xref: /linux/arch/x86/kernel/traps.c (revision 1698872b5c772aebc5c43ca445cc0a79f12b9fcc)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/timer.h>
33 #include <linux/init.h>
34 #include <linux/bug.h>
35 #include <linux/nmi.h>
36 #include <linux/mm.h>
37 #include <linux/smp.h>
38 #include <linux/io.h>
39 
40 #ifdef CONFIG_EISA
41 #include <linux/ioport.h>
42 #include <linux/eisa.h>
43 #endif
44 
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
48 
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/ftrace.h>
55 #include <asm/traps.h>
56 #include <asm/desc.h>
57 #include <asm/fpu/internal.h>
58 #include <asm/mce.h>
59 #include <asm/fixmap.h>
60 #include <asm/mach_traps.h>
61 #include <asm/alternative.h>
62 #include <asm/fpu/xstate.h>
63 #include <asm/trace/mpx.h>
64 #include <asm/mpx.h>
65 #include <asm/vm86.h>
66 
67 #ifdef CONFIG_X86_64
68 #include <asm/x86_init.h>
69 #include <asm/pgalloc.h>
70 #include <asm/proto.h>
71 
72 /* No need to be aligned, but done to keep all IDTs defined the same way. */
73 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
74 #else
75 #include <asm/processor-flags.h>
76 #include <asm/setup.h>
77 #include <asm/proto.h>
78 #endif
79 
80 /* Must be page-aligned because the real IDT is used in a fixmap. */
81 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
82 
83 DECLARE_BITMAP(used_vectors, NR_VECTORS);
84 EXPORT_SYMBOL_GPL(used_vectors);
85 
86 static inline void cond_local_irq_enable(struct pt_regs *regs)
87 {
88 	if (regs->flags & X86_EFLAGS_IF)
89 		local_irq_enable();
90 }
91 
92 static inline void cond_local_irq_disable(struct pt_regs *regs)
93 {
94 	if (regs->flags & X86_EFLAGS_IF)
95 		local_irq_disable();
96 }
97 
98 void ist_enter(struct pt_regs *regs)
99 {
100 	if (user_mode(regs)) {
101 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
102 	} else {
103 		/*
104 		 * We might have interrupted pretty much anything.  In
105 		 * fact, if we're a machine check, we can even interrupt
106 		 * NMI processing.  We don't want in_nmi() to return true,
107 		 * but we need to notify RCU.
108 		 */
109 		rcu_nmi_enter();
110 	}
111 
112 	/*
113 	 * We are atomic because we're on the IST stack; or we're on
114 	 * x86_32, in which case we still shouldn't schedule; or we're
115 	 * on x86_64 and entered from user mode, in which case we're
116 	 * still atomic unless ist_begin_non_atomic is called.
117 	 */
118 	preempt_count_add(HARDIRQ_OFFSET);
119 
120 	/* This code is a bit fragile.  Test it. */
121 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
122 }
123 
124 void ist_exit(struct pt_regs *regs)
125 {
126 	preempt_count_sub(HARDIRQ_OFFSET);
127 
128 	if (!user_mode(regs))
129 		rcu_nmi_exit();
130 }
131 
132 /**
133  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
134  * @regs:	regs passed to the IST exception handler
135  *
136  * IST exception handlers normally cannot schedule.  As a special
137  * exception, if the exception interrupted userspace code (i.e.
138  * user_mode(regs) would return true) and the exception was not
139  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
140  * begins a non-atomic section within an ist_enter()/ist_exit() region.
141  * Callers are responsible for enabling interrupts themselves inside
142  * the non-atomic section, and callers must call ist_end_non_atomic()
143  * before ist_exit().
144  */
145 void ist_begin_non_atomic(struct pt_regs *regs)
146 {
147 	BUG_ON(!user_mode(regs));
148 
149 	/*
150 	 * Sanity check: we need to be on the normal thread stack.  This
151 	 * will catch asm bugs and any attempt to use ist_preempt_enable
152 	 * from double_fault.
153 	 */
154 	BUG_ON((unsigned long)(current_top_of_stack() -
155 			       current_stack_pointer()) >= THREAD_SIZE);
156 
157 	preempt_count_sub(HARDIRQ_OFFSET);
158 }
159 
160 /**
161  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
162  *
163  * Ends a non-atomic section started with ist_begin_non_atomic().
164  */
165 void ist_end_non_atomic(void)
166 {
167 	preempt_count_add(HARDIRQ_OFFSET);
168 }
169 
170 static nokprobe_inline int
171 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
172 		  struct pt_regs *regs,	long error_code)
173 {
174 	if (v8086_mode(regs)) {
175 		/*
176 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
177 		 * On nmi (interrupt 2), do_trap should not be called.
178 		 */
179 		if (trapnr < X86_TRAP_UD) {
180 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
181 						error_code, trapnr))
182 				return 0;
183 		}
184 		return -1;
185 	}
186 
187 	if (!user_mode(regs)) {
188 		if (!fixup_exception(regs, trapnr)) {
189 			tsk->thread.error_code = error_code;
190 			tsk->thread.trap_nr = trapnr;
191 			die(str, regs, error_code);
192 		}
193 		return 0;
194 	}
195 
196 	return -1;
197 }
198 
199 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
200 				siginfo_t *info)
201 {
202 	unsigned long siaddr;
203 	int sicode;
204 
205 	switch (trapnr) {
206 	default:
207 		return SEND_SIG_PRIV;
208 
209 	case X86_TRAP_DE:
210 		sicode = FPE_INTDIV;
211 		siaddr = uprobe_get_trap_addr(regs);
212 		break;
213 	case X86_TRAP_UD:
214 		sicode = ILL_ILLOPN;
215 		siaddr = uprobe_get_trap_addr(regs);
216 		break;
217 	case X86_TRAP_AC:
218 		sicode = BUS_ADRALN;
219 		siaddr = 0;
220 		break;
221 	}
222 
223 	info->si_signo = signr;
224 	info->si_errno = 0;
225 	info->si_code = sicode;
226 	info->si_addr = (void __user *)siaddr;
227 	return info;
228 }
229 
230 static void
231 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
232 	long error_code, siginfo_t *info)
233 {
234 	struct task_struct *tsk = current;
235 
236 
237 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
238 		return;
239 	/*
240 	 * We want error_code and trap_nr set for userspace faults and
241 	 * kernelspace faults which result in die(), but not
242 	 * kernelspace faults which are fixed up.  die() gives the
243 	 * process no chance to handle the signal and notice the
244 	 * kernel fault information, so that won't result in polluting
245 	 * the information about previously queued, but not yet
246 	 * delivered, faults.  See also do_general_protection below.
247 	 */
248 	tsk->thread.error_code = error_code;
249 	tsk->thread.trap_nr = trapnr;
250 
251 #ifdef CONFIG_X86_64
252 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
253 	    printk_ratelimit()) {
254 		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
255 			tsk->comm, tsk->pid, str,
256 			regs->ip, regs->sp, error_code);
257 		print_vma_addr(" in ", regs->ip);
258 		pr_cont("\n");
259 	}
260 #endif
261 
262 	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
263 }
264 NOKPROBE_SYMBOL(do_trap);
265 
266 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
267 			  unsigned long trapnr, int signr)
268 {
269 	siginfo_t info;
270 
271 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
272 
273 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
274 			NOTIFY_STOP) {
275 		cond_local_irq_enable(regs);
276 		do_trap(trapnr, signr, str, regs, error_code,
277 			fill_trap_info(regs, signr, trapnr, &info));
278 	}
279 }
280 
281 #define DO_ERROR(trapnr, signr, str, name)				\
282 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
283 {									\
284 	do_error_trap(regs, error_code, str, trapnr, signr);		\
285 }
286 
287 DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
288 DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
289 DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
290 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
291 DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
292 DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
293 DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
294 DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
295 
296 #ifdef CONFIG_X86_64
297 /* Runs on IST stack */
298 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
299 {
300 	static const char str[] = "double fault";
301 	struct task_struct *tsk = current;
302 
303 #ifdef CONFIG_X86_ESPFIX64
304 	extern unsigned char native_irq_return_iret[];
305 
306 	/*
307 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
308 	 * end up promoting it to a doublefault.  In that case, modify
309 	 * the stack to make it look like we just entered the #GP
310 	 * handler from user space, similar to bad_iret.
311 	 *
312 	 * No need for ist_enter here because we don't use RCU.
313 	 */
314 	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
315 		regs->cs == __KERNEL_CS &&
316 		regs->ip == (unsigned long)native_irq_return_iret)
317 	{
318 		struct pt_regs *normal_regs = task_pt_regs(current);
319 
320 		/* Fake a #GP(0) from userspace. */
321 		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
322 		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
323 		regs->ip = (unsigned long)general_protection;
324 		regs->sp = (unsigned long)&normal_regs->orig_ax;
325 
326 		return;
327 	}
328 #endif
329 
330 	ist_enter(regs);
331 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
332 
333 	tsk->thread.error_code = error_code;
334 	tsk->thread.trap_nr = X86_TRAP_DF;
335 
336 #ifdef CONFIG_DOUBLEFAULT
337 	df_debug(regs, error_code);
338 #endif
339 	/*
340 	 * This is always a kernel trap and never fixable (and thus must
341 	 * never return).
342 	 */
343 	for (;;)
344 		die(str, regs, error_code);
345 }
346 #endif
347 
348 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
349 {
350 	const struct mpx_bndcsr *bndcsr;
351 	siginfo_t *info;
352 
353 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
354 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
355 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
356 		return;
357 	cond_local_irq_enable(regs);
358 
359 	if (!user_mode(regs))
360 		die("bounds", regs, error_code);
361 
362 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
363 		/* The exception is not from Intel MPX */
364 		goto exit_trap;
365 	}
366 
367 	/*
368 	 * We need to look at BNDSTATUS to resolve this exception.
369 	 * A NULL here might mean that it is in its 'init state',
370 	 * which is all zeros which indicates MPX was not
371 	 * responsible for the exception.
372 	 */
373 	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
374 	if (!bndcsr)
375 		goto exit_trap;
376 
377 	trace_bounds_exception_mpx(bndcsr);
378 	/*
379 	 * The error code field of the BNDSTATUS register communicates status
380 	 * information of a bound range exception #BR or operation involving
381 	 * bound directory.
382 	 */
383 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
384 	case 2:	/* Bound directory has invalid entry. */
385 		if (mpx_handle_bd_fault())
386 			goto exit_trap;
387 		break; /* Success, it was handled */
388 	case 1: /* Bound violation. */
389 		info = mpx_generate_siginfo(regs);
390 		if (IS_ERR(info)) {
391 			/*
392 			 * We failed to decode the MPX instruction.  Act as if
393 			 * the exception was not caused by MPX.
394 			 */
395 			goto exit_trap;
396 		}
397 		/*
398 		 * Success, we decoded the instruction and retrieved
399 		 * an 'info' containing the address being accessed
400 		 * which caused the exception.  This information
401 		 * allows and application to possibly handle the
402 		 * #BR exception itself.
403 		 */
404 		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
405 		kfree(info);
406 		break;
407 	case 0: /* No exception caused by Intel MPX operations. */
408 		goto exit_trap;
409 	default:
410 		die("bounds", regs, error_code);
411 	}
412 
413 	return;
414 
415 exit_trap:
416 	/*
417 	 * This path out is for all the cases where we could not
418 	 * handle the exception in some way (like allocating a
419 	 * table or telling userspace about it.  We will also end
420 	 * up here if the kernel has MPX turned off at compile
421 	 * time..
422 	 */
423 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
424 }
425 
426 dotraplinkage void
427 do_general_protection(struct pt_regs *regs, long error_code)
428 {
429 	struct task_struct *tsk;
430 
431 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
432 	cond_local_irq_enable(regs);
433 
434 	if (v8086_mode(regs)) {
435 		local_irq_enable();
436 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
437 		return;
438 	}
439 
440 	tsk = current;
441 	if (!user_mode(regs)) {
442 		if (fixup_exception(regs, X86_TRAP_GP))
443 			return;
444 
445 		tsk->thread.error_code = error_code;
446 		tsk->thread.trap_nr = X86_TRAP_GP;
447 		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
448 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
449 			die("general protection fault", regs, error_code);
450 		return;
451 	}
452 
453 	tsk->thread.error_code = error_code;
454 	tsk->thread.trap_nr = X86_TRAP_GP;
455 
456 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
457 			printk_ratelimit()) {
458 		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
459 			tsk->comm, task_pid_nr(tsk),
460 			regs->ip, regs->sp, error_code);
461 		print_vma_addr(" in ", regs->ip);
462 		pr_cont("\n");
463 	}
464 
465 	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
466 }
467 NOKPROBE_SYMBOL(do_general_protection);
468 
469 /* May run on IST stack. */
470 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
471 {
472 #ifdef CONFIG_DYNAMIC_FTRACE
473 	/*
474 	 * ftrace must be first, everything else may cause a recursive crash.
475 	 * See note by declaration of modifying_ftrace_code in ftrace.c
476 	 */
477 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
478 	    ftrace_int3_handler(regs))
479 		return;
480 #endif
481 	if (poke_int3_handler(regs))
482 		return;
483 
484 	ist_enter(regs);
485 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
486 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
487 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
488 				SIGTRAP) == NOTIFY_STOP)
489 		goto exit;
490 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
491 
492 #ifdef CONFIG_KPROBES
493 	if (kprobe_int3_handler(regs))
494 		goto exit;
495 #endif
496 
497 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
498 			SIGTRAP) == NOTIFY_STOP)
499 		goto exit;
500 
501 	/*
502 	 * Let others (NMI) know that the debug stack is in use
503 	 * as we may switch to the interrupt stack.
504 	 */
505 	debug_stack_usage_inc();
506 	preempt_disable();
507 	cond_local_irq_enable(regs);
508 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
509 	cond_local_irq_disable(regs);
510 	preempt_enable_no_resched();
511 	debug_stack_usage_dec();
512 exit:
513 	ist_exit(regs);
514 }
515 NOKPROBE_SYMBOL(do_int3);
516 
517 #ifdef CONFIG_X86_64
518 /*
519  * Help handler running on IST stack to switch off the IST stack if the
520  * interrupted code was in user mode. The actual stack switch is done in
521  * entry_64.S
522  */
523 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
524 {
525 	struct pt_regs *regs = task_pt_regs(current);
526 	*regs = *eregs;
527 	return regs;
528 }
529 NOKPROBE_SYMBOL(sync_regs);
530 
531 struct bad_iret_stack {
532 	void *error_entry_ret;
533 	struct pt_regs regs;
534 };
535 
536 asmlinkage __visible notrace
537 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
538 {
539 	/*
540 	 * This is called from entry_64.S early in handling a fault
541 	 * caused by a bad iret to user mode.  To handle the fault
542 	 * correctly, we want move our stack frame to task_pt_regs
543 	 * and we want to pretend that the exception came from the
544 	 * iret target.
545 	 */
546 	struct bad_iret_stack *new_stack =
547 		container_of(task_pt_regs(current),
548 			     struct bad_iret_stack, regs);
549 
550 	/* Copy the IRET target to the new stack. */
551 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
552 
553 	/* Copy the remainder of the stack from the current stack. */
554 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
555 
556 	BUG_ON(!user_mode(&new_stack->regs));
557 	return new_stack;
558 }
559 NOKPROBE_SYMBOL(fixup_bad_iret);
560 #endif
561 
562 /*
563  * Our handling of the processor debug registers is non-trivial.
564  * We do not clear them on entry and exit from the kernel. Therefore
565  * it is possible to get a watchpoint trap here from inside the kernel.
566  * However, the code in ./ptrace.c has ensured that the user can
567  * only set watchpoints on userspace addresses. Therefore the in-kernel
568  * watchpoint trap can only occur in code which is reading/writing
569  * from user space. Such code must not hold kernel locks (since it
570  * can equally take a page fault), therefore it is safe to call
571  * force_sig_info even though that claims and releases locks.
572  *
573  * Code in ./signal.c ensures that the debug control register
574  * is restored before we deliver any signal, and therefore that
575  * user code runs with the correct debug control register even though
576  * we clear it here.
577  *
578  * Being careful here means that we don't have to be as careful in a
579  * lot of more complicated places (task switching can be a bit lazy
580  * about restoring all the debug state, and ptrace doesn't have to
581  * find every occurrence of the TF bit that could be saved away even
582  * by user code)
583  *
584  * May run on IST stack.
585  */
586 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
587 {
588 	struct task_struct *tsk = current;
589 	int user_icebp = 0;
590 	unsigned long dr6;
591 	int si_code;
592 
593 	ist_enter(regs);
594 
595 	get_debugreg(dr6, 6);
596 
597 	/* Filter out all the reserved bits which are preset to 1 */
598 	dr6 &= ~DR6_RESERVED;
599 
600 	/*
601 	 * If dr6 has no reason to give us about the origin of this trap,
602 	 * then it's very likely the result of an icebp/int01 trap.
603 	 * User wants a sigtrap for that.
604 	 */
605 	if (!dr6 && user_mode(regs))
606 		user_icebp = 1;
607 
608 	/* Catch kmemcheck conditions first of all! */
609 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
610 		goto exit;
611 
612 	/* DR6 may or may not be cleared by the CPU */
613 	set_debugreg(0, 6);
614 
615 	/*
616 	 * The processor cleared BTF, so don't mark that we need it set.
617 	 */
618 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
619 
620 	/* Store the virtualized DR6 value */
621 	tsk->thread.debugreg6 = dr6;
622 
623 #ifdef CONFIG_KPROBES
624 	if (kprobe_debug_handler(regs))
625 		goto exit;
626 #endif
627 
628 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
629 							SIGTRAP) == NOTIFY_STOP)
630 		goto exit;
631 
632 	/*
633 	 * Let others (NMI) know that the debug stack is in use
634 	 * as we may switch to the interrupt stack.
635 	 */
636 	debug_stack_usage_inc();
637 
638 	/* It's safe to allow irq's after DR6 has been saved */
639 	preempt_disable();
640 	cond_local_irq_enable(regs);
641 
642 	if (v8086_mode(regs)) {
643 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
644 					X86_TRAP_DB);
645 		cond_local_irq_disable(regs);
646 		preempt_enable_no_resched();
647 		debug_stack_usage_dec();
648 		goto exit;
649 	}
650 
651 	/*
652 	 * Single-stepping through system calls: ignore any exceptions in
653 	 * kernel space, but re-enable TF when returning to user mode.
654 	 *
655 	 * We already checked v86 mode above, so we can check for kernel mode
656 	 * by just checking the CPL of CS.
657 	 */
658 	if ((dr6 & DR_STEP) && !user_mode(regs)) {
659 		tsk->thread.debugreg6 &= ~DR_STEP;
660 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
661 		regs->flags &= ~X86_EFLAGS_TF;
662 	}
663 	si_code = get_si_code(tsk->thread.debugreg6);
664 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
665 		send_sigtrap(tsk, regs, error_code, si_code);
666 	cond_local_irq_disable(regs);
667 	preempt_enable_no_resched();
668 	debug_stack_usage_dec();
669 
670 exit:
671 	ist_exit(regs);
672 }
673 NOKPROBE_SYMBOL(do_debug);
674 
675 /*
676  * Note that we play around with the 'TS' bit in an attempt to get
677  * the correct behaviour even in the presence of the asynchronous
678  * IRQ13 behaviour
679  */
680 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
681 {
682 	struct task_struct *task = current;
683 	struct fpu *fpu = &task->thread.fpu;
684 	siginfo_t info;
685 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
686 						"simd exception";
687 
688 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
689 		return;
690 	cond_local_irq_enable(regs);
691 
692 	if (!user_mode(regs)) {
693 		if (!fixup_exception(regs, trapnr)) {
694 			task->thread.error_code = error_code;
695 			task->thread.trap_nr = trapnr;
696 			die(str, regs, error_code);
697 		}
698 		return;
699 	}
700 
701 	/*
702 	 * Save the info for the exception handler and clear the error.
703 	 */
704 	fpu__save(fpu);
705 
706 	task->thread.trap_nr	= trapnr;
707 	task->thread.error_code = error_code;
708 	info.si_signo		= SIGFPE;
709 	info.si_errno		= 0;
710 	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
711 
712 	info.si_code = fpu__exception_code(fpu, trapnr);
713 
714 	/* Retry when we get spurious exceptions: */
715 	if (!info.si_code)
716 		return;
717 
718 	force_sig_info(SIGFPE, &info, task);
719 }
720 
721 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
722 {
723 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
724 	math_error(regs, error_code, X86_TRAP_MF);
725 }
726 
727 dotraplinkage void
728 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
729 {
730 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
731 	math_error(regs, error_code, X86_TRAP_XF);
732 }
733 
734 dotraplinkage void
735 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
736 {
737 	cond_local_irq_enable(regs);
738 }
739 
740 dotraplinkage void
741 do_device_not_available(struct pt_regs *regs, long error_code)
742 {
743 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
744 	BUG_ON(use_eager_fpu());
745 
746 #ifdef CONFIG_MATH_EMULATION
747 	if (read_cr0() & X86_CR0_EM) {
748 		struct math_emu_info info = { };
749 
750 		cond_local_irq_enable(regs);
751 
752 		info.regs = regs;
753 		math_emulate(&info);
754 		return;
755 	}
756 #endif
757 	fpu__restore(&current->thread.fpu); /* interrupts still off */
758 #ifdef CONFIG_X86_32
759 	cond_local_irq_enable(regs);
760 #endif
761 }
762 NOKPROBE_SYMBOL(do_device_not_available);
763 
764 #ifdef CONFIG_X86_32
765 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
766 {
767 	siginfo_t info;
768 
769 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
770 	local_irq_enable();
771 
772 	info.si_signo = SIGILL;
773 	info.si_errno = 0;
774 	info.si_code = ILL_BADSTK;
775 	info.si_addr = NULL;
776 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
777 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
778 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
779 			&info);
780 	}
781 }
782 #endif
783 
784 /* Set of traps needed for early debugging. */
785 void __init early_trap_init(void)
786 {
787 	/*
788 	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
789 	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
790 	 * CPU runs at ring 0 so it is impossible to hit an invalid
791 	 * stack.  Using the original stack works well enough at this
792 	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
793 	 * trap_init().
794 	 *
795 	 * We don't need to set trace_idt_table like set_intr_gate(),
796 	 * since we don't have trace_debug and it will be reset to
797 	 * 'debug' in trap_init() by set_intr_gate_ist().
798 	 */
799 	set_intr_gate_notrace(X86_TRAP_DB, debug);
800 	/* int3 can be called from all */
801 	set_system_intr_gate(X86_TRAP_BP, &int3);
802 #ifdef CONFIG_X86_32
803 	set_intr_gate(X86_TRAP_PF, page_fault);
804 #endif
805 	load_idt(&idt_descr);
806 }
807 
808 void __init early_trap_pf_init(void)
809 {
810 #ifdef CONFIG_X86_64
811 	set_intr_gate(X86_TRAP_PF, page_fault);
812 #endif
813 }
814 
815 void __init trap_init(void)
816 {
817 	int i;
818 
819 #ifdef CONFIG_EISA
820 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
821 
822 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
823 		EISA_bus = 1;
824 	early_iounmap(p, 4);
825 #endif
826 
827 	set_intr_gate(X86_TRAP_DE, divide_error);
828 	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
829 	/* int4 can be called from all */
830 	set_system_intr_gate(X86_TRAP_OF, &overflow);
831 	set_intr_gate(X86_TRAP_BR, bounds);
832 	set_intr_gate(X86_TRAP_UD, invalid_op);
833 	set_intr_gate(X86_TRAP_NM, device_not_available);
834 #ifdef CONFIG_X86_32
835 	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
836 #else
837 	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
838 #endif
839 	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
840 	set_intr_gate(X86_TRAP_TS, invalid_TSS);
841 	set_intr_gate(X86_TRAP_NP, segment_not_present);
842 	set_intr_gate(X86_TRAP_SS, stack_segment);
843 	set_intr_gate(X86_TRAP_GP, general_protection);
844 	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
845 	set_intr_gate(X86_TRAP_MF, coprocessor_error);
846 	set_intr_gate(X86_TRAP_AC, alignment_check);
847 #ifdef CONFIG_X86_MCE
848 	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
849 #endif
850 	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
851 
852 	/* Reserve all the builtin and the syscall vector: */
853 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
854 		set_bit(i, used_vectors);
855 
856 #ifdef CONFIG_IA32_EMULATION
857 	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
858 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
859 #endif
860 
861 #ifdef CONFIG_X86_32
862 	set_system_trap_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
863 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
864 #endif
865 
866 	/*
867 	 * Set the IDT descriptor to a fixed read-only location, so that the
868 	 * "sidt" instruction will not leak the location of the kernel, and
869 	 * to defend the IDT against arbitrary memory write vulnerabilities.
870 	 * It will be reloaded in cpu_init() */
871 	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
872 	idt_descr.address = fix_to_virt(FIX_RO_IDT);
873 
874 	/*
875 	 * Should be a barrier for any external CPU state:
876 	 */
877 	cpu_init();
878 
879 	/*
880 	 * X86_TRAP_DB and X86_TRAP_BP have been set
881 	 * in early_trap_init(). However, ITS works only after
882 	 * cpu_init() loads TSS. See comments in early_trap_init().
883 	 */
884 	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
885 	/* int3 can be called from all */
886 	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
887 
888 	x86_init.irqs.trap_init();
889 
890 #ifdef CONFIG_X86_64
891 	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
892 	set_nmi_gate(X86_TRAP_DB, &debug);
893 	set_nmi_gate(X86_TRAP_BP, &int3);
894 #endif
895 }
896