1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/kmsan.h> 19 #include <linux/spinlock.h> 20 #include <linux/kprobes.h> 21 #include <linux/uaccess.h> 22 #include <linux/kdebug.h> 23 #include <linux/kgdb.h> 24 #include <linux/kernel.h> 25 #include <linux/export.h> 26 #include <linux/ptrace.h> 27 #include <linux/uprobes.h> 28 #include <linux/string.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/kexec.h> 32 #include <linux/sched.h> 33 #include <linux/sched/task_stack.h> 34 #include <linux/timer.h> 35 #include <linux/init.h> 36 #include <linux/bug.h> 37 #include <linux/nmi.h> 38 #include <linux/mm.h> 39 #include <linux/smp.h> 40 #include <linux/cpu.h> 41 #include <linux/io.h> 42 #include <linux/hardirq.h> 43 #include <linux/atomic.h> 44 #include <linux/iommu.h> 45 #include <linux/ubsan.h> 46 47 #include <asm/stacktrace.h> 48 #include <asm/processor.h> 49 #include <asm/debugreg.h> 50 #include <asm/realmode.h> 51 #include <asm/text-patching.h> 52 #include <asm/ftrace.h> 53 #include <asm/traps.h> 54 #include <asm/desc.h> 55 #include <asm/fred.h> 56 #include <asm/fpu/api.h> 57 #include <asm/cpu.h> 58 #include <asm/cpu_entry_area.h> 59 #include <asm/mce.h> 60 #include <asm/fixmap.h> 61 #include <asm/mach_traps.h> 62 #include <asm/alternative.h> 63 #include <asm/fpu/xstate.h> 64 #include <asm/vm86.h> 65 #include <asm/umip.h> 66 #include <asm/insn.h> 67 #include <asm/insn-eval.h> 68 #include <asm/vdso.h> 69 #include <asm/tdx.h> 70 #include <asm/cfi.h> 71 72 #ifdef CONFIG_X86_64 73 #include <asm/x86_init.h> 74 #else 75 #include <asm/processor-flags.h> 76 #include <asm/setup.h> 77 #endif 78 79 #include <asm/proto.h> 80 81 DECLARE_BITMAP(system_vectors, NR_VECTORS); 82 83 __always_inline int is_valid_bugaddr(unsigned long addr) 84 { 85 if (addr < TASK_SIZE_MAX) 86 return 0; 87 88 /* 89 * We got #UD, if the text isn't readable we'd have gotten 90 * a different exception. 91 */ 92 return *(unsigned short *)addr == INSN_UD2; 93 } 94 95 /* 96 * Check for UD1 or UD2, accounting for Address Size Override Prefixes. 97 * If it's a UD1, further decode to determine its use: 98 * 99 * FineIBT: ea (bad) 100 * FineIBT: f0 75 f9 lock jne . - 6 101 * UBSan{0}: 67 0f b9 00 ud1 (%eax),%eax 102 * UBSan{10}: 67 0f b9 40 10 ud1 0x10(%eax),%eax 103 * static_call: 0f b9 cc ud1 %esp,%ecx 104 * 105 * Notably UBSAN uses EAX, static_call uses ECX. 106 */ 107 __always_inline int decode_bug(unsigned long addr, s32 *imm, int *len) 108 { 109 unsigned long start = addr; 110 bool lock = false; 111 u8 v; 112 113 if (addr < TASK_SIZE_MAX) 114 return BUG_NONE; 115 116 v = *(u8 *)(addr++); 117 if (v == INSN_ASOP) 118 v = *(u8 *)(addr++); 119 120 if (v == INSN_LOCK) { 121 lock = true; 122 v = *(u8 *)(addr++); 123 } 124 125 switch (v) { 126 case 0x70 ... 0x7f: /* Jcc.d8 */ 127 addr += 1; /* d8 */ 128 *len = addr - start; 129 WARN_ON_ONCE(!lock); 130 return BUG_LOCK; 131 132 case 0xea: 133 *len = addr - start; 134 return BUG_EA; 135 136 case OPCODE_ESCAPE: 137 break; 138 139 default: 140 return BUG_NONE; 141 } 142 143 v = *(u8 *)(addr++); 144 if (v == SECOND_BYTE_OPCODE_UD2) { 145 *len = addr - start; 146 return BUG_UD2; 147 } 148 149 if (v != SECOND_BYTE_OPCODE_UD1) 150 return BUG_NONE; 151 152 *imm = 0; 153 v = *(u8 *)(addr++); /* ModRM */ 154 155 if (X86_MODRM_MOD(v) != 3 && X86_MODRM_RM(v) == 4) 156 addr++; /* SIB */ 157 158 /* Decode immediate, if present */ 159 switch (X86_MODRM_MOD(v)) { 160 case 0: if (X86_MODRM_RM(v) == 5) 161 addr += 4; /* RIP + disp32 */ 162 break; 163 164 case 1: *imm = *(s8 *)addr; 165 addr += 1; 166 break; 167 168 case 2: *imm = *(s32 *)addr; 169 addr += 4; 170 break; 171 172 case 3: break; 173 } 174 175 /* record instruction length */ 176 *len = addr - start; 177 178 if (X86_MODRM_REG(v) == 0) /* EAX */ 179 return BUG_UD1_UBSAN; 180 181 return BUG_UD1; 182 } 183 184 185 static nokprobe_inline int 186 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 187 struct pt_regs *regs, long error_code) 188 { 189 if (v8086_mode(regs)) { 190 /* 191 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 192 * On nmi (interrupt 2), do_trap should not be called. 193 */ 194 if (trapnr < X86_TRAP_UD) { 195 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 196 error_code, trapnr)) 197 return 0; 198 } 199 } else if (!user_mode(regs)) { 200 if (fixup_exception(regs, trapnr, error_code, 0)) 201 return 0; 202 203 tsk->thread.error_code = error_code; 204 tsk->thread.trap_nr = trapnr; 205 die(str, regs, error_code); 206 } else { 207 if (fixup_vdso_exception(regs, trapnr, error_code, 0)) 208 return 0; 209 } 210 211 /* 212 * We want error_code and trap_nr set for userspace faults and 213 * kernelspace faults which result in die(), but not 214 * kernelspace faults which are fixed up. die() gives the 215 * process no chance to handle the signal and notice the 216 * kernel fault information, so that won't result in polluting 217 * the information about previously queued, but not yet 218 * delivered, faults. See also exc_general_protection below. 219 */ 220 tsk->thread.error_code = error_code; 221 tsk->thread.trap_nr = trapnr; 222 223 return -1; 224 } 225 226 static void show_signal(struct task_struct *tsk, int signr, 227 const char *type, const char *desc, 228 struct pt_regs *regs, long error_code) 229 { 230 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 231 printk_ratelimit()) { 232 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 233 tsk->comm, task_pid_nr(tsk), type, desc, 234 regs->ip, regs->sp, error_code); 235 print_vma_addr(KERN_CONT " in ", regs->ip); 236 pr_cont("\n"); 237 } 238 } 239 240 static void 241 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 242 long error_code, int sicode, void __user *addr) 243 { 244 struct task_struct *tsk = current; 245 246 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 247 return; 248 249 show_signal(tsk, signr, "trap ", str, regs, error_code); 250 251 if (!sicode) 252 force_sig(signr); 253 else 254 force_sig_fault(signr, sicode, addr); 255 } 256 NOKPROBE_SYMBOL(do_trap); 257 258 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 259 unsigned long trapnr, int signr, int sicode, void __user *addr) 260 { 261 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 262 263 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 264 NOTIFY_STOP) { 265 cond_local_irq_enable(regs); 266 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 267 cond_local_irq_disable(regs); 268 } 269 } 270 271 /* 272 * Posix requires to provide the address of the faulting instruction for 273 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 274 * 275 * This address is usually regs->ip, but when an uprobe moved the code out 276 * of line then regs->ip points to the XOL code which would confuse 277 * anything which analyzes the fault address vs. the unmodified binary. If 278 * a trap happened in XOL code then uprobe maps regs->ip back to the 279 * original instruction address. 280 */ 281 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 282 { 283 return (void __user *)uprobe_get_trap_addr(regs); 284 } 285 286 DEFINE_IDTENTRY(exc_divide_error) 287 { 288 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, 289 FPE_INTDIV, error_get_trap_addr(regs)); 290 } 291 292 DEFINE_IDTENTRY(exc_overflow) 293 { 294 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 295 } 296 297 #ifdef CONFIG_X86_F00F_BUG 298 void handle_invalid_op(struct pt_regs *regs) 299 #else 300 static inline void handle_invalid_op(struct pt_regs *regs) 301 #endif 302 { 303 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 304 ILL_ILLOPN, error_get_trap_addr(regs)); 305 } 306 307 static noinstr bool handle_bug(struct pt_regs *regs) 308 { 309 unsigned long addr = regs->ip; 310 bool handled = false; 311 int ud_type, ud_len; 312 s32 ud_imm; 313 314 ud_type = decode_bug(addr, &ud_imm, &ud_len); 315 if (ud_type == BUG_NONE) 316 return handled; 317 318 /* 319 * All lies, just get the WARN/BUG out. 320 */ 321 instrumentation_begin(); 322 /* 323 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug() 324 * is a rare case that uses @regs without passing them to 325 * irqentry_enter(). 326 */ 327 kmsan_unpoison_entry_regs(regs); 328 /* 329 * Since we're emulating a CALL with exceptions, restore the interrupt 330 * state to what it was at the exception site. 331 */ 332 if (regs->flags & X86_EFLAGS_IF) 333 raw_local_irq_enable(); 334 335 switch (ud_type) { 336 case BUG_UD2: 337 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { 338 handled = true; 339 break; 340 } 341 fallthrough; 342 343 case BUG_EA: 344 case BUG_LOCK: 345 if (handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) { 346 handled = true; 347 break; 348 } 349 break; 350 351 case BUG_UD1_UBSAN: 352 if (IS_ENABLED(CONFIG_UBSAN_TRAP)) { 353 pr_crit("%s at %pS\n", 354 report_ubsan_failure(regs, ud_imm), 355 (void *)regs->ip); 356 } 357 break; 358 359 default: 360 break; 361 } 362 363 /* 364 * When continuing, and regs->ip hasn't changed, move it to the next 365 * instruction. When not continuing execution, restore the instruction 366 * pointer. 367 */ 368 if (handled) { 369 if (regs->ip == addr) 370 regs->ip += ud_len; 371 } else { 372 regs->ip = addr; 373 } 374 375 if (regs->flags & X86_EFLAGS_IF) 376 raw_local_irq_disable(); 377 instrumentation_end(); 378 379 return handled; 380 } 381 382 DEFINE_IDTENTRY_RAW(exc_invalid_op) 383 { 384 irqentry_state_t state; 385 386 /* 387 * We use UD2 as a short encoding for 'CALL __WARN', as such 388 * handle it before exception entry to avoid recursive WARN 389 * in case exception entry is the one triggering WARNs. 390 */ 391 if (!user_mode(regs) && handle_bug(regs)) 392 return; 393 394 state = irqentry_enter(regs); 395 instrumentation_begin(); 396 handle_invalid_op(regs); 397 instrumentation_end(); 398 irqentry_exit(regs, state); 399 } 400 401 DEFINE_IDTENTRY(exc_coproc_segment_overrun) 402 { 403 do_error_trap(regs, 0, "coprocessor segment overrun", 404 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 405 } 406 407 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 408 { 409 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 410 0, NULL); 411 } 412 413 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 414 { 415 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 416 SIGBUS, 0, NULL); 417 } 418 419 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 420 { 421 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 422 0, NULL); 423 } 424 425 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 426 { 427 char *str = "alignment check"; 428 429 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 430 return; 431 432 if (!user_mode(regs)) 433 die("Split lock detected\n", regs, error_code); 434 435 local_irq_enable(); 436 437 if (handle_user_split_lock(regs, error_code)) 438 goto out; 439 440 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 441 error_code, BUS_ADRALN, NULL); 442 443 out: 444 local_irq_disable(); 445 } 446 447 #ifdef CONFIG_VMAP_STACK 448 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs, 449 unsigned long fault_address, 450 struct stack_info *info) 451 { 452 const char *name = stack_type_name(info->type); 453 454 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n", 455 name, (void *)fault_address, info->begin, info->end); 456 457 die("stack guard page", regs, 0); 458 459 /* Be absolutely certain we don't return. */ 460 panic("%s stack guard hit", name); 461 } 462 #endif 463 464 /* 465 * Prevent the compiler and/or objtool from marking the !CONFIG_X86_ESPFIX64 466 * version of exc_double_fault() as noreturn. Otherwise the noreturn mismatch 467 * between configs triggers objtool warnings. 468 * 469 * This is a temporary hack until we have compiler or plugin support for 470 * annotating noreturns. 471 */ 472 #ifdef CONFIG_X86_ESPFIX64 473 #define always_true() true 474 #else 475 bool always_true(void); 476 bool __weak always_true(void) { return true; } 477 #endif 478 479 /* 480 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 481 * 482 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 483 * SDM's warnings about double faults being unrecoverable, returning works as 484 * expected. Presumably what the SDM actually means is that the CPU may get 485 * the register state wrong on entry, so returning could be a bad idea. 486 * 487 * Various CPU engineers have promised that double faults due to an IRET fault 488 * while the stack is read-only are, in fact, recoverable. 489 * 490 * On x86_32, this is entered through a task gate, and regs are synthesized 491 * from the TSS. Returning is, in principle, okay, but changes to regs will 492 * be lost. If, for some reason, we need to return to a context with modified 493 * regs, the shim code could be adjusted to synchronize the registers. 494 * 495 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 496 * to be read before doing anything else. 497 */ 498 DEFINE_IDTENTRY_DF(exc_double_fault) 499 { 500 static const char str[] = "double fault"; 501 struct task_struct *tsk = current; 502 503 #ifdef CONFIG_VMAP_STACK 504 unsigned long address = read_cr2(); 505 struct stack_info info; 506 #endif 507 508 #ifdef CONFIG_X86_ESPFIX64 509 extern unsigned char native_irq_return_iret[]; 510 511 /* 512 * If IRET takes a non-IST fault on the espfix64 stack, then we 513 * end up promoting it to a doublefault. In that case, take 514 * advantage of the fact that we're not using the normal (TSS.sp0) 515 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 516 * and then modify our own IRET frame so that, when we return, 517 * we land directly at the #GP(0) vector with the stack already 518 * set up according to its expectations. 519 * 520 * The net result is that our #GP handler will think that we 521 * entered from usermode with the bad user context. 522 * 523 * No need for nmi_enter() here because we don't use RCU. 524 */ 525 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 526 regs->cs == __KERNEL_CS && 527 regs->ip == (unsigned long)native_irq_return_iret) 528 { 529 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 530 unsigned long *p = (unsigned long *)regs->sp; 531 532 /* 533 * regs->sp points to the failing IRET frame on the 534 * ESPFIX64 stack. Copy it to the entry stack. This fills 535 * in gpregs->ss through gpregs->ip. 536 * 537 */ 538 gpregs->ip = p[0]; 539 gpregs->cs = p[1]; 540 gpregs->flags = p[2]; 541 gpregs->sp = p[3]; 542 gpregs->ss = p[4]; 543 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 544 545 /* 546 * Adjust our frame so that we return straight to the #GP 547 * vector with the expected RSP value. This is safe because 548 * we won't enable interrupts or schedule before we invoke 549 * general_protection, so nothing will clobber the stack 550 * frame we just set up. 551 * 552 * We will enter general_protection with kernel GSBASE, 553 * which is what the stub expects, given that the faulting 554 * RIP will be the IRET instruction. 555 */ 556 regs->ip = (unsigned long)asm_exc_general_protection; 557 regs->sp = (unsigned long)&gpregs->orig_ax; 558 559 return; 560 } 561 #endif 562 563 irqentry_nmi_enter(regs); 564 instrumentation_begin(); 565 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 566 567 tsk->thread.error_code = error_code; 568 tsk->thread.trap_nr = X86_TRAP_DF; 569 570 #ifdef CONFIG_VMAP_STACK 571 /* 572 * If we overflow the stack into a guard page, the CPU will fail 573 * to deliver #PF and will send #DF instead. Similarly, if we 574 * take any non-IST exception while too close to the bottom of 575 * the stack, the processor will get a page fault while 576 * delivering the exception and will generate a double fault. 577 * 578 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 579 * Page-Fault Exception (#PF): 580 * 581 * Processors update CR2 whenever a page fault is detected. If a 582 * second page fault occurs while an earlier page fault is being 583 * delivered, the faulting linear address of the second fault will 584 * overwrite the contents of CR2 (replacing the previous 585 * address). These updates to CR2 occur even if the page fault 586 * results in a double fault or occurs during the delivery of a 587 * double fault. 588 * 589 * The logic below has a small possibility of incorrectly diagnosing 590 * some errors as stack overflows. For example, if the IDT or GDT 591 * gets corrupted such that #GP delivery fails due to a bad descriptor 592 * causing #GP and we hit this condition while CR2 coincidentally 593 * points to the stack guard page, we'll think we overflowed the 594 * stack. Given that we're going to panic one way or another 595 * if this happens, this isn't necessarily worth fixing. 596 * 597 * If necessary, we could improve the test by only diagnosing 598 * a stack overflow if the saved RSP points within 47 bytes of 599 * the bottom of the stack: if RSP == tsk_stack + 48 and we 600 * take an exception, the stack is already aligned and there 601 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 602 * possible error code, so a stack overflow would *not* double 603 * fault. With any less space left, exception delivery could 604 * fail, and, as a practical matter, we've overflowed the 605 * stack even if the actual trigger for the double fault was 606 * something else. 607 */ 608 if (get_stack_guard_info((void *)address, &info)) 609 handle_stack_overflow(regs, address, &info); 610 #endif 611 612 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 613 die("double fault", regs, error_code); 614 if (always_true()) 615 panic("Machine halted."); 616 instrumentation_end(); 617 } 618 619 DEFINE_IDTENTRY(exc_bounds) 620 { 621 if (notify_die(DIE_TRAP, "bounds", regs, 0, 622 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 623 return; 624 cond_local_irq_enable(regs); 625 626 if (!user_mode(regs)) 627 die("bounds", regs, 0); 628 629 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 630 631 cond_local_irq_disable(regs); 632 } 633 634 enum kernel_gp_hint { 635 GP_NO_HINT, 636 GP_NON_CANONICAL, 637 GP_CANONICAL 638 }; 639 640 /* 641 * When an uncaught #GP occurs, try to determine the memory address accessed by 642 * the instruction and return that address to the caller. Also, try to figure 643 * out whether any part of the access to that address was non-canonical. 644 */ 645 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 646 unsigned long *addr) 647 { 648 u8 insn_buf[MAX_INSN_SIZE]; 649 struct insn insn; 650 int ret; 651 652 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, 653 MAX_INSN_SIZE)) 654 return GP_NO_HINT; 655 656 ret = insn_decode_kernel(&insn, insn_buf); 657 if (ret < 0) 658 return GP_NO_HINT; 659 660 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 661 if (*addr == -1UL) 662 return GP_NO_HINT; 663 664 #ifdef CONFIG_X86_64 665 /* 666 * Check that: 667 * - the operand is not in the kernel half 668 * - the last byte of the operand is not in the user canonical half 669 */ 670 if (*addr < ~__VIRTUAL_MASK && 671 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 672 return GP_NON_CANONICAL; 673 #endif 674 675 return GP_CANONICAL; 676 } 677 678 #define GPFSTR "general protection fault" 679 680 static bool fixup_iopl_exception(struct pt_regs *regs) 681 { 682 struct thread_struct *t = ¤t->thread; 683 unsigned char byte; 684 unsigned long ip; 685 686 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) 687 return false; 688 689 if (insn_get_effective_ip(regs, &ip)) 690 return false; 691 692 if (get_user(byte, (const char __user *)ip)) 693 return false; 694 695 if (byte != 0xfa && byte != 0xfb) 696 return false; 697 698 if (!t->iopl_warn && printk_ratelimit()) { 699 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx", 700 current->comm, task_pid_nr(current), ip); 701 print_vma_addr(KERN_CONT " in ", ip); 702 pr_cont("\n"); 703 t->iopl_warn = 1; 704 } 705 706 regs->ip += 1; 707 return true; 708 } 709 710 /* 711 * The unprivileged ENQCMD instruction generates #GPs if the 712 * IA32_PASID MSR has not been populated. If possible, populate 713 * the MSR from a PASID previously allocated to the mm. 714 */ 715 static bool try_fixup_enqcmd_gp(void) 716 { 717 #ifdef CONFIG_ARCH_HAS_CPU_PASID 718 u32 pasid; 719 720 /* 721 * MSR_IA32_PASID is managed using XSAVE. Directly 722 * writing to the MSR is only possible when fpregs 723 * are valid and the fpstate is not. This is 724 * guaranteed when handling a userspace exception 725 * in *before* interrupts are re-enabled. 726 */ 727 lockdep_assert_irqs_disabled(); 728 729 /* 730 * Hardware without ENQCMD will not generate 731 * #GPs that can be fixed up here. 732 */ 733 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD)) 734 return false; 735 736 /* 737 * If the mm has not been allocated a 738 * PASID, the #GP can not be fixed up. 739 */ 740 if (!mm_valid_pasid(current->mm)) 741 return false; 742 743 pasid = mm_get_enqcmd_pasid(current->mm); 744 745 /* 746 * Did this thread already have its PASID activated? 747 * If so, the #GP must be from something else. 748 */ 749 if (current->pasid_activated) 750 return false; 751 752 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID); 753 current->pasid_activated = 1; 754 755 return true; 756 #else 757 return false; 758 #endif 759 } 760 761 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr, 762 unsigned long error_code, const char *str, 763 unsigned long address) 764 { 765 if (fixup_exception(regs, trapnr, error_code, address)) 766 return true; 767 768 current->thread.error_code = error_code; 769 current->thread.trap_nr = trapnr; 770 771 /* 772 * To be potentially processing a kprobe fault and to trust the result 773 * from kprobe_running(), we have to be non-preemptible. 774 */ 775 if (!preemptible() && kprobe_running() && 776 kprobe_fault_handler(regs, trapnr)) 777 return true; 778 779 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP; 780 } 781 782 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr, 783 unsigned long error_code, const char *str) 784 { 785 current->thread.error_code = error_code; 786 current->thread.trap_nr = trapnr; 787 show_signal(current, SIGSEGV, "", str, regs, error_code); 788 force_sig(SIGSEGV); 789 } 790 791 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 792 { 793 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 794 enum kernel_gp_hint hint = GP_NO_HINT; 795 unsigned long gp_addr; 796 797 if (user_mode(regs) && try_fixup_enqcmd_gp()) 798 return; 799 800 cond_local_irq_enable(regs); 801 802 if (static_cpu_has(X86_FEATURE_UMIP)) { 803 if (user_mode(regs) && fixup_umip_exception(regs)) 804 goto exit; 805 } 806 807 if (v8086_mode(regs)) { 808 local_irq_enable(); 809 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 810 local_irq_disable(); 811 return; 812 } 813 814 if (user_mode(regs)) { 815 if (fixup_iopl_exception(regs)) 816 goto exit; 817 818 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) 819 goto exit; 820 821 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc); 822 goto exit; 823 } 824 825 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0)) 826 goto exit; 827 828 if (error_code) 829 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 830 else 831 hint = get_kernel_gp_address(regs, &gp_addr); 832 833 if (hint != GP_NO_HINT) 834 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 835 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 836 : "maybe for address", 837 gp_addr); 838 839 /* 840 * KASAN is interested only in the non-canonical case, clear it 841 * otherwise. 842 */ 843 if (hint != GP_NON_CANONICAL) 844 gp_addr = 0; 845 846 die_addr(desc, regs, error_code, gp_addr); 847 848 exit: 849 cond_local_irq_disable(regs); 850 } 851 852 static bool do_int3(struct pt_regs *regs) 853 { 854 int res; 855 856 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 857 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 858 SIGTRAP) == NOTIFY_STOP) 859 return true; 860 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 861 862 #ifdef CONFIG_KPROBES 863 if (kprobe_int3_handler(regs)) 864 return true; 865 #endif 866 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 867 868 return res == NOTIFY_STOP; 869 } 870 NOKPROBE_SYMBOL(do_int3); 871 872 static void do_int3_user(struct pt_regs *regs) 873 { 874 if (do_int3(regs)) 875 return; 876 877 cond_local_irq_enable(regs); 878 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 879 cond_local_irq_disable(regs); 880 } 881 882 DEFINE_IDTENTRY_RAW(exc_int3) 883 { 884 /* 885 * poke_int3_handler() is completely self contained code; it does (and 886 * must) *NOT* call out to anything, lest it hits upon yet another 887 * INT3. 888 */ 889 if (poke_int3_handler(regs)) 890 return; 891 892 /* 893 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() 894 * and therefore can trigger INT3, hence poke_int3_handler() must 895 * be done before. If the entry came from kernel mode, then use 896 * nmi_enter() because the INT3 could have been hit in any context 897 * including NMI. 898 */ 899 if (user_mode(regs)) { 900 irqentry_enter_from_user_mode(regs); 901 instrumentation_begin(); 902 do_int3_user(regs); 903 instrumentation_end(); 904 irqentry_exit_to_user_mode(regs); 905 } else { 906 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 907 908 instrumentation_begin(); 909 if (!do_int3(regs)) 910 die("int3", regs, 0); 911 instrumentation_end(); 912 irqentry_nmi_exit(regs, irq_state); 913 } 914 } 915 916 #ifdef CONFIG_X86_64 917 /* 918 * Help handler running on a per-cpu (IST or entry trampoline) stack 919 * to switch to the normal thread stack if the interrupted code was in 920 * user mode. The actual stack switch is done in entry_64.S 921 */ 922 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 923 { 924 struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1; 925 if (regs != eregs) 926 *regs = *eregs; 927 return regs; 928 } 929 930 #ifdef CONFIG_AMD_MEM_ENCRYPT 931 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) 932 { 933 unsigned long sp, *stack; 934 struct stack_info info; 935 struct pt_regs *regs_ret; 936 937 /* 938 * In the SYSCALL entry path the RSP value comes from user-space - don't 939 * trust it and switch to the current kernel stack 940 */ 941 if (ip_within_syscall_gap(regs)) { 942 sp = current_top_of_stack(); 943 goto sync; 944 } 945 946 /* 947 * From here on the RSP value is trusted. Now check whether entry 948 * happened from a safe stack. Not safe are the entry or unknown stacks, 949 * use the fall-back stack instead in this case. 950 */ 951 sp = regs->sp; 952 stack = (unsigned long *)sp; 953 954 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || 955 info.type > STACK_TYPE_EXCEPTION_LAST) 956 sp = __this_cpu_ist_top_va(VC2); 957 958 sync: 959 /* 960 * Found a safe stack - switch to it as if the entry didn't happen via 961 * IST stack. The code below only copies pt_regs, the real switch happens 962 * in assembly code. 963 */ 964 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); 965 966 regs_ret = (struct pt_regs *)sp; 967 *regs_ret = *regs; 968 969 return regs_ret; 970 } 971 #endif 972 973 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) 974 { 975 struct pt_regs tmp, *new_stack; 976 977 /* 978 * This is called from entry_64.S early in handling a fault 979 * caused by a bad iret to user mode. To handle the fault 980 * correctly, we want to move our stack frame to where it would 981 * be had we entered directly on the entry stack (rather than 982 * just below the IRET frame) and we want to pretend that the 983 * exception came from the IRET target. 984 */ 985 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 986 987 /* Copy the IRET target to the temporary storage. */ 988 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8); 989 990 /* Copy the remainder of the stack from the current stack. */ 991 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip)); 992 993 /* Update the entry stack */ 994 __memcpy(new_stack, &tmp, sizeof(tmp)); 995 996 BUG_ON(!user_mode(new_stack)); 997 return new_stack; 998 } 999 #endif 1000 1001 static bool is_sysenter_singlestep(struct pt_regs *regs) 1002 { 1003 /* 1004 * We don't try for precision here. If we're anywhere in the region of 1005 * code that can be single-stepped in the SYSENTER entry path, then 1006 * assume that this is a useless single-step trap due to SYSENTER 1007 * being invoked with TF set. (We don't know in advance exactly 1008 * which instructions will be hit because BTF could plausibly 1009 * be set.) 1010 */ 1011 #ifdef CONFIG_X86_32 1012 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 1013 (unsigned long)__end_SYSENTER_singlestep_region - 1014 (unsigned long)__begin_SYSENTER_singlestep_region; 1015 #elif defined(CONFIG_IA32_EMULATION) 1016 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 1017 (unsigned long)__end_entry_SYSENTER_compat - 1018 (unsigned long)entry_SYSENTER_compat; 1019 #else 1020 return false; 1021 #endif 1022 } 1023 1024 static __always_inline unsigned long debug_read_clear_dr6(void) 1025 { 1026 unsigned long dr6; 1027 1028 /* 1029 * The Intel SDM says: 1030 * 1031 * Certain debug exceptions may clear bits 0-3. The remaining 1032 * contents of the DR6 register are never cleared by the 1033 * processor. To avoid confusion in identifying debug 1034 * exceptions, debug handlers should clear the register before 1035 * returning to the interrupted task. 1036 * 1037 * Keep it simple: clear DR6 immediately. 1038 */ 1039 get_debugreg(dr6, 6); 1040 set_debugreg(DR6_RESERVED, 6); 1041 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ 1042 1043 return dr6; 1044 } 1045 1046 /* 1047 * Our handling of the processor debug registers is non-trivial. 1048 * We do not clear them on entry and exit from the kernel. Therefore 1049 * it is possible to get a watchpoint trap here from inside the kernel. 1050 * However, the code in ./ptrace.c has ensured that the user can 1051 * only set watchpoints on userspace addresses. Therefore the in-kernel 1052 * watchpoint trap can only occur in code which is reading/writing 1053 * from user space. Such code must not hold kernel locks (since it 1054 * can equally take a page fault), therefore it is safe to call 1055 * force_sig_info even though that claims and releases locks. 1056 * 1057 * Code in ./signal.c ensures that the debug control register 1058 * is restored before we deliver any signal, and therefore that 1059 * user code runs with the correct debug control register even though 1060 * we clear it here. 1061 * 1062 * Being careful here means that we don't have to be as careful in a 1063 * lot of more complicated places (task switching can be a bit lazy 1064 * about restoring all the debug state, and ptrace doesn't have to 1065 * find every occurrence of the TF bit that could be saved away even 1066 * by user code) 1067 * 1068 * May run on IST stack. 1069 */ 1070 1071 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) 1072 { 1073 /* 1074 * Notifiers will clear bits in @dr6 to indicate the event has been 1075 * consumed - hw_breakpoint_handler(), single_stop_cont(). 1076 * 1077 * Notifiers will set bits in @virtual_dr6 to indicate the desire 1078 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). 1079 */ 1080 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) 1081 return true; 1082 1083 return false; 1084 } 1085 1086 static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6) 1087 { 1088 /* 1089 * Disable breakpoints during exception handling; recursive exceptions 1090 * are exceedingly 'fun'. 1091 * 1092 * Since this function is NOKPROBE, and that also applies to 1093 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 1094 * HW_BREAKPOINT_W on our stack) 1095 * 1096 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 1097 * includes the entry stack is excluded for everything. 1098 * 1099 * For FRED, nested #DB should just work fine. But when a watchpoint or 1100 * breakpoint is set in the code path which is executed by #DB handler, 1101 * it results in an endless recursion and stack overflow. Thus we stay 1102 * with the IDT approach, i.e., save DR7 and disable #DB. 1103 */ 1104 unsigned long dr7 = local_db_save(); 1105 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 1106 instrumentation_begin(); 1107 1108 /* 1109 * If something gets miswired and we end up here for a user mode 1110 * #DB, we will malfunction. 1111 */ 1112 WARN_ON_ONCE(user_mode(regs)); 1113 1114 if (test_thread_flag(TIF_BLOCKSTEP)) { 1115 /* 1116 * The SDM says "The processor clears the BTF flag when it 1117 * generates a debug exception." but PTRACE_BLOCKSTEP requested 1118 * it for userspace, but we just took a kernel #DB, so re-set 1119 * BTF. 1120 */ 1121 unsigned long debugctl; 1122 1123 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1124 debugctl |= DEBUGCTLMSR_BTF; 1125 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1126 } 1127 1128 /* 1129 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 1130 * watchpoint at the same time then that will still be handled. 1131 */ 1132 if (!cpu_feature_enabled(X86_FEATURE_FRED) && 1133 (dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 1134 dr6 &= ~DR_STEP; 1135 1136 /* 1137 * The kernel doesn't use INT1 1138 */ 1139 if (!dr6) 1140 goto out; 1141 1142 if (notify_debug(regs, &dr6)) 1143 goto out; 1144 1145 /* 1146 * The kernel doesn't use TF single-step outside of: 1147 * 1148 * - Kprobes, consumed through kprobe_debug_handler() 1149 * - KGDB, consumed through notify_debug() 1150 * 1151 * So if we get here with DR_STEP set, something is wonky. 1152 * 1153 * A known way to trigger this is through QEMU's GDB stub, 1154 * which leaks #DB into the guest and causes IST recursion. 1155 */ 1156 if (WARN_ON_ONCE(dr6 & DR_STEP)) 1157 regs->flags &= ~X86_EFLAGS_TF; 1158 out: 1159 instrumentation_end(); 1160 irqentry_nmi_exit(regs, irq_state); 1161 1162 local_db_restore(dr7); 1163 } 1164 1165 static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6) 1166 { 1167 bool icebp; 1168 1169 /* 1170 * If something gets miswired and we end up here for a kernel mode 1171 * #DB, we will malfunction. 1172 */ 1173 WARN_ON_ONCE(!user_mode(regs)); 1174 1175 /* 1176 * NB: We can't easily clear DR7 here because 1177 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access 1178 * user memory, etc. This means that a recursive #DB is possible. If 1179 * this happens, that #DB will hit exc_debug_kernel() and clear DR7. 1180 * Since we're not on the IST stack right now, everything will be 1181 * fine. 1182 */ 1183 1184 irqentry_enter_from_user_mode(regs); 1185 instrumentation_begin(); 1186 1187 /* 1188 * Start the virtual/ptrace DR6 value with just the DR_STEP mask 1189 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. 1190 * 1191 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) 1192 * even if it is not the result of PTRACE_SINGLESTEP. 1193 */ 1194 current->thread.virtual_dr6 = (dr6 & DR_STEP); 1195 1196 /* 1197 * The SDM says "The processor clears the BTF flag when it 1198 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 1199 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 1200 */ 1201 clear_thread_flag(TIF_BLOCKSTEP); 1202 1203 /* 1204 * If dr6 has no reason to give us about the origin of this trap, 1205 * then it's very likely the result of an icebp/int01 trap. 1206 * User wants a sigtrap for that. 1207 */ 1208 icebp = !dr6; 1209 1210 if (notify_debug(regs, &dr6)) 1211 goto out; 1212 1213 /* It's safe to allow irq's after DR6 has been saved */ 1214 local_irq_enable(); 1215 1216 if (v8086_mode(regs)) { 1217 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); 1218 goto out_irq; 1219 } 1220 1221 /* #DB for bus lock can only be triggered from userspace. */ 1222 if (dr6 & DR_BUS_LOCK) 1223 handle_bus_lock(regs); 1224 1225 /* Add the virtual_dr6 bits for signals. */ 1226 dr6 |= current->thread.virtual_dr6; 1227 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) 1228 send_sigtrap(regs, 0, get_si_code(dr6)); 1229 1230 out_irq: 1231 local_irq_disable(); 1232 out: 1233 instrumentation_end(); 1234 irqentry_exit_to_user_mode(regs); 1235 } 1236 1237 #ifdef CONFIG_X86_64 1238 /* IST stack entry */ 1239 DEFINE_IDTENTRY_DEBUG(exc_debug) 1240 { 1241 exc_debug_kernel(regs, debug_read_clear_dr6()); 1242 } 1243 1244 /* User entry, runs on regular task stack */ 1245 DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 1246 { 1247 exc_debug_user(regs, debug_read_clear_dr6()); 1248 } 1249 1250 #ifdef CONFIG_X86_FRED 1251 /* 1252 * When occurred on different ring level, i.e., from user or kernel 1253 * context, #DB needs to be handled on different stack: User #DB on 1254 * current task stack, while kernel #DB on a dedicated stack. 1255 * 1256 * This is exactly how FRED event delivery invokes an exception 1257 * handler: ring 3 event on level 0 stack, i.e., current task stack; 1258 * ring 0 event on the #DB dedicated stack specified in the 1259 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception 1260 * entry stub doesn't do stack switch. 1261 */ 1262 DEFINE_FREDENTRY_DEBUG(exc_debug) 1263 { 1264 /* 1265 * FRED #DB stores DR6 on the stack in the format which 1266 * debug_read_clear_dr6() returns for the IDT entry points. 1267 */ 1268 unsigned long dr6 = fred_event_data(regs); 1269 1270 if (user_mode(regs)) 1271 exc_debug_user(regs, dr6); 1272 else 1273 exc_debug_kernel(regs, dr6); 1274 } 1275 #endif /* CONFIG_X86_FRED */ 1276 1277 #else 1278 /* 32 bit does not have separate entry points. */ 1279 DEFINE_IDTENTRY_RAW(exc_debug) 1280 { 1281 unsigned long dr6 = debug_read_clear_dr6(); 1282 1283 if (user_mode(regs)) 1284 exc_debug_user(regs, dr6); 1285 else 1286 exc_debug_kernel(regs, dr6); 1287 } 1288 #endif 1289 1290 /* 1291 * Note that we play around with the 'TS' bit in an attempt to get 1292 * the correct behaviour even in the presence of the asynchronous 1293 * IRQ13 behaviour 1294 */ 1295 static void math_error(struct pt_regs *regs, int trapnr) 1296 { 1297 struct task_struct *task = current; 1298 struct fpu *fpu = &task->thread.fpu; 1299 int si_code; 1300 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 1301 "simd exception"; 1302 1303 cond_local_irq_enable(regs); 1304 1305 if (!user_mode(regs)) { 1306 if (fixup_exception(regs, trapnr, 0, 0)) 1307 goto exit; 1308 1309 task->thread.error_code = 0; 1310 task->thread.trap_nr = trapnr; 1311 1312 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 1313 SIGFPE) != NOTIFY_STOP) 1314 die(str, regs, 0); 1315 goto exit; 1316 } 1317 1318 /* 1319 * Synchronize the FPU register state to the memory register state 1320 * if necessary. This allows the exception handler to inspect it. 1321 */ 1322 fpu_sync_fpstate(fpu); 1323 1324 task->thread.trap_nr = trapnr; 1325 task->thread.error_code = 0; 1326 1327 si_code = fpu__exception_code(fpu, trapnr); 1328 /* Retry when we get spurious exceptions: */ 1329 if (!si_code) 1330 goto exit; 1331 1332 if (fixup_vdso_exception(regs, trapnr, 0, 0)) 1333 goto exit; 1334 1335 force_sig_fault(SIGFPE, si_code, 1336 (void __user *)uprobe_get_trap_addr(regs)); 1337 exit: 1338 cond_local_irq_disable(regs); 1339 } 1340 1341 DEFINE_IDTENTRY(exc_coprocessor_error) 1342 { 1343 math_error(regs, X86_TRAP_MF); 1344 } 1345 1346 DEFINE_IDTENTRY(exc_simd_coprocessor_error) 1347 { 1348 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 1349 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 1350 if (!static_cpu_has(X86_FEATURE_XMM)) { 1351 __exc_general_protection(regs, 0); 1352 return; 1353 } 1354 } 1355 math_error(regs, X86_TRAP_XF); 1356 } 1357 1358 DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 1359 { 1360 /* 1361 * This addresses a Pentium Pro Erratum: 1362 * 1363 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1364 * Virtual Wire mode implemented through the local APIC, an 1365 * interrupt vector of 0Fh (Intel reserved encoding) may be 1366 * generated by the local APIC (Int 15). This vector may be 1367 * generated upon receipt of a spurious interrupt (an interrupt 1368 * which is removed before the system receives the INTA sequence) 1369 * instead of the programmed 8259 spurious interrupt vector. 1370 * 1371 * IMPLICATION: The spurious interrupt vector programmed in the 1372 * 8259 is normally handled by an operating system's spurious 1373 * interrupt handler. However, a vector of 0Fh is unknown to some 1374 * operating systems, which would crash if this erratum occurred. 1375 * 1376 * In theory this could be limited to 32bit, but the handler is not 1377 * hurting and who knows which other CPUs suffer from this. 1378 */ 1379 } 1380 1381 static bool handle_xfd_event(struct pt_regs *regs) 1382 { 1383 u64 xfd_err; 1384 int err; 1385 1386 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD)) 1387 return false; 1388 1389 rdmsrl(MSR_IA32_XFD_ERR, xfd_err); 1390 if (!xfd_err) 1391 return false; 1392 1393 wrmsrl(MSR_IA32_XFD_ERR, 0); 1394 1395 /* Die if that happens in kernel space */ 1396 if (WARN_ON(!user_mode(regs))) 1397 return false; 1398 1399 local_irq_enable(); 1400 1401 err = xfd_enable_feature(xfd_err); 1402 1403 switch (err) { 1404 case -EPERM: 1405 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs)); 1406 break; 1407 case -EFAULT: 1408 force_sig(SIGSEGV); 1409 break; 1410 } 1411 1412 local_irq_disable(); 1413 return true; 1414 } 1415 1416 DEFINE_IDTENTRY(exc_device_not_available) 1417 { 1418 unsigned long cr0 = read_cr0(); 1419 1420 if (handle_xfd_event(regs)) 1421 return; 1422 1423 #ifdef CONFIG_MATH_EMULATION 1424 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1425 struct math_emu_info info = { }; 1426 1427 cond_local_irq_enable(regs); 1428 1429 info.regs = regs; 1430 math_emulate(&info); 1431 1432 cond_local_irq_disable(regs); 1433 return; 1434 } 1435 #endif 1436 1437 /* This should not happen. */ 1438 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1439 /* Try to fix it up and carry on. */ 1440 write_cr0(cr0 & ~X86_CR0_TS); 1441 } else { 1442 /* 1443 * Something terrible happened, and we're better off trying 1444 * to kill the task than getting stuck in a never-ending 1445 * loop of #NM faults. 1446 */ 1447 die("unexpected #NM exception", regs, 0); 1448 } 1449 } 1450 1451 #ifdef CONFIG_INTEL_TDX_GUEST 1452 1453 #define VE_FAULT_STR "VE fault" 1454 1455 static void ve_raise_fault(struct pt_regs *regs, long error_code, 1456 unsigned long address) 1457 { 1458 if (user_mode(regs)) { 1459 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR); 1460 return; 1461 } 1462 1463 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, 1464 VE_FAULT_STR, address)) { 1465 return; 1466 } 1467 1468 die_addr(VE_FAULT_STR, regs, error_code, address); 1469 } 1470 1471 /* 1472 * Virtualization Exceptions (#VE) are delivered to TDX guests due to 1473 * specific guest actions which may happen in either user space or the 1474 * kernel: 1475 * 1476 * * Specific instructions (WBINVD, for example) 1477 * * Specific MSR accesses 1478 * * Specific CPUID leaf accesses 1479 * * Access to specific guest physical addresses 1480 * 1481 * In the settings that Linux will run in, virtualization exceptions are 1482 * never generated on accesses to normal, TD-private memory that has been 1483 * accepted (by BIOS or with tdx_enc_status_changed()). 1484 * 1485 * Syscall entry code has a critical window where the kernel stack is not 1486 * yet set up. Any exception in this window leads to hard to debug issues 1487 * and can be exploited for privilege escalation. Exceptions in the NMI 1488 * entry code also cause issues. Returning from the exception handler with 1489 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack. 1490 * 1491 * For these reasons, the kernel avoids #VEs during the syscall gap and 1492 * the NMI entry code. Entry code paths do not access TD-shared memory, 1493 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves 1494 * that might generate #VE. VMM can remove memory from TD at any point, 1495 * but access to unaccepted (or missing) private memory leads to VM 1496 * termination, not to #VE. 1497 * 1498 * Similarly to page faults and breakpoints, #VEs are allowed in NMI 1499 * handlers once the kernel is ready to deal with nested NMIs. 1500 * 1501 * During #VE delivery, all interrupts, including NMIs, are blocked until 1502 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads 1503 * the VE info. 1504 * 1505 * If a guest kernel action which would normally cause a #VE occurs in 1506 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault 1507 * exception) is delivered to the guest which will result in an oops. 1508 * 1509 * The entry code has been audited carefully for following these expectations. 1510 * Changes in the entry code have to be audited for correctness vs. this 1511 * aspect. Similarly to #PF, #VE in these places will expose kernel to 1512 * privilege escalation or may lead to random crashes. 1513 */ 1514 DEFINE_IDTENTRY(exc_virtualization_exception) 1515 { 1516 struct ve_info ve; 1517 1518 /* 1519 * NMIs/Machine-checks/Interrupts will be in a disabled state 1520 * till TDGETVEINFO TDCALL is executed. This ensures that VE 1521 * info cannot be overwritten by a nested #VE. 1522 */ 1523 tdx_get_ve_info(&ve); 1524 1525 cond_local_irq_enable(regs); 1526 1527 /* 1528 * If tdx_handle_virt_exception() could not process 1529 * it successfully, treat it as #GP(0) and handle it. 1530 */ 1531 if (!tdx_handle_virt_exception(regs, &ve)) 1532 ve_raise_fault(regs, 0, ve.gla); 1533 1534 cond_local_irq_disable(regs); 1535 } 1536 1537 #endif 1538 1539 #ifdef CONFIG_X86_32 1540 DEFINE_IDTENTRY_SW(iret_error) 1541 { 1542 local_irq_enable(); 1543 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1544 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1545 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1546 ILL_BADSTK, (void __user *)NULL); 1547 } 1548 local_irq_disable(); 1549 } 1550 #endif 1551 1552 void __init trap_init(void) 1553 { 1554 /* Init cpu_entry_area before IST entries are set up */ 1555 setup_cpu_entry_areas(); 1556 1557 /* Init GHCB memory pages when running as an SEV-ES guest */ 1558 sev_es_init_vc_handling(); 1559 1560 /* Initialize TSS before setting up traps so ISTs work */ 1561 cpu_init_exception_handling(true); 1562 1563 /* Setup traps as cpu_init() might #GP */ 1564 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 1565 idt_setup_traps(); 1566 1567 cpu_init(); 1568 } 1569