1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 #include <linux/interrupt.h> 13 #include <linux/kallsyms.h> 14 #include <linux/spinlock.h> 15 #include <linux/kprobes.h> 16 #include <linux/uaccess.h> 17 #include <linux/kdebug.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/ptrace.h> 21 #include <linux/string.h> 22 #include <linux/delay.h> 23 #include <linux/errno.h> 24 #include <linux/kexec.h> 25 #include <linux/sched.h> 26 #include <linux/timer.h> 27 #include <linux/init.h> 28 #include <linux/bug.h> 29 #include <linux/nmi.h> 30 #include <linux/mm.h> 31 #include <linux/smp.h> 32 #include <linux/io.h> 33 34 #ifdef CONFIG_EISA 35 #include <linux/ioport.h> 36 #include <linux/eisa.h> 37 #endif 38 39 #ifdef CONFIG_MCA 40 #include <linux/mca.h> 41 #endif 42 43 #if defined(CONFIG_EDAC) 44 #include <linux/edac.h> 45 #endif 46 47 #include <asm/kmemcheck.h> 48 #include <asm/stacktrace.h> 49 #include <asm/processor.h> 50 #include <asm/debugreg.h> 51 #include <asm/atomic.h> 52 #include <asm/system.h> 53 #include <asm/traps.h> 54 #include <asm/desc.h> 55 #include <asm/i387.h> 56 #include <asm/mce.h> 57 58 #include <asm/mach_traps.h> 59 60 #ifdef CONFIG_X86_64 61 #include <asm/x86_init.h> 62 #include <asm/pgalloc.h> 63 #include <asm/proto.h> 64 #else 65 #include <asm/processor-flags.h> 66 #include <asm/setup.h> 67 68 asmlinkage int system_call(void); 69 70 /* Do we ignore FPU interrupts ? */ 71 char ignore_fpu_irq; 72 73 /* 74 * The IDT has to be page-aligned to simplify the Pentium 75 * F0 0F bug workaround. 76 */ 77 gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, }; 78 #endif 79 80 DECLARE_BITMAP(used_vectors, NR_VECTORS); 81 EXPORT_SYMBOL_GPL(used_vectors); 82 83 static int ignore_nmis; 84 85 static inline void conditional_sti(struct pt_regs *regs) 86 { 87 if (regs->flags & X86_EFLAGS_IF) 88 local_irq_enable(); 89 } 90 91 static inline void preempt_conditional_sti(struct pt_regs *regs) 92 { 93 inc_preempt_count(); 94 if (regs->flags & X86_EFLAGS_IF) 95 local_irq_enable(); 96 } 97 98 static inline void conditional_cli(struct pt_regs *regs) 99 { 100 if (regs->flags & X86_EFLAGS_IF) 101 local_irq_disable(); 102 } 103 104 static inline void preempt_conditional_cli(struct pt_regs *regs) 105 { 106 if (regs->flags & X86_EFLAGS_IF) 107 local_irq_disable(); 108 dec_preempt_count(); 109 } 110 111 #ifdef CONFIG_X86_32 112 static inline void 113 die_if_kernel(const char *str, struct pt_regs *regs, long err) 114 { 115 if (!user_mode_vm(regs)) 116 die(str, regs, err); 117 } 118 #endif 119 120 static void __kprobes 121 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 122 long error_code, siginfo_t *info) 123 { 124 struct task_struct *tsk = current; 125 126 #ifdef CONFIG_X86_32 127 if (regs->flags & X86_VM_MASK) { 128 /* 129 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 130 * On nmi (interrupt 2), do_trap should not be called. 131 */ 132 if (trapnr < 6) 133 goto vm86_trap; 134 goto trap_signal; 135 } 136 #endif 137 138 if (!user_mode(regs)) 139 goto kernel_trap; 140 141 #ifdef CONFIG_X86_32 142 trap_signal: 143 #endif 144 /* 145 * We want error_code and trap_no set for userspace faults and 146 * kernelspace faults which result in die(), but not 147 * kernelspace faults which are fixed up. die() gives the 148 * process no chance to handle the signal and notice the 149 * kernel fault information, so that won't result in polluting 150 * the information about previously queued, but not yet 151 * delivered, faults. See also do_general_protection below. 152 */ 153 tsk->thread.error_code = error_code; 154 tsk->thread.trap_no = trapnr; 155 156 #ifdef CONFIG_X86_64 157 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 158 printk_ratelimit()) { 159 printk(KERN_INFO 160 "%s[%d] trap %s ip:%lx sp:%lx error:%lx", 161 tsk->comm, tsk->pid, str, 162 regs->ip, regs->sp, error_code); 163 print_vma_addr(" in ", regs->ip); 164 printk("\n"); 165 } 166 #endif 167 168 if (info) 169 force_sig_info(signr, info, tsk); 170 else 171 force_sig(signr, tsk); 172 return; 173 174 kernel_trap: 175 if (!fixup_exception(regs)) { 176 tsk->thread.error_code = error_code; 177 tsk->thread.trap_no = trapnr; 178 die(str, regs, error_code); 179 } 180 return; 181 182 #ifdef CONFIG_X86_32 183 vm86_trap: 184 if (handle_vm86_trap((struct kernel_vm86_regs *) regs, 185 error_code, trapnr)) 186 goto trap_signal; 187 return; 188 #endif 189 } 190 191 #define DO_ERROR(trapnr, signr, str, name) \ 192 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 193 { \ 194 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 195 == NOTIFY_STOP) \ 196 return; \ 197 conditional_sti(regs); \ 198 do_trap(trapnr, signr, str, regs, error_code, NULL); \ 199 } 200 201 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ 202 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 203 { \ 204 siginfo_t info; \ 205 info.si_signo = signr; \ 206 info.si_errno = 0; \ 207 info.si_code = sicode; \ 208 info.si_addr = (void __user *)siaddr; \ 209 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 210 == NOTIFY_STOP) \ 211 return; \ 212 conditional_sti(regs); \ 213 do_trap(trapnr, signr, str, regs, error_code, &info); \ 214 } 215 216 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip) 217 DO_ERROR(4, SIGSEGV, "overflow", overflow) 218 DO_ERROR(5, SIGSEGV, "bounds", bounds) 219 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip) 220 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) 221 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) 222 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) 223 #ifdef CONFIG_X86_32 224 DO_ERROR(12, SIGBUS, "stack segment", stack_segment) 225 #endif 226 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) 227 228 #ifdef CONFIG_X86_64 229 /* Runs on IST stack */ 230 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code) 231 { 232 if (notify_die(DIE_TRAP, "stack segment", regs, error_code, 233 12, SIGBUS) == NOTIFY_STOP) 234 return; 235 preempt_conditional_sti(regs); 236 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL); 237 preempt_conditional_cli(regs); 238 } 239 240 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 241 { 242 static const char str[] = "double fault"; 243 struct task_struct *tsk = current; 244 245 /* Return not checked because double check cannot be ignored */ 246 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV); 247 248 tsk->thread.error_code = error_code; 249 tsk->thread.trap_no = 8; 250 251 /* 252 * This is always a kernel trap and never fixable (and thus must 253 * never return). 254 */ 255 for (;;) 256 die(str, regs, error_code); 257 } 258 #endif 259 260 dotraplinkage void __kprobes 261 do_general_protection(struct pt_regs *regs, long error_code) 262 { 263 struct task_struct *tsk; 264 265 conditional_sti(regs); 266 267 #ifdef CONFIG_X86_32 268 if (regs->flags & X86_VM_MASK) 269 goto gp_in_vm86; 270 #endif 271 272 tsk = current; 273 if (!user_mode(regs)) 274 goto gp_in_kernel; 275 276 tsk->thread.error_code = error_code; 277 tsk->thread.trap_no = 13; 278 279 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 280 printk_ratelimit()) { 281 printk(KERN_INFO 282 "%s[%d] general protection ip:%lx sp:%lx error:%lx", 283 tsk->comm, task_pid_nr(tsk), 284 regs->ip, regs->sp, error_code); 285 print_vma_addr(" in ", regs->ip); 286 printk("\n"); 287 } 288 289 force_sig(SIGSEGV, tsk); 290 return; 291 292 #ifdef CONFIG_X86_32 293 gp_in_vm86: 294 local_irq_enable(); 295 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 296 return; 297 #endif 298 299 gp_in_kernel: 300 if (fixup_exception(regs)) 301 return; 302 303 tsk->thread.error_code = error_code; 304 tsk->thread.trap_no = 13; 305 if (notify_die(DIE_GPF, "general protection fault", regs, 306 error_code, 13, SIGSEGV) == NOTIFY_STOP) 307 return; 308 die("general protection fault", regs, error_code); 309 } 310 311 static notrace __kprobes void 312 mem_parity_error(unsigned char reason, struct pt_regs *regs) 313 { 314 printk(KERN_EMERG 315 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 316 reason, smp_processor_id()); 317 318 printk(KERN_EMERG 319 "You have some hardware problem, likely on the PCI bus.\n"); 320 321 #if defined(CONFIG_EDAC) 322 if (edac_handler_set()) { 323 edac_atomic_assert_error(); 324 return; 325 } 326 #endif 327 328 if (panic_on_unrecovered_nmi) 329 panic("NMI: Not continuing"); 330 331 printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); 332 333 /* Clear and disable the memory parity error line. */ 334 reason = (reason & 0xf) | 4; 335 outb(reason, 0x61); 336 } 337 338 static notrace __kprobes void 339 io_check_error(unsigned char reason, struct pt_regs *regs) 340 { 341 unsigned long i; 342 343 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n"); 344 show_registers(regs); 345 346 if (panic_on_io_nmi) 347 panic("NMI IOCK error: Not continuing"); 348 349 /* Re-enable the IOCK line, wait for a few seconds */ 350 reason = (reason & 0xf) | 8; 351 outb(reason, 0x61); 352 353 i = 2000; 354 while (--i) 355 udelay(1000); 356 357 reason &= ~8; 358 outb(reason, 0x61); 359 } 360 361 static notrace __kprobes void 362 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 363 { 364 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == 365 NOTIFY_STOP) 366 return; 367 #ifdef CONFIG_MCA 368 /* 369 * Might actually be able to figure out what the guilty party 370 * is: 371 */ 372 if (MCA_bus) { 373 mca_handle_nmi(); 374 return; 375 } 376 #endif 377 printk(KERN_EMERG 378 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 379 reason, smp_processor_id()); 380 381 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n"); 382 if (panic_on_unrecovered_nmi) 383 panic("NMI: Not continuing"); 384 385 printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); 386 } 387 388 static notrace __kprobes void default_do_nmi(struct pt_regs *regs) 389 { 390 unsigned char reason = 0; 391 int cpu; 392 393 cpu = smp_processor_id(); 394 395 /* Only the BSP gets external NMIs from the system. */ 396 if (!cpu) 397 reason = get_nmi_reason(); 398 399 if (!(reason & 0xc0)) { 400 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT) 401 == NOTIFY_STOP) 402 return; 403 #ifdef CONFIG_X86_LOCAL_APIC 404 /* 405 * Ok, so this is none of the documented NMI sources, 406 * so it must be the NMI watchdog. 407 */ 408 if (nmi_watchdog_tick(regs, reason)) 409 return; 410 if (!do_nmi_callback(regs, cpu)) 411 unknown_nmi_error(reason, regs); 412 #else 413 unknown_nmi_error(reason, regs); 414 #endif 415 416 return; 417 } 418 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) 419 return; 420 421 /* AK: following checks seem to be broken on modern chipsets. FIXME */ 422 if (reason & 0x80) 423 mem_parity_error(reason, regs); 424 if (reason & 0x40) 425 io_check_error(reason, regs); 426 #ifdef CONFIG_X86_32 427 /* 428 * Reassert NMI in case it became active meanwhile 429 * as it's edge-triggered: 430 */ 431 reassert_nmi(); 432 #endif 433 } 434 435 dotraplinkage notrace __kprobes void 436 do_nmi(struct pt_regs *regs, long error_code) 437 { 438 nmi_enter(); 439 440 inc_irq_stat(__nmi_count); 441 442 if (!ignore_nmis) 443 default_do_nmi(regs); 444 445 nmi_exit(); 446 } 447 448 void stop_nmi(void) 449 { 450 acpi_nmi_disable(); 451 ignore_nmis++; 452 } 453 454 void restart_nmi(void) 455 { 456 ignore_nmis--; 457 acpi_nmi_enable(); 458 } 459 460 /* May run on IST stack. */ 461 dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code) 462 { 463 #ifdef CONFIG_KPROBES 464 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) 465 == NOTIFY_STOP) 466 return; 467 #else 468 if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP) 469 == NOTIFY_STOP) 470 return; 471 #endif 472 473 preempt_conditional_sti(regs); 474 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL); 475 preempt_conditional_cli(regs); 476 } 477 478 #ifdef CONFIG_X86_64 479 /* 480 * Help handler running on IST stack to switch back to user stack 481 * for scheduling or signal handling. The actual stack switch is done in 482 * entry.S 483 */ 484 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs) 485 { 486 struct pt_regs *regs = eregs; 487 /* Did already sync */ 488 if (eregs == (struct pt_regs *)eregs->sp) 489 ; 490 /* Exception from user space */ 491 else if (user_mode(eregs)) 492 regs = task_pt_regs(current); 493 /* 494 * Exception from kernel and interrupts are enabled. Move to 495 * kernel process stack. 496 */ 497 else if (eregs->flags & X86_EFLAGS_IF) 498 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs)); 499 if (eregs != regs) 500 *regs = *eregs; 501 return regs; 502 } 503 #endif 504 505 /* 506 * Our handling of the processor debug registers is non-trivial. 507 * We do not clear them on entry and exit from the kernel. Therefore 508 * it is possible to get a watchpoint trap here from inside the kernel. 509 * However, the code in ./ptrace.c has ensured that the user can 510 * only set watchpoints on userspace addresses. Therefore the in-kernel 511 * watchpoint trap can only occur in code which is reading/writing 512 * from user space. Such code must not hold kernel locks (since it 513 * can equally take a page fault), therefore it is safe to call 514 * force_sig_info even though that claims and releases locks. 515 * 516 * Code in ./signal.c ensures that the debug control register 517 * is restored before we deliver any signal, and therefore that 518 * user code runs with the correct debug control register even though 519 * we clear it here. 520 * 521 * Being careful here means that we don't have to be as careful in a 522 * lot of more complicated places (task switching can be a bit lazy 523 * about restoring all the debug state, and ptrace doesn't have to 524 * find every occurrence of the TF bit that could be saved away even 525 * by user code) 526 * 527 * May run on IST stack. 528 */ 529 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code) 530 { 531 struct task_struct *tsk = current; 532 unsigned long dr6; 533 int si_code; 534 535 get_debugreg(dr6, 6); 536 537 /* Catch kmemcheck conditions first of all! */ 538 if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) 539 return; 540 541 /* DR6 may or may not be cleared by the CPU */ 542 set_debugreg(0, 6); 543 /* 544 * The processor cleared BTF, so don't mark that we need it set. 545 */ 546 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR); 547 tsk->thread.debugctlmsr = 0; 548 549 /* Store the virtualized DR6 value */ 550 tsk->thread.debugreg6 = dr6; 551 552 if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code, 553 SIGTRAP) == NOTIFY_STOP) 554 return; 555 556 /* It's safe to allow irq's after DR6 has been saved */ 557 preempt_conditional_sti(regs); 558 559 if (regs->flags & X86_VM_MASK) { 560 handle_vm86_trap((struct kernel_vm86_regs *) regs, 561 error_code, 1); 562 return; 563 } 564 565 /* 566 * Single-stepping through system calls: ignore any exceptions in 567 * kernel space, but re-enable TF when returning to user mode. 568 * 569 * We already checked v86 mode above, so we can check for kernel mode 570 * by just checking the CPL of CS. 571 */ 572 if ((dr6 & DR_STEP) && !user_mode(regs)) { 573 tsk->thread.debugreg6 &= ~DR_STEP; 574 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 575 regs->flags &= ~X86_EFLAGS_TF; 576 } 577 si_code = get_si_code(tsk->thread.debugreg6); 578 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS)) 579 send_sigtrap(tsk, regs, error_code, si_code); 580 preempt_conditional_cli(regs); 581 582 return; 583 } 584 585 #ifdef CONFIG_X86_64 586 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr) 587 { 588 if (fixup_exception(regs)) 589 return 1; 590 591 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE); 592 /* Illegal floating point operation in the kernel */ 593 current->thread.trap_no = trapnr; 594 die(str, regs, 0); 595 return 0; 596 } 597 #endif 598 599 /* 600 * Note that we play around with the 'TS' bit in an attempt to get 601 * the correct behaviour even in the presence of the asynchronous 602 * IRQ13 behaviour 603 */ 604 void math_error(void __user *ip) 605 { 606 struct task_struct *task; 607 siginfo_t info; 608 unsigned short cwd, swd, err; 609 610 /* 611 * Save the info for the exception handler and clear the error. 612 */ 613 task = current; 614 save_init_fpu(task); 615 task->thread.trap_no = 16; 616 task->thread.error_code = 0; 617 info.si_signo = SIGFPE; 618 info.si_errno = 0; 619 info.si_addr = ip; 620 /* 621 * (~cwd & swd) will mask out exceptions that are not set to unmasked 622 * status. 0x3f is the exception bits in these regs, 0x200 is the 623 * C1 reg you need in case of a stack fault, 0x040 is the stack 624 * fault bit. We should only be taking one exception at a time, 625 * so if this combination doesn't produce any single exception, 626 * then we have a bad program that isn't synchronizing its FPU usage 627 * and it will suffer the consequences since we won't be able to 628 * fully reproduce the context of the exception 629 */ 630 cwd = get_fpu_cwd(task); 631 swd = get_fpu_swd(task); 632 633 err = swd & ~cwd; 634 635 if (err & 0x001) { /* Invalid op */ 636 /* 637 * swd & 0x240 == 0x040: Stack Underflow 638 * swd & 0x240 == 0x240: Stack Overflow 639 * User must clear the SF bit (0x40) if set 640 */ 641 info.si_code = FPE_FLTINV; 642 } else if (err & 0x004) { /* Divide by Zero */ 643 info.si_code = FPE_FLTDIV; 644 } else if (err & 0x008) { /* Overflow */ 645 info.si_code = FPE_FLTOVF; 646 } else if (err & 0x012) { /* Denormal, Underflow */ 647 info.si_code = FPE_FLTUND; 648 } else if (err & 0x020) { /* Precision */ 649 info.si_code = FPE_FLTRES; 650 } else { 651 /* 652 * If we're using IRQ 13, or supposedly even some trap 16 653 * implementations, it's possible we get a spurious trap... 654 */ 655 return; /* Spurious trap, no error */ 656 } 657 force_sig_info(SIGFPE, &info, task); 658 } 659 660 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 661 { 662 conditional_sti(regs); 663 664 #ifdef CONFIG_X86_32 665 ignore_fpu_irq = 1; 666 #else 667 if (!user_mode(regs) && 668 kernel_math_error(regs, "kernel x87 math error", 16)) 669 return; 670 #endif 671 672 math_error((void __user *)regs->ip); 673 } 674 675 static void simd_math_error(void __user *ip) 676 { 677 struct task_struct *task; 678 siginfo_t info; 679 unsigned short mxcsr; 680 681 /* 682 * Save the info for the exception handler and clear the error. 683 */ 684 task = current; 685 save_init_fpu(task); 686 task->thread.trap_no = 19; 687 task->thread.error_code = 0; 688 info.si_signo = SIGFPE; 689 info.si_errno = 0; 690 info.si_code = __SI_FAULT; 691 info.si_addr = ip; 692 /* 693 * The SIMD FPU exceptions are handled a little differently, as there 694 * is only a single status/control register. Thus, to determine which 695 * unmasked exception was caught we must mask the exception mask bits 696 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 697 */ 698 mxcsr = get_fpu_mxcsr(task); 699 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) { 700 case 0x000: 701 default: 702 break; 703 case 0x001: /* Invalid Op */ 704 info.si_code = FPE_FLTINV; 705 break; 706 case 0x002: /* Denormalize */ 707 case 0x010: /* Underflow */ 708 info.si_code = FPE_FLTUND; 709 break; 710 case 0x004: /* Zero Divide */ 711 info.si_code = FPE_FLTDIV; 712 break; 713 case 0x008: /* Overflow */ 714 info.si_code = FPE_FLTOVF; 715 break; 716 case 0x020: /* Precision */ 717 info.si_code = FPE_FLTRES; 718 break; 719 } 720 force_sig_info(SIGFPE, &info, task); 721 } 722 723 dotraplinkage void 724 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 725 { 726 conditional_sti(regs); 727 728 #ifdef CONFIG_X86_32 729 if (cpu_has_xmm) { 730 /* Handle SIMD FPU exceptions on PIII+ processors. */ 731 ignore_fpu_irq = 1; 732 simd_math_error((void __user *)regs->ip); 733 return; 734 } 735 /* 736 * Handle strange cache flush from user space exception 737 * in all other cases. This is undocumented behaviour. 738 */ 739 if (regs->flags & X86_VM_MASK) { 740 handle_vm86_fault((struct kernel_vm86_regs *)regs, error_code); 741 return; 742 } 743 current->thread.trap_no = 19; 744 current->thread.error_code = error_code; 745 die_if_kernel("cache flush denied", regs, error_code); 746 force_sig(SIGSEGV, current); 747 #else 748 if (!user_mode(regs) && 749 kernel_math_error(regs, "kernel simd math error", 19)) 750 return; 751 simd_math_error((void __user *)regs->ip); 752 #endif 753 } 754 755 dotraplinkage void 756 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 757 { 758 conditional_sti(regs); 759 #if 0 760 /* No need to warn about this any longer. */ 761 printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); 762 #endif 763 } 764 765 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void) 766 { 767 } 768 769 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void) 770 { 771 } 772 773 /* 774 * __math_state_restore assumes that cr0.TS is already clear and the 775 * fpu state is all ready for use. Used during context switch. 776 */ 777 void __math_state_restore(void) 778 { 779 struct thread_info *thread = current_thread_info(); 780 struct task_struct *tsk = thread->task; 781 782 /* 783 * Paranoid restore. send a SIGSEGV if we fail to restore the state. 784 */ 785 if (unlikely(restore_fpu_checking(tsk))) { 786 stts(); 787 force_sig(SIGSEGV, tsk); 788 return; 789 } 790 791 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */ 792 tsk->fpu_counter++; 793 } 794 795 /* 796 * 'math_state_restore()' saves the current math information in the 797 * old math state array, and gets the new ones from the current task 798 * 799 * Careful.. There are problems with IBM-designed IRQ13 behaviour. 800 * Don't touch unless you *really* know how it works. 801 * 802 * Must be called with kernel preemption disabled (in this case, 803 * local interrupts are disabled at the call-site in entry.S). 804 */ 805 asmlinkage void math_state_restore(void) 806 { 807 struct thread_info *thread = current_thread_info(); 808 struct task_struct *tsk = thread->task; 809 810 if (!tsk_used_math(tsk)) { 811 local_irq_enable(); 812 /* 813 * does a slab alloc which can sleep 814 */ 815 if (init_fpu(tsk)) { 816 /* 817 * ran out of memory! 818 */ 819 do_group_exit(SIGKILL); 820 return; 821 } 822 local_irq_disable(); 823 } 824 825 clts(); /* Allow maths ops (or we recurse) */ 826 827 __math_state_restore(); 828 } 829 EXPORT_SYMBOL_GPL(math_state_restore); 830 831 #ifndef CONFIG_MATH_EMULATION 832 void math_emulate(struct math_emu_info *info) 833 { 834 printk(KERN_EMERG 835 "math-emulation not enabled and no coprocessor found.\n"); 836 printk(KERN_EMERG "killing %s.\n", current->comm); 837 force_sig(SIGFPE, current); 838 schedule(); 839 } 840 #endif /* CONFIG_MATH_EMULATION */ 841 842 dotraplinkage void __kprobes 843 do_device_not_available(struct pt_regs *regs, long error_code) 844 { 845 #ifdef CONFIG_X86_32 846 if (read_cr0() & X86_CR0_EM) { 847 struct math_emu_info info = { }; 848 849 conditional_sti(regs); 850 851 info.regs = regs; 852 math_emulate(&info); 853 } else { 854 math_state_restore(); /* interrupts still off */ 855 conditional_sti(regs); 856 } 857 #else 858 math_state_restore(); 859 #endif 860 } 861 862 #ifdef CONFIG_X86_32 863 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 864 { 865 siginfo_t info; 866 local_irq_enable(); 867 868 info.si_signo = SIGILL; 869 info.si_errno = 0; 870 info.si_code = ILL_BADSTK; 871 info.si_addr = NULL; 872 if (notify_die(DIE_TRAP, "iret exception", 873 regs, error_code, 32, SIGILL) == NOTIFY_STOP) 874 return; 875 do_trap(32, SIGILL, "iret exception", regs, error_code, &info); 876 } 877 #endif 878 879 void __init trap_init(void) 880 { 881 int i; 882 883 #ifdef CONFIG_EISA 884 void __iomem *p = early_ioremap(0x0FFFD9, 4); 885 886 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) 887 EISA_bus = 1; 888 early_iounmap(p, 4); 889 #endif 890 891 set_intr_gate(0, ÷_error); 892 set_intr_gate_ist(1, &debug, DEBUG_STACK); 893 set_intr_gate_ist(2, &nmi, NMI_STACK); 894 /* int3 can be called from all */ 895 set_system_intr_gate_ist(3, &int3, DEBUG_STACK); 896 /* int4 can be called from all */ 897 set_system_intr_gate(4, &overflow); 898 set_intr_gate(5, &bounds); 899 set_intr_gate(6, &invalid_op); 900 set_intr_gate(7, &device_not_available); 901 #ifdef CONFIG_X86_32 902 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS); 903 #else 904 set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK); 905 #endif 906 set_intr_gate(9, &coprocessor_segment_overrun); 907 set_intr_gate(10, &invalid_TSS); 908 set_intr_gate(11, &segment_not_present); 909 set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK); 910 set_intr_gate(13, &general_protection); 911 set_intr_gate(14, &page_fault); 912 set_intr_gate(15, &spurious_interrupt_bug); 913 set_intr_gate(16, &coprocessor_error); 914 set_intr_gate(17, &alignment_check); 915 #ifdef CONFIG_X86_MCE 916 set_intr_gate_ist(18, &machine_check, MCE_STACK); 917 #endif 918 set_intr_gate(19, &simd_coprocessor_error); 919 920 /* Reserve all the builtin and the syscall vector: */ 921 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) 922 set_bit(i, used_vectors); 923 924 #ifdef CONFIG_IA32_EMULATION 925 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); 926 set_bit(IA32_SYSCALL_VECTOR, used_vectors); 927 #endif 928 929 #ifdef CONFIG_X86_32 930 if (cpu_has_fxsr) { 931 printk(KERN_INFO "Enabling fast FPU save and restore... "); 932 set_in_cr4(X86_CR4_OSFXSR); 933 printk("done.\n"); 934 } 935 if (cpu_has_xmm) { 936 printk(KERN_INFO 937 "Enabling unmasked SIMD FPU exception support... "); 938 set_in_cr4(X86_CR4_OSXMMEXCPT); 939 printk("done.\n"); 940 } 941 942 set_system_trap_gate(SYSCALL_VECTOR, &system_call); 943 set_bit(SYSCALL_VECTOR, used_vectors); 944 #endif 945 946 /* 947 * Should be a barrier for any external CPU state: 948 */ 949 cpu_init(); 950 951 x86_init.irqs.trap_init(); 952 } 953