1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 #include <asm/stacktrace.h> 41 #include <asm/processor.h> 42 #include <asm/debugreg.h> 43 #include <linux/atomic.h> 44 #include <asm/text-patching.h> 45 #include <asm/ftrace.h> 46 #include <asm/traps.h> 47 #include <asm/desc.h> 48 #include <asm/fpu/internal.h> 49 #include <asm/cpu_entry_area.h> 50 #include <asm/mce.h> 51 #include <asm/fixmap.h> 52 #include <asm/mach_traps.h> 53 #include <asm/alternative.h> 54 #include <asm/fpu/xstate.h> 55 #include <asm/trace/mpx.h> 56 #include <asm/mpx.h> 57 #include <asm/vm86.h> 58 #include <asm/umip.h> 59 60 #ifdef CONFIG_X86_64 61 #include <asm/x86_init.h> 62 #include <asm/pgalloc.h> 63 #include <asm/proto.h> 64 #else 65 #include <asm/processor-flags.h> 66 #include <asm/setup.h> 67 #include <asm/proto.h> 68 #endif 69 70 DECLARE_BITMAP(system_vectors, NR_VECTORS); 71 72 static inline void cond_local_irq_enable(struct pt_regs *regs) 73 { 74 if (regs->flags & X86_EFLAGS_IF) 75 local_irq_enable(); 76 } 77 78 static inline void cond_local_irq_disable(struct pt_regs *regs) 79 { 80 if (regs->flags & X86_EFLAGS_IF) 81 local_irq_disable(); 82 } 83 84 /* 85 * In IST context, we explicitly disable preemption. This serves two 86 * purposes: it makes it much less likely that we would accidentally 87 * schedule in IST context and it will force a warning if we somehow 88 * manage to schedule by accident. 89 */ 90 void ist_enter(struct pt_regs *regs) 91 { 92 if (user_mode(regs)) { 93 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 94 } else { 95 /* 96 * We might have interrupted pretty much anything. In 97 * fact, if we're a machine check, we can even interrupt 98 * NMI processing. We don't want in_nmi() to return true, 99 * but we need to notify RCU. 100 */ 101 rcu_nmi_enter(); 102 } 103 104 preempt_disable(); 105 106 /* This code is a bit fragile. Test it. */ 107 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 108 } 109 NOKPROBE_SYMBOL(ist_enter); 110 111 void ist_exit(struct pt_regs *regs) 112 { 113 preempt_enable_no_resched(); 114 115 if (!user_mode(regs)) 116 rcu_nmi_exit(); 117 } 118 119 /** 120 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 121 * @regs: regs passed to the IST exception handler 122 * 123 * IST exception handlers normally cannot schedule. As a special 124 * exception, if the exception interrupted userspace code (i.e. 125 * user_mode(regs) would return true) and the exception was not 126 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 127 * begins a non-atomic section within an ist_enter()/ist_exit() region. 128 * Callers are responsible for enabling interrupts themselves inside 129 * the non-atomic section, and callers must call ist_end_non_atomic() 130 * before ist_exit(). 131 */ 132 void ist_begin_non_atomic(struct pt_regs *regs) 133 { 134 BUG_ON(!user_mode(regs)); 135 136 /* 137 * Sanity check: we need to be on the normal thread stack. This 138 * will catch asm bugs and any attempt to use ist_preempt_enable 139 * from double_fault. 140 */ 141 BUG_ON(!on_thread_stack()); 142 143 preempt_enable_no_resched(); 144 } 145 146 /** 147 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 148 * 149 * Ends a non-atomic section started with ist_begin_non_atomic(). 150 */ 151 void ist_end_non_atomic(void) 152 { 153 preempt_disable(); 154 } 155 156 int is_valid_bugaddr(unsigned long addr) 157 { 158 unsigned short ud; 159 160 if (addr < TASK_SIZE_MAX) 161 return 0; 162 163 if (probe_kernel_address((unsigned short *)addr, ud)) 164 return 0; 165 166 return ud == INSN_UD0 || ud == INSN_UD2; 167 } 168 169 int fixup_bug(struct pt_regs *regs, int trapnr) 170 { 171 if (trapnr != X86_TRAP_UD) 172 return 0; 173 174 switch (report_bug(regs->ip, regs)) { 175 case BUG_TRAP_TYPE_NONE: 176 case BUG_TRAP_TYPE_BUG: 177 break; 178 179 case BUG_TRAP_TYPE_WARN: 180 regs->ip += LEN_UD2; 181 return 1; 182 } 183 184 return 0; 185 } 186 187 static nokprobe_inline int 188 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 189 struct pt_regs *regs, long error_code) 190 { 191 if (v8086_mode(regs)) { 192 /* 193 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 194 * On nmi (interrupt 2), do_trap should not be called. 195 */ 196 if (trapnr < X86_TRAP_UD) { 197 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 198 error_code, trapnr)) 199 return 0; 200 } 201 } else if (!user_mode(regs)) { 202 if (fixup_exception(regs, trapnr, error_code, 0)) 203 return 0; 204 205 tsk->thread.error_code = error_code; 206 tsk->thread.trap_nr = trapnr; 207 die(str, regs, error_code); 208 } 209 210 /* 211 * We want error_code and trap_nr set for userspace faults and 212 * kernelspace faults which result in die(), but not 213 * kernelspace faults which are fixed up. die() gives the 214 * process no chance to handle the signal and notice the 215 * kernel fault information, so that won't result in polluting 216 * the information about previously queued, but not yet 217 * delivered, faults. See also do_general_protection below. 218 */ 219 tsk->thread.error_code = error_code; 220 tsk->thread.trap_nr = trapnr; 221 222 return -1; 223 } 224 225 static void show_signal(struct task_struct *tsk, int signr, 226 const char *type, const char *desc, 227 struct pt_regs *regs, long error_code) 228 { 229 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 230 printk_ratelimit()) { 231 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 232 tsk->comm, task_pid_nr(tsk), type, desc, 233 regs->ip, regs->sp, error_code); 234 print_vma_addr(KERN_CONT " in ", regs->ip); 235 pr_cont("\n"); 236 } 237 } 238 239 static void 240 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 241 long error_code, int sicode, void __user *addr) 242 { 243 struct task_struct *tsk = current; 244 245 246 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 247 return; 248 249 show_signal(tsk, signr, "trap ", str, regs, error_code); 250 251 if (!sicode) 252 force_sig(signr); 253 else 254 force_sig_fault(signr, sicode, addr); 255 } 256 NOKPROBE_SYMBOL(do_trap); 257 258 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 259 unsigned long trapnr, int signr, int sicode, void __user *addr) 260 { 261 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 262 263 /* 264 * WARN*()s end up here; fix them up before we call the 265 * notifier chain. 266 */ 267 if (!user_mode(regs) && fixup_bug(regs, trapnr)) 268 return; 269 270 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 271 NOTIFY_STOP) { 272 cond_local_irq_enable(regs); 273 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 274 } 275 } 276 277 #define IP ((void __user *)uprobe_get_trap_addr(regs)) 278 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \ 279 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 280 { \ 281 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \ 282 } 283 284 DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error) 285 DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow) 286 DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op) 287 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun) 288 DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS) 289 DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present) 290 DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment) 291 DO_ERROR(X86_TRAP_AC, SIGBUS, BUS_ADRALN, NULL, "alignment check", alignment_check) 292 #undef IP 293 294 #ifdef CONFIG_VMAP_STACK 295 __visible void __noreturn handle_stack_overflow(const char *message, 296 struct pt_regs *regs, 297 unsigned long fault_address) 298 { 299 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 300 (void *)fault_address, current->stack, 301 (char *)current->stack + THREAD_SIZE - 1); 302 die(message, regs, 0); 303 304 /* Be absolutely certain we don't return. */ 305 panic("%s", message); 306 } 307 #endif 308 309 #ifdef CONFIG_X86_64 310 /* Runs on IST stack */ 311 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2) 312 { 313 static const char str[] = "double fault"; 314 struct task_struct *tsk = current; 315 316 #ifdef CONFIG_X86_ESPFIX64 317 extern unsigned char native_irq_return_iret[]; 318 319 /* 320 * If IRET takes a non-IST fault on the espfix64 stack, then we 321 * end up promoting it to a doublefault. In that case, take 322 * advantage of the fact that we're not using the normal (TSS.sp0) 323 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 324 * and then modify our own IRET frame so that, when we return, 325 * we land directly at the #GP(0) vector with the stack already 326 * set up according to its expectations. 327 * 328 * The net result is that our #GP handler will think that we 329 * entered from usermode with the bad user context. 330 * 331 * No need for ist_enter here because we don't use RCU. 332 */ 333 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 334 regs->cs == __KERNEL_CS && 335 regs->ip == (unsigned long)native_irq_return_iret) 336 { 337 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 338 339 /* 340 * regs->sp points to the failing IRET frame on the 341 * ESPFIX64 stack. Copy it to the entry stack. This fills 342 * in gpregs->ss through gpregs->ip. 343 * 344 */ 345 memmove(&gpregs->ip, (void *)regs->sp, 5*8); 346 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 347 348 /* 349 * Adjust our frame so that we return straight to the #GP 350 * vector with the expected RSP value. This is safe because 351 * we won't enable interupts or schedule before we invoke 352 * general_protection, so nothing will clobber the stack 353 * frame we just set up. 354 * 355 * We will enter general_protection with kernel GSBASE, 356 * which is what the stub expects, given that the faulting 357 * RIP will be the IRET instruction. 358 */ 359 regs->ip = (unsigned long)general_protection; 360 regs->sp = (unsigned long)&gpregs->orig_ax; 361 362 return; 363 } 364 #endif 365 366 ist_enter(regs); 367 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 368 369 tsk->thread.error_code = error_code; 370 tsk->thread.trap_nr = X86_TRAP_DF; 371 372 #ifdef CONFIG_VMAP_STACK 373 /* 374 * If we overflow the stack into a guard page, the CPU will fail 375 * to deliver #PF and will send #DF instead. Similarly, if we 376 * take any non-IST exception while too close to the bottom of 377 * the stack, the processor will get a page fault while 378 * delivering the exception and will generate a double fault. 379 * 380 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 381 * Page-Fault Exception (#PF): 382 * 383 * Processors update CR2 whenever a page fault is detected. If a 384 * second page fault occurs while an earlier page fault is being 385 * delivered, the faulting linear address of the second fault will 386 * overwrite the contents of CR2 (replacing the previous 387 * address). These updates to CR2 occur even if the page fault 388 * results in a double fault or occurs during the delivery of a 389 * double fault. 390 * 391 * The logic below has a small possibility of incorrectly diagnosing 392 * some errors as stack overflows. For example, if the IDT or GDT 393 * gets corrupted such that #GP delivery fails due to a bad descriptor 394 * causing #GP and we hit this condition while CR2 coincidentally 395 * points to the stack guard page, we'll think we overflowed the 396 * stack. Given that we're going to panic one way or another 397 * if this happens, this isn't necessarily worth fixing. 398 * 399 * If necessary, we could improve the test by only diagnosing 400 * a stack overflow if the saved RSP points within 47 bytes of 401 * the bottom of the stack: if RSP == tsk_stack + 48 and we 402 * take an exception, the stack is already aligned and there 403 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 404 * possible error code, so a stack overflow would *not* double 405 * fault. With any less space left, exception delivery could 406 * fail, and, as a practical matter, we've overflowed the 407 * stack even if the actual trigger for the double fault was 408 * something else. 409 */ 410 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 411 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 412 #endif 413 414 #ifdef CONFIG_DOUBLEFAULT 415 df_debug(regs, error_code); 416 #endif 417 /* 418 * This is always a kernel trap and never fixable (and thus must 419 * never return). 420 */ 421 for (;;) 422 die(str, regs, error_code); 423 } 424 #endif 425 426 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 427 { 428 const struct mpx_bndcsr *bndcsr; 429 430 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 431 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 432 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 433 return; 434 cond_local_irq_enable(regs); 435 436 if (!user_mode(regs)) 437 die("bounds", regs, error_code); 438 439 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 440 /* The exception is not from Intel MPX */ 441 goto exit_trap; 442 } 443 444 /* 445 * We need to look at BNDSTATUS to resolve this exception. 446 * A NULL here might mean that it is in its 'init state', 447 * which is all zeros which indicates MPX was not 448 * responsible for the exception. 449 */ 450 bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR); 451 if (!bndcsr) 452 goto exit_trap; 453 454 trace_bounds_exception_mpx(bndcsr); 455 /* 456 * The error code field of the BNDSTATUS register communicates status 457 * information of a bound range exception #BR or operation involving 458 * bound directory. 459 */ 460 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 461 case 2: /* Bound directory has invalid entry. */ 462 if (mpx_handle_bd_fault()) 463 goto exit_trap; 464 break; /* Success, it was handled */ 465 case 1: /* Bound violation. */ 466 { 467 struct task_struct *tsk = current; 468 struct mpx_fault_info mpx; 469 470 if (mpx_fault_info(&mpx, regs)) { 471 /* 472 * We failed to decode the MPX instruction. Act as if 473 * the exception was not caused by MPX. 474 */ 475 goto exit_trap; 476 } 477 /* 478 * Success, we decoded the instruction and retrieved 479 * an 'mpx' containing the address being accessed 480 * which caused the exception. This information 481 * allows and application to possibly handle the 482 * #BR exception itself. 483 */ 484 if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs, 485 error_code)) 486 break; 487 488 show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code); 489 490 force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper); 491 break; 492 } 493 case 0: /* No exception caused by Intel MPX operations. */ 494 goto exit_trap; 495 default: 496 die("bounds", regs, error_code); 497 } 498 499 return; 500 501 exit_trap: 502 /* 503 * This path out is for all the cases where we could not 504 * handle the exception in some way (like allocating a 505 * table or telling userspace about it. We will also end 506 * up here if the kernel has MPX turned off at compile 507 * time.. 508 */ 509 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL); 510 } 511 512 dotraplinkage void 513 do_general_protection(struct pt_regs *regs, long error_code) 514 { 515 const char *desc = "general protection fault"; 516 struct task_struct *tsk; 517 518 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 519 cond_local_irq_enable(regs); 520 521 if (static_cpu_has(X86_FEATURE_UMIP)) { 522 if (user_mode(regs) && fixup_umip_exception(regs)) 523 return; 524 } 525 526 if (v8086_mode(regs)) { 527 local_irq_enable(); 528 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 529 return; 530 } 531 532 tsk = current; 533 if (!user_mode(regs)) { 534 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 535 return; 536 537 tsk->thread.error_code = error_code; 538 tsk->thread.trap_nr = X86_TRAP_GP; 539 540 /* 541 * To be potentially processing a kprobe fault and to 542 * trust the result from kprobe_running(), we have to 543 * be non-preemptible. 544 */ 545 if (!preemptible() && kprobe_running() && 546 kprobe_fault_handler(regs, X86_TRAP_GP)) 547 return; 548 549 if (notify_die(DIE_GPF, desc, regs, error_code, 550 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 551 die(desc, regs, error_code); 552 return; 553 } 554 555 tsk->thread.error_code = error_code; 556 tsk->thread.trap_nr = X86_TRAP_GP; 557 558 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 559 560 force_sig(SIGSEGV); 561 } 562 NOKPROBE_SYMBOL(do_general_protection); 563 564 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 565 { 566 #ifdef CONFIG_DYNAMIC_FTRACE 567 /* 568 * ftrace must be first, everything else may cause a recursive crash. 569 * See note by declaration of modifying_ftrace_code in ftrace.c 570 */ 571 if (unlikely(atomic_read(&modifying_ftrace_code)) && 572 ftrace_int3_handler(regs)) 573 return; 574 #endif 575 if (poke_int3_handler(regs)) 576 return; 577 578 /* 579 * Use ist_enter despite the fact that we don't use an IST stack. 580 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel 581 * mode or even during context tracking state changes. 582 * 583 * This means that we can't schedule. That's okay. 584 */ 585 ist_enter(regs); 586 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 587 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 588 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 589 SIGTRAP) == NOTIFY_STOP) 590 goto exit; 591 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 592 593 #ifdef CONFIG_KPROBES 594 if (kprobe_int3_handler(regs)) 595 goto exit; 596 #endif 597 598 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 599 SIGTRAP) == NOTIFY_STOP) 600 goto exit; 601 602 cond_local_irq_enable(regs); 603 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL); 604 cond_local_irq_disable(regs); 605 606 exit: 607 ist_exit(regs); 608 } 609 NOKPROBE_SYMBOL(do_int3); 610 611 #ifdef CONFIG_X86_64 612 /* 613 * Help handler running on a per-cpu (IST or entry trampoline) stack 614 * to switch to the normal thread stack if the interrupted code was in 615 * user mode. The actual stack switch is done in entry_64.S 616 */ 617 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 618 { 619 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 620 if (regs != eregs) 621 *regs = *eregs; 622 return regs; 623 } 624 NOKPROBE_SYMBOL(sync_regs); 625 626 struct bad_iret_stack { 627 void *error_entry_ret; 628 struct pt_regs regs; 629 }; 630 631 asmlinkage __visible notrace 632 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 633 { 634 /* 635 * This is called from entry_64.S early in handling a fault 636 * caused by a bad iret to user mode. To handle the fault 637 * correctly, we want to move our stack frame to where it would 638 * be had we entered directly on the entry stack (rather than 639 * just below the IRET frame) and we want to pretend that the 640 * exception came from the IRET target. 641 */ 642 struct bad_iret_stack *new_stack = 643 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 644 645 /* Copy the IRET target to the new stack. */ 646 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 647 648 /* Copy the remainder of the stack from the current stack. */ 649 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 650 651 BUG_ON(!user_mode(&new_stack->regs)); 652 return new_stack; 653 } 654 NOKPROBE_SYMBOL(fixup_bad_iret); 655 #endif 656 657 static bool is_sysenter_singlestep(struct pt_regs *regs) 658 { 659 /* 660 * We don't try for precision here. If we're anywhere in the region of 661 * code that can be single-stepped in the SYSENTER entry path, then 662 * assume that this is a useless single-step trap due to SYSENTER 663 * being invoked with TF set. (We don't know in advance exactly 664 * which instructions will be hit because BTF could plausibly 665 * be set.) 666 */ 667 #ifdef CONFIG_X86_32 668 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 669 (unsigned long)__end_SYSENTER_singlestep_region - 670 (unsigned long)__begin_SYSENTER_singlestep_region; 671 #elif defined(CONFIG_IA32_EMULATION) 672 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 673 (unsigned long)__end_entry_SYSENTER_compat - 674 (unsigned long)entry_SYSENTER_compat; 675 #else 676 return false; 677 #endif 678 } 679 680 /* 681 * Our handling of the processor debug registers is non-trivial. 682 * We do not clear them on entry and exit from the kernel. Therefore 683 * it is possible to get a watchpoint trap here from inside the kernel. 684 * However, the code in ./ptrace.c has ensured that the user can 685 * only set watchpoints on userspace addresses. Therefore the in-kernel 686 * watchpoint trap can only occur in code which is reading/writing 687 * from user space. Such code must not hold kernel locks (since it 688 * can equally take a page fault), therefore it is safe to call 689 * force_sig_info even though that claims and releases locks. 690 * 691 * Code in ./signal.c ensures that the debug control register 692 * is restored before we deliver any signal, and therefore that 693 * user code runs with the correct debug control register even though 694 * we clear it here. 695 * 696 * Being careful here means that we don't have to be as careful in a 697 * lot of more complicated places (task switching can be a bit lazy 698 * about restoring all the debug state, and ptrace doesn't have to 699 * find every occurrence of the TF bit that could be saved away even 700 * by user code) 701 * 702 * May run on IST stack. 703 */ 704 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 705 { 706 struct task_struct *tsk = current; 707 int user_icebp = 0; 708 unsigned long dr6; 709 int si_code; 710 711 ist_enter(regs); 712 713 get_debugreg(dr6, 6); 714 /* 715 * The Intel SDM says: 716 * 717 * Certain debug exceptions may clear bits 0-3. The remaining 718 * contents of the DR6 register are never cleared by the 719 * processor. To avoid confusion in identifying debug 720 * exceptions, debug handlers should clear the register before 721 * returning to the interrupted task. 722 * 723 * Keep it simple: clear DR6 immediately. 724 */ 725 set_debugreg(0, 6); 726 727 /* Filter out all the reserved bits which are preset to 1 */ 728 dr6 &= ~DR6_RESERVED; 729 730 /* 731 * The SDM says "The processor clears the BTF flag when it 732 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 733 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 734 */ 735 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 736 737 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 738 is_sysenter_singlestep(regs))) { 739 dr6 &= ~DR_STEP; 740 if (!dr6) 741 goto exit; 742 /* 743 * else we might have gotten a single-step trap and hit a 744 * watchpoint at the same time, in which case we should fall 745 * through and handle the watchpoint. 746 */ 747 } 748 749 /* 750 * If dr6 has no reason to give us about the origin of this trap, 751 * then it's very likely the result of an icebp/int01 trap. 752 * User wants a sigtrap for that. 753 */ 754 if (!dr6 && user_mode(regs)) 755 user_icebp = 1; 756 757 /* Store the virtualized DR6 value */ 758 tsk->thread.debugreg6 = dr6; 759 760 #ifdef CONFIG_KPROBES 761 if (kprobe_debug_handler(regs)) 762 goto exit; 763 #endif 764 765 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 766 SIGTRAP) == NOTIFY_STOP) 767 goto exit; 768 769 /* 770 * Let others (NMI) know that the debug stack is in use 771 * as we may switch to the interrupt stack. 772 */ 773 debug_stack_usage_inc(); 774 775 /* It's safe to allow irq's after DR6 has been saved */ 776 cond_local_irq_enable(regs); 777 778 if (v8086_mode(regs)) { 779 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 780 X86_TRAP_DB); 781 cond_local_irq_disable(regs); 782 debug_stack_usage_dec(); 783 goto exit; 784 } 785 786 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 787 /* 788 * Historical junk that used to handle SYSENTER single-stepping. 789 * This should be unreachable now. If we survive for a while 790 * without anyone hitting this warning, we'll turn this into 791 * an oops. 792 */ 793 tsk->thread.debugreg6 &= ~DR_STEP; 794 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 795 regs->flags &= ~X86_EFLAGS_TF; 796 } 797 si_code = get_si_code(tsk->thread.debugreg6); 798 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 799 send_sigtrap(regs, error_code, si_code); 800 cond_local_irq_disable(regs); 801 debug_stack_usage_dec(); 802 803 exit: 804 ist_exit(regs); 805 } 806 NOKPROBE_SYMBOL(do_debug); 807 808 /* 809 * Note that we play around with the 'TS' bit in an attempt to get 810 * the correct behaviour even in the presence of the asynchronous 811 * IRQ13 behaviour 812 */ 813 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 814 { 815 struct task_struct *task = current; 816 struct fpu *fpu = &task->thread.fpu; 817 int si_code; 818 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 819 "simd exception"; 820 821 cond_local_irq_enable(regs); 822 823 if (!user_mode(regs)) { 824 if (fixup_exception(regs, trapnr, error_code, 0)) 825 return; 826 827 task->thread.error_code = error_code; 828 task->thread.trap_nr = trapnr; 829 830 if (notify_die(DIE_TRAP, str, regs, error_code, 831 trapnr, SIGFPE) != NOTIFY_STOP) 832 die(str, regs, error_code); 833 return; 834 } 835 836 /* 837 * Save the info for the exception handler and clear the error. 838 */ 839 fpu__save(fpu); 840 841 task->thread.trap_nr = trapnr; 842 task->thread.error_code = error_code; 843 844 si_code = fpu__exception_code(fpu, trapnr); 845 /* Retry when we get spurious exceptions: */ 846 if (!si_code) 847 return; 848 849 force_sig_fault(SIGFPE, si_code, 850 (void __user *)uprobe_get_trap_addr(regs)); 851 } 852 853 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 854 { 855 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 856 math_error(regs, error_code, X86_TRAP_MF); 857 } 858 859 dotraplinkage void 860 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 861 { 862 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 863 math_error(regs, error_code, X86_TRAP_XF); 864 } 865 866 dotraplinkage void 867 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 868 { 869 cond_local_irq_enable(regs); 870 } 871 872 dotraplinkage void 873 do_device_not_available(struct pt_regs *regs, long error_code) 874 { 875 unsigned long cr0 = read_cr0(); 876 877 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 878 879 #ifdef CONFIG_MATH_EMULATION 880 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 881 struct math_emu_info info = { }; 882 883 cond_local_irq_enable(regs); 884 885 info.regs = regs; 886 math_emulate(&info); 887 return; 888 } 889 #endif 890 891 /* This should not happen. */ 892 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 893 /* Try to fix it up and carry on. */ 894 write_cr0(cr0 & ~X86_CR0_TS); 895 } else { 896 /* 897 * Something terrible happened, and we're better off trying 898 * to kill the task than getting stuck in a never-ending 899 * loop of #NM faults. 900 */ 901 die("unexpected #NM exception", regs, error_code); 902 } 903 } 904 NOKPROBE_SYMBOL(do_device_not_available); 905 906 #ifdef CONFIG_X86_32 907 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 908 { 909 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 910 local_irq_enable(); 911 912 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 913 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 914 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 915 ILL_BADSTK, (void __user *)NULL); 916 } 917 } 918 #endif 919 920 void __init trap_init(void) 921 { 922 /* Init cpu_entry_area before IST entries are set up */ 923 setup_cpu_entry_areas(); 924 925 idt_setup_traps(); 926 927 /* 928 * Set the IDT descriptor to a fixed read-only location, so that the 929 * "sidt" instruction will not leak the location of the kernel, and 930 * to defend the IDT against arbitrary memory write vulnerabilities. 931 * It will be reloaded in cpu_init() */ 932 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), 933 PAGE_KERNEL_RO); 934 idt_descr.address = CPU_ENTRY_AREA_RO_IDT; 935 936 /* 937 * Should be a barrier for any external CPU state: 938 */ 939 cpu_init(); 940 941 idt_setup_ist_traps(); 942 943 x86_init.irqs.trap_init(); 944 945 idt_setup_debugidt_traps(); 946 } 947