clear the SF bit (0x40) if set
696 		 */
697 		info.si_code = FPE_FLTINV;
698 	} else if (err & 0x004) { /* Divide by Zero */
699 		info.si_code = FPE_FLTDIV;
700 	} else if (err & 0x008) { /* Overflow */
701 		info.si_code = FPE_FLTOVF;
702 	} else if (err & 0x012) { /* Denormal, Underflow */
703 		info.si_code = FPE_FLTUND;
704 	} else if (err & 0x020) { /* Precision */
705 		info.si_code = FPE_FLTRES;
706 	} else {
707 		/*
708 		 * If we're using IRQ 13, or supposedly even some trap 16
709 		 * implementations, it's possible we get a spurious trap...
710 		 */
711 		return;		/* Spurious trap, no error */
712 	}
713 	force_sig_info(SIGFPE, &info, task);
714 }
715 
716 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
717 {
718 	conditional_sti(regs);
719 
720 #ifdef CONFIG_X86_32
721 	ignore_fpu_irq = 1;
722 #else
723 	if (!user_mode(regs) &&
724 	    kernel_math_error(regs, "kernel x87 math error", 16))
725 		return;
726 #endif
727 
728 	math_error((void __user *)regs->ip);
729 }
730 
731 static void simd_math_error(void __user *ip)
732 {
733 	struct task_struct *task;
734 	siginfo_t info;
735 	unsigned short mxcsr;
736 
737 	/*
738 	 * Save the info for the exception handler and clear the error.
739 	 */
740 	task = current;
741 	save_init_fpu(task);
742 	task->thread.trap_no = 19;
743 	task->thread.error_code = 0;
744 	info.si_signo = SIGFPE;
745 	info.si_errno = 0;
746 	info.si_code = __SI_FAULT;
747 	info.si_addr = ip;
748 	/*
749 	 * The SIMD FPU exceptions are handled a little differently, as there
750 	 * is only a single status/control register.  Thus, to determine which
751 	 * unmasked exception was caught we must mask the exception mask bits
752 	 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
753 	 */
754 	mxcsr = get_fpu_mxcsr(task);
755 	switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
756 	case 0x000:
757 	default:
758 		break;
759 	case 0x001: /* Invalid Op */
760 		info.si_code = FPE_FLTINV;
761 		break;
762 	case 0x002: /* Denormalize */
763 	case 0x010: /* Underflow */
764 		info.si_code = FPE_FLTUND;
765 		break;
766 	case 0x004: /* Zero Divide */
767 		info.si_code = FPE_FLTDIV;
768 		break;
769 	case 0x008: /* Overflow */
770 		info.si_code = FPE_FLTOVF;
771 		break;
772 	case 0x020: /* Precision */
773 		info.si_code = FPE_FLTRES;
774 		break;
775 	}
776 	force_sig_info(SIGFPE, &info, task);
777 }
778 
779 dotraplinkage void
780 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
781 {
782 	conditional_sti(regs);
783 
784 #ifdef CONFIG_X86_32
785 	if (cpu_has_xmm) {
786 		/* Handle SIMD FPU exceptions on PIII+ processors. */
787 		ignore_fpu_irq = 1;
788 		simd_math_error((void __user *)regs->ip);
789 		return;
790 	}
791 	/*
792 	 * Handle strange cache flush from user space exception
793 	 * in all other cases.  This is undocumented behaviour.
794 	 */
795 	if (regs->flags & X86_VM_MASK) {
796 		handle_vm86_fault((struct kernel_vm86_regs *)regs, error_code);
797 		return;
798 	}
799 	current->thread.trap_no = 19;
800 	current->thread.error_code = error_code;
801 	die_if_kernel("cache flush denied", regs, error_code);
802 	force_sig(SIGSEGV, current);
803 #else
804 	if (!user_mode(regs) &&
805 			kernel_math_error(regs, "kernel simd math error", 19))
806 		return;
807 	simd_math_error((void __user *)regs->ip);
808 #endif
809 }
810 
811 dotraplinkage void
812 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
813 {
814 	conditional_sti(regs);
815 #if 0
816 	/* No need to warn about this any longer. */
817 	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
818 #endif
819 }
820 
821 #ifdef CONFIG_X86_32
822 unsigned long patch_espfix_desc(unsigned long uesp, unsigned long kesp)
823 {
824 	struct desc_struct *gdt = get_cpu_gdt_table(smp_processor_id());
825 	unsigned long base = (kesp - uesp) & -THREAD_SIZE;
826 	unsigned long new_kesp = kesp - base;
827 	unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
828 	__u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
829 
830 	/* Set up base for espfix segment */
831 	desc &= 0x00f0ff0000000000ULL;
832 	desc |=	((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
833 		((((__u64)base) << 32) & 0xff00000000000000ULL) |
834 		((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
835 		(lim_pages & 0xffff);
836 	*(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
837 
838 	return new_kesp;
839 }
840 #else
841 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
842 {
843 }
844 
845 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
846 {
847 }
848 #endif
849 
850 /*
851  * 'math_state_restore()' saves the current math information in the
852  * old math state array, and gets the new ones from the current task
853  *
854  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
855  * Don't touch unless you *really* know how it works.
856  *
857  * Must be called with kernel preemption disabled (in this case,
858  * local interrupts are disabled at the call-site in entry.S).
859  */
860 asmlinkage void math_state_restore(void)
861 {
862 	struct thread_info *thread = current_thread_info();
863 	struct task_struct *tsk = thread->task;
864 
865 	if (!tsk_used_math(tsk)) {
866 		local_irq_enable();
867 		/*
868 		 * does a slab alloc which can sleep
869 		 */
870 		if (init_fpu(tsk)) {
871 			/*
872 			 * ran out of memory!
873 			 */
874 			do_group_exit(SIGKILL);
875 			return;
876 		}
877 		local_irq_disable();
878 	}
879 
880 	clts();				/* Allow maths ops (or we recurse) */
881 #ifdef CONFIG_X86_32
882 	restore_fpu(tsk);
883 #else
884 	/*
885 	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
886 	 */
887 	if (unlikely(restore_fpu_checking(tsk))) {
888 		stts();
889 		force_sig(SIGSEGV, tsk);
890 		return;
891 	}
892 #endif
893 	thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */
894 	tsk->fpu_counter++;
895 }
896 EXPORT_SYMBOL_GPL(math_state_restore);
897 
898 #ifndef CONFIG_MATH_EMULATION
899 void math_emulate(struct math_emu_info *info)
900 {
901 	printk(KERN_EMERG
902 		"math-emulation not enabled and no coprocessor found.\n");
903 	printk(KERN_EMERG "killing %s.\n", current->comm);
904 	force_sig(SIGFPE, current);
905 	schedule();
906 }
907 #endif /* CONFIG_MATH_EMULATION */
908 
909 dotraplinkage void __kprobes do_device_not_available(struct pt_regs regs)
910 {
911 #ifdef CONFIG_X86_32
912 	if (read_cr0() & X86_CR0_EM) {
913 		struct math_emu_info info = { };
914 
915 		conditional_sti(&regs);
916 
917 		info.regs = &regs;
918 		math_emulate(&info);
919 	} else {
920 		math_state_restore(); /* interrupts still off */
921 		conditional_sti(&regs);
922 	}
923 #else
924 	math_state_restore();
925 #endif
926 }
927 
928 #ifdef CONFIG_X86_32
929 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
930 {
931 	siginfo_t info;
932 	local_irq_enable();
933 
934 	info.si_signo = SIGILL;
935 	info.si_errno = 0;
936 	info.si_code = ILL_BADSTK;
937 	info.si_addr = 0;
938 	if (notify_die(DIE_TRAP, "iret exception",
939 			regs, error_code, 32, SIGILL) == NOTIFY_STOP)
940 		return;
941 	do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
942 }
943 #endif
944 
945 void __init trap_init(void)
946 {
947 	int i;
948 
949 #ifdef CONFIG_EISA
950 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
951 
952 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
953 		EISA_bus = 1;
954 	early_iounmap(p, 4);
955 #endif
956 
957 	set_intr_gate(0, &divide_error);
958 	set_intr_gate_ist(1, &debug, DEBUG_STACK);
959 	set_intr_gate_ist(2, &nmi, NMI_STACK);
960 	/* int3 can be called from all */
961 	set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
962 	/* int4 can be called from all */
963 	set_system_intr_gate(4, &overflow);
964 	set_intr_gate(5, &bounds);
965 	set_intr_gate(6, &invalid_op);
966 	set_intr_gate(7, &device_not_available);
967 #ifdef CONFIG_X86_32
968 	set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
969 #else
970 	set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
971 #endif
972 	set_intr_gate(9, &coprocessor_segment_overrun);
973 	set_intr_gate(10, &invalid_TSS);
974 	set_intr_gate(11, &segment_not_present);
975 	set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
976 	set_intr_gate(13, &general_protection);
977 	set_intr_gate(14, &page_fault);
978 	set_intr_gate(15, &spurious_interrupt_bug);
979 	set_intr_gate(16, &coprocessor_error);
980 	set_intr_gate(17, &alignment_check);
981 #ifdef CONFIG_X86_MCE
982 	set_intr_gate_ist(18, &machine_check, MCE_STACK);
983 #endif
984 	set_intr_gate(19, &simd_coprocessor_error);
985 
986 #ifdef CONFIG_IA32_EMULATION
987 	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
988 #endif
989 
990 #ifdef CONFIG_X86_32
991 	if (cpu_has_fxsr) {
992 		printk(KERN_INFO "Enabling fast FPU save and restore... ");
993 		set_in_cr4(X86_CR4_OSFXSR);
994 		printk("done.\n");
995 	}
996 	if (cpu_has_xmm) {
997 		printk(KERN_INFO
998 			"Enabling unmasked SIMD FPU exception support... ");
999 		set_in_cr4(X86_CR4_OSXMMEXCPT);
1000 		printk("done.\n");
1001 	}
1002 
1003 	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
1004 #endif
1005 
1006 	/* Reserve all the builtin and the syscall vector: */
1007 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1008 		set_bit(i, used_vectors);
1009 
1010 #ifdef CONFIG_X86_64
1011 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
1012 #else
1013 	set_bit(SYSCALL_VECTOR, used_vectors);
1014 #endif
1015 	/*
1016 	 * Should be a barrier for any external CPU state:
1017 	 */
1018 	cpu_init();
1019 
1020 #ifdef CONFIG_X86_32
1021 	trap_init_hook();
1022 #endif
1023 }
1024