1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/kmsan.h> 19 #include <linux/spinlock.h> 20 #include <linux/kprobes.h> 21 #include <linux/uaccess.h> 22 #include <linux/kdebug.h> 23 #include <linux/kgdb.h> 24 #include <linux/kernel.h> 25 #include <linux/export.h> 26 #include <linux/ptrace.h> 27 #include <linux/uprobes.h> 28 #include <linux/string.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/kexec.h> 32 #include <linux/sched.h> 33 #include <linux/sched/task_stack.h> 34 #include <linux/timer.h> 35 #include <linux/init.h> 36 #include <linux/bug.h> 37 #include <linux/nmi.h> 38 #include <linux/mm.h> 39 #include <linux/smp.h> 40 #include <linux/cpu.h> 41 #include <linux/io.h> 42 #include <linux/hardirq.h> 43 #include <linux/atomic.h> 44 #include <linux/iommu.h> 45 #include <linux/ubsan.h> 46 47 #include <asm/stacktrace.h> 48 #include <asm/processor.h> 49 #include <asm/debugreg.h> 50 #include <asm/realmode.h> 51 #include <asm/text-patching.h> 52 #include <asm/ftrace.h> 53 #include <asm/traps.h> 54 #include <asm/desc.h> 55 #include <asm/fred.h> 56 #include <asm/fpu/api.h> 57 #include <asm/cpu.h> 58 #include <asm/cpu_entry_area.h> 59 #include <asm/mce.h> 60 #include <asm/fixmap.h> 61 #include <asm/mach_traps.h> 62 #include <asm/alternative.h> 63 #include <asm/fpu/xstate.h> 64 #include <asm/vm86.h> 65 #include <asm/umip.h> 66 #include <asm/insn.h> 67 #include <asm/insn-eval.h> 68 #include <asm/vdso.h> 69 #include <asm/tdx.h> 70 #include <asm/cfi.h> 71 72 #ifdef CONFIG_X86_64 73 #include <asm/x86_init.h> 74 #else 75 #include <asm/processor-flags.h> 76 #include <asm/setup.h> 77 #endif 78 79 #include <asm/proto.h> 80 81 DECLARE_BITMAP(system_vectors, NR_VECTORS); 82 83 __always_inline int is_valid_bugaddr(unsigned long addr) 84 { 85 if (addr < TASK_SIZE_MAX) 86 return 0; 87 88 /* 89 * We got #UD, if the text isn't readable we'd have gotten 90 * a different exception. 91 */ 92 return *(unsigned short *)addr == INSN_UD2; 93 } 94 95 /* 96 * Check for UD1 or UD2, accounting for Address Size Override Prefixes. 97 * If it's a UD1, get the ModRM byte to pass along to UBSan. 98 */ 99 __always_inline int decode_bug(unsigned long addr, u32 *imm) 100 { 101 u8 v; 102 103 if (addr < TASK_SIZE_MAX) 104 return BUG_NONE; 105 106 v = *(u8 *)(addr++); 107 if (v == INSN_ASOP) 108 v = *(u8 *)(addr++); 109 if (v != OPCODE_ESCAPE) 110 return BUG_NONE; 111 112 v = *(u8 *)(addr++); 113 if (v == SECOND_BYTE_OPCODE_UD2) 114 return BUG_UD2; 115 116 if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1) 117 return BUG_NONE; 118 119 /* Retrieve the immediate (type value) for the UBSAN UD1 */ 120 v = *(u8 *)(addr++); 121 if (X86_MODRM_RM(v) == 4) 122 addr++; 123 124 *imm = 0; 125 if (X86_MODRM_MOD(v) == 1) 126 *imm = *(u8 *)addr; 127 else if (X86_MODRM_MOD(v) == 2) 128 *imm = *(u32 *)addr; 129 else 130 WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v)); 131 132 return BUG_UD1; 133 } 134 135 136 static nokprobe_inline int 137 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 138 struct pt_regs *regs, long error_code) 139 { 140 if (v8086_mode(regs)) { 141 /* 142 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 143 * On nmi (interrupt 2), do_trap should not be called. 144 */ 145 if (trapnr < X86_TRAP_UD) { 146 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 147 error_code, trapnr)) 148 return 0; 149 } 150 } else if (!user_mode(regs)) { 151 if (fixup_exception(regs, trapnr, error_code, 0)) 152 return 0; 153 154 tsk->thread.error_code = error_code; 155 tsk->thread.trap_nr = trapnr; 156 die(str, regs, error_code); 157 } else { 158 if (fixup_vdso_exception(regs, trapnr, error_code, 0)) 159 return 0; 160 } 161 162 /* 163 * We want error_code and trap_nr set for userspace faults and 164 * kernelspace faults which result in die(), but not 165 * kernelspace faults which are fixed up. die() gives the 166 * process no chance to handle the signal and notice the 167 * kernel fault information, so that won't result in polluting 168 * the information about previously queued, but not yet 169 * delivered, faults. See also exc_general_protection below. 170 */ 171 tsk->thread.error_code = error_code; 172 tsk->thread.trap_nr = trapnr; 173 174 return -1; 175 } 176 177 static void show_signal(struct task_struct *tsk, int signr, 178 const char *type, const char *desc, 179 struct pt_regs *regs, long error_code) 180 { 181 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 182 printk_ratelimit()) { 183 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 184 tsk->comm, task_pid_nr(tsk), type, desc, 185 regs->ip, regs->sp, error_code); 186 print_vma_addr(KERN_CONT " in ", regs->ip); 187 pr_cont("\n"); 188 } 189 } 190 191 static void 192 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 193 long error_code, int sicode, void __user *addr) 194 { 195 struct task_struct *tsk = current; 196 197 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 198 return; 199 200 show_signal(tsk, signr, "trap ", str, regs, error_code); 201 202 if (!sicode) 203 force_sig(signr); 204 else 205 force_sig_fault(signr, sicode, addr); 206 } 207 NOKPROBE_SYMBOL(do_trap); 208 209 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 210 unsigned long trapnr, int signr, int sicode, void __user *addr) 211 { 212 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 213 214 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 215 NOTIFY_STOP) { 216 cond_local_irq_enable(regs); 217 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 218 cond_local_irq_disable(regs); 219 } 220 } 221 222 /* 223 * Posix requires to provide the address of the faulting instruction for 224 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 225 * 226 * This address is usually regs->ip, but when an uprobe moved the code out 227 * of line then regs->ip points to the XOL code which would confuse 228 * anything which analyzes the fault address vs. the unmodified binary. If 229 * a trap happened in XOL code then uprobe maps regs->ip back to the 230 * original instruction address. 231 */ 232 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 233 { 234 return (void __user *)uprobe_get_trap_addr(regs); 235 } 236 237 DEFINE_IDTENTRY(exc_divide_error) 238 { 239 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, 240 FPE_INTDIV, error_get_trap_addr(regs)); 241 } 242 243 DEFINE_IDTENTRY(exc_overflow) 244 { 245 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 246 } 247 248 #ifdef CONFIG_X86_F00F_BUG 249 void handle_invalid_op(struct pt_regs *regs) 250 #else 251 static inline void handle_invalid_op(struct pt_regs *regs) 252 #endif 253 { 254 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 255 ILL_ILLOPN, error_get_trap_addr(regs)); 256 } 257 258 static noinstr bool handle_bug(struct pt_regs *regs) 259 { 260 bool handled = false; 261 int ud_type; 262 u32 imm; 263 264 ud_type = decode_bug(regs->ip, &imm); 265 if (ud_type == BUG_NONE) 266 return handled; 267 268 /* 269 * All lies, just get the WARN/BUG out. 270 */ 271 instrumentation_begin(); 272 /* 273 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug() 274 * is a rare case that uses @regs without passing them to 275 * irqentry_enter(). 276 */ 277 kmsan_unpoison_entry_regs(regs); 278 /* 279 * Since we're emulating a CALL with exceptions, restore the interrupt 280 * state to what it was at the exception site. 281 */ 282 if (regs->flags & X86_EFLAGS_IF) 283 raw_local_irq_enable(); 284 if (ud_type == BUG_UD2) { 285 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN || 286 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) { 287 regs->ip += LEN_UD2; 288 handled = true; 289 } 290 } else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) { 291 pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip); 292 } 293 if (regs->flags & X86_EFLAGS_IF) 294 raw_local_irq_disable(); 295 instrumentation_end(); 296 297 return handled; 298 } 299 300 DEFINE_IDTENTRY_RAW(exc_invalid_op) 301 { 302 irqentry_state_t state; 303 304 /* 305 * We use UD2 as a short encoding for 'CALL __WARN', as such 306 * handle it before exception entry to avoid recursive WARN 307 * in case exception entry is the one triggering WARNs. 308 */ 309 if (!user_mode(regs) && handle_bug(regs)) 310 return; 311 312 state = irqentry_enter(regs); 313 instrumentation_begin(); 314 handle_invalid_op(regs); 315 instrumentation_end(); 316 irqentry_exit(regs, state); 317 } 318 319 DEFINE_IDTENTRY(exc_coproc_segment_overrun) 320 { 321 do_error_trap(regs, 0, "coprocessor segment overrun", 322 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 323 } 324 325 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 326 { 327 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 328 0, NULL); 329 } 330 331 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 332 { 333 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 334 SIGBUS, 0, NULL); 335 } 336 337 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 338 { 339 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 340 0, NULL); 341 } 342 343 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 344 { 345 char *str = "alignment check"; 346 347 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 348 return; 349 350 if (!user_mode(regs)) 351 die("Split lock detected\n", regs, error_code); 352 353 local_irq_enable(); 354 355 if (handle_user_split_lock(regs, error_code)) 356 goto out; 357 358 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 359 error_code, BUS_ADRALN, NULL); 360 361 out: 362 local_irq_disable(); 363 } 364 365 #ifdef CONFIG_VMAP_STACK 366 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs, 367 unsigned long fault_address, 368 struct stack_info *info) 369 { 370 const char *name = stack_type_name(info->type); 371 372 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n", 373 name, (void *)fault_address, info->begin, info->end); 374 375 die("stack guard page", regs, 0); 376 377 /* Be absolutely certain we don't return. */ 378 panic("%s stack guard hit", name); 379 } 380 #endif 381 382 /* 383 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 384 * 385 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 386 * SDM's warnings about double faults being unrecoverable, returning works as 387 * expected. Presumably what the SDM actually means is that the CPU may get 388 * the register state wrong on entry, so returning could be a bad idea. 389 * 390 * Various CPU engineers have promised that double faults due to an IRET fault 391 * while the stack is read-only are, in fact, recoverable. 392 * 393 * On x86_32, this is entered through a task gate, and regs are synthesized 394 * from the TSS. Returning is, in principle, okay, but changes to regs will 395 * be lost. If, for some reason, we need to return to a context with modified 396 * regs, the shim code could be adjusted to synchronize the registers. 397 * 398 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 399 * to be read before doing anything else. 400 */ 401 DEFINE_IDTENTRY_DF(exc_double_fault) 402 { 403 static const char str[] = "double fault"; 404 struct task_struct *tsk = current; 405 406 #ifdef CONFIG_VMAP_STACK 407 unsigned long address = read_cr2(); 408 struct stack_info info; 409 #endif 410 411 #ifdef CONFIG_X86_ESPFIX64 412 extern unsigned char native_irq_return_iret[]; 413 414 /* 415 * If IRET takes a non-IST fault on the espfix64 stack, then we 416 * end up promoting it to a doublefault. In that case, take 417 * advantage of the fact that we're not using the normal (TSS.sp0) 418 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 419 * and then modify our own IRET frame so that, when we return, 420 * we land directly at the #GP(0) vector with the stack already 421 * set up according to its expectations. 422 * 423 * The net result is that our #GP handler will think that we 424 * entered from usermode with the bad user context. 425 * 426 * No need for nmi_enter() here because we don't use RCU. 427 */ 428 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 429 regs->cs == __KERNEL_CS && 430 regs->ip == (unsigned long)native_irq_return_iret) 431 { 432 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 433 unsigned long *p = (unsigned long *)regs->sp; 434 435 /* 436 * regs->sp points to the failing IRET frame on the 437 * ESPFIX64 stack. Copy it to the entry stack. This fills 438 * in gpregs->ss through gpregs->ip. 439 * 440 */ 441 gpregs->ip = p[0]; 442 gpregs->cs = p[1]; 443 gpregs->flags = p[2]; 444 gpregs->sp = p[3]; 445 gpregs->ss = p[4]; 446 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 447 448 /* 449 * Adjust our frame so that we return straight to the #GP 450 * vector with the expected RSP value. This is safe because 451 * we won't enable interrupts or schedule before we invoke 452 * general_protection, so nothing will clobber the stack 453 * frame we just set up. 454 * 455 * We will enter general_protection with kernel GSBASE, 456 * which is what the stub expects, given that the faulting 457 * RIP will be the IRET instruction. 458 */ 459 regs->ip = (unsigned long)asm_exc_general_protection; 460 regs->sp = (unsigned long)&gpregs->orig_ax; 461 462 return; 463 } 464 #endif 465 466 irqentry_nmi_enter(regs); 467 instrumentation_begin(); 468 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 469 470 tsk->thread.error_code = error_code; 471 tsk->thread.trap_nr = X86_TRAP_DF; 472 473 #ifdef CONFIG_VMAP_STACK 474 /* 475 * If we overflow the stack into a guard page, the CPU will fail 476 * to deliver #PF and will send #DF instead. Similarly, if we 477 * take any non-IST exception while too close to the bottom of 478 * the stack, the processor will get a page fault while 479 * delivering the exception and will generate a double fault. 480 * 481 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 482 * Page-Fault Exception (#PF): 483 * 484 * Processors update CR2 whenever a page fault is detected. If a 485 * second page fault occurs while an earlier page fault is being 486 * delivered, the faulting linear address of the second fault will 487 * overwrite the contents of CR2 (replacing the previous 488 * address). These updates to CR2 occur even if the page fault 489 * results in a double fault or occurs during the delivery of a 490 * double fault. 491 * 492 * The logic below has a small possibility of incorrectly diagnosing 493 * some errors as stack overflows. For example, if the IDT or GDT 494 * gets corrupted such that #GP delivery fails due to a bad descriptor 495 * causing #GP and we hit this condition while CR2 coincidentally 496 * points to the stack guard page, we'll think we overflowed the 497 * stack. Given that we're going to panic one way or another 498 * if this happens, this isn't necessarily worth fixing. 499 * 500 * If necessary, we could improve the test by only diagnosing 501 * a stack overflow if the saved RSP points within 47 bytes of 502 * the bottom of the stack: if RSP == tsk_stack + 48 and we 503 * take an exception, the stack is already aligned and there 504 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 505 * possible error code, so a stack overflow would *not* double 506 * fault. With any less space left, exception delivery could 507 * fail, and, as a practical matter, we've overflowed the 508 * stack even if the actual trigger for the double fault was 509 * something else. 510 */ 511 if (get_stack_guard_info((void *)address, &info)) 512 handle_stack_overflow(regs, address, &info); 513 #endif 514 515 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 516 die("double fault", regs, error_code); 517 panic("Machine halted."); 518 instrumentation_end(); 519 } 520 521 DEFINE_IDTENTRY(exc_bounds) 522 { 523 if (notify_die(DIE_TRAP, "bounds", regs, 0, 524 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 525 return; 526 cond_local_irq_enable(regs); 527 528 if (!user_mode(regs)) 529 die("bounds", regs, 0); 530 531 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 532 533 cond_local_irq_disable(regs); 534 } 535 536 enum kernel_gp_hint { 537 GP_NO_HINT, 538 GP_NON_CANONICAL, 539 GP_CANONICAL 540 }; 541 542 /* 543 * When an uncaught #GP occurs, try to determine the memory address accessed by 544 * the instruction and return that address to the caller. Also, try to figure 545 * out whether any part of the access to that address was non-canonical. 546 */ 547 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 548 unsigned long *addr) 549 { 550 u8 insn_buf[MAX_INSN_SIZE]; 551 struct insn insn; 552 int ret; 553 554 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, 555 MAX_INSN_SIZE)) 556 return GP_NO_HINT; 557 558 ret = insn_decode_kernel(&insn, insn_buf); 559 if (ret < 0) 560 return GP_NO_HINT; 561 562 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 563 if (*addr == -1UL) 564 return GP_NO_HINT; 565 566 #ifdef CONFIG_X86_64 567 /* 568 * Check that: 569 * - the operand is not in the kernel half 570 * - the last byte of the operand is not in the user canonical half 571 */ 572 if (*addr < ~__VIRTUAL_MASK && 573 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 574 return GP_NON_CANONICAL; 575 #endif 576 577 return GP_CANONICAL; 578 } 579 580 #define GPFSTR "general protection fault" 581 582 static bool fixup_iopl_exception(struct pt_regs *regs) 583 { 584 struct thread_struct *t = ¤t->thread; 585 unsigned char byte; 586 unsigned long ip; 587 588 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) 589 return false; 590 591 if (insn_get_effective_ip(regs, &ip)) 592 return false; 593 594 if (get_user(byte, (const char __user *)ip)) 595 return false; 596 597 if (byte != 0xfa && byte != 0xfb) 598 return false; 599 600 if (!t->iopl_warn && printk_ratelimit()) { 601 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx", 602 current->comm, task_pid_nr(current), ip); 603 print_vma_addr(KERN_CONT " in ", ip); 604 pr_cont("\n"); 605 t->iopl_warn = 1; 606 } 607 608 regs->ip += 1; 609 return true; 610 } 611 612 /* 613 * The unprivileged ENQCMD instruction generates #GPs if the 614 * IA32_PASID MSR has not been populated. If possible, populate 615 * the MSR from a PASID previously allocated to the mm. 616 */ 617 static bool try_fixup_enqcmd_gp(void) 618 { 619 #ifdef CONFIG_ARCH_HAS_CPU_PASID 620 u32 pasid; 621 622 /* 623 * MSR_IA32_PASID is managed using XSAVE. Directly 624 * writing to the MSR is only possible when fpregs 625 * are valid and the fpstate is not. This is 626 * guaranteed when handling a userspace exception 627 * in *before* interrupts are re-enabled. 628 */ 629 lockdep_assert_irqs_disabled(); 630 631 /* 632 * Hardware without ENQCMD will not generate 633 * #GPs that can be fixed up here. 634 */ 635 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD)) 636 return false; 637 638 /* 639 * If the mm has not been allocated a 640 * PASID, the #GP can not be fixed up. 641 */ 642 if (!mm_valid_pasid(current->mm)) 643 return false; 644 645 pasid = mm_get_enqcmd_pasid(current->mm); 646 647 /* 648 * Did this thread already have its PASID activated? 649 * If so, the #GP must be from something else. 650 */ 651 if (current->pasid_activated) 652 return false; 653 654 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID); 655 current->pasid_activated = 1; 656 657 return true; 658 #else 659 return false; 660 #endif 661 } 662 663 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr, 664 unsigned long error_code, const char *str, 665 unsigned long address) 666 { 667 if (fixup_exception(regs, trapnr, error_code, address)) 668 return true; 669 670 current->thread.error_code = error_code; 671 current->thread.trap_nr = trapnr; 672 673 /* 674 * To be potentially processing a kprobe fault and to trust the result 675 * from kprobe_running(), we have to be non-preemptible. 676 */ 677 if (!preemptible() && kprobe_running() && 678 kprobe_fault_handler(regs, trapnr)) 679 return true; 680 681 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP; 682 } 683 684 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr, 685 unsigned long error_code, const char *str) 686 { 687 current->thread.error_code = error_code; 688 current->thread.trap_nr = trapnr; 689 show_signal(current, SIGSEGV, "", str, regs, error_code); 690 force_sig(SIGSEGV); 691 } 692 693 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 694 { 695 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 696 enum kernel_gp_hint hint = GP_NO_HINT; 697 unsigned long gp_addr; 698 699 if (user_mode(regs) && try_fixup_enqcmd_gp()) 700 return; 701 702 cond_local_irq_enable(regs); 703 704 if (static_cpu_has(X86_FEATURE_UMIP)) { 705 if (user_mode(regs) && fixup_umip_exception(regs)) 706 goto exit; 707 } 708 709 if (v8086_mode(regs)) { 710 local_irq_enable(); 711 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 712 local_irq_disable(); 713 return; 714 } 715 716 if (user_mode(regs)) { 717 if (fixup_iopl_exception(regs)) 718 goto exit; 719 720 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) 721 goto exit; 722 723 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc); 724 goto exit; 725 } 726 727 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0)) 728 goto exit; 729 730 if (error_code) 731 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 732 else 733 hint = get_kernel_gp_address(regs, &gp_addr); 734 735 if (hint != GP_NO_HINT) 736 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 737 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 738 : "maybe for address", 739 gp_addr); 740 741 /* 742 * KASAN is interested only in the non-canonical case, clear it 743 * otherwise. 744 */ 745 if (hint != GP_NON_CANONICAL) 746 gp_addr = 0; 747 748 die_addr(desc, regs, error_code, gp_addr); 749 750 exit: 751 cond_local_irq_disable(regs); 752 } 753 754 static bool do_int3(struct pt_regs *regs) 755 { 756 int res; 757 758 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 759 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 760 SIGTRAP) == NOTIFY_STOP) 761 return true; 762 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 763 764 #ifdef CONFIG_KPROBES 765 if (kprobe_int3_handler(regs)) 766 return true; 767 #endif 768 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 769 770 return res == NOTIFY_STOP; 771 } 772 NOKPROBE_SYMBOL(do_int3); 773 774 static void do_int3_user(struct pt_regs *regs) 775 { 776 if (do_int3(regs)) 777 return; 778 779 cond_local_irq_enable(regs); 780 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 781 cond_local_irq_disable(regs); 782 } 783 784 DEFINE_IDTENTRY_RAW(exc_int3) 785 { 786 /* 787 * poke_int3_handler() is completely self contained code; it does (and 788 * must) *NOT* call out to anything, lest it hits upon yet another 789 * INT3. 790 */ 791 if (poke_int3_handler(regs)) 792 return; 793 794 /* 795 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() 796 * and therefore can trigger INT3, hence poke_int3_handler() must 797 * be done before. If the entry came from kernel mode, then use 798 * nmi_enter() because the INT3 could have been hit in any context 799 * including NMI. 800 */ 801 if (user_mode(regs)) { 802 irqentry_enter_from_user_mode(regs); 803 instrumentation_begin(); 804 do_int3_user(regs); 805 instrumentation_end(); 806 irqentry_exit_to_user_mode(regs); 807 } else { 808 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 809 810 instrumentation_begin(); 811 if (!do_int3(regs)) 812 die("int3", regs, 0); 813 instrumentation_end(); 814 irqentry_nmi_exit(regs, irq_state); 815 } 816 } 817 818 #ifdef CONFIG_X86_64 819 /* 820 * Help handler running on a per-cpu (IST or entry trampoline) stack 821 * to switch to the normal thread stack if the interrupted code was in 822 * user mode. The actual stack switch is done in entry_64.S 823 */ 824 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 825 { 826 struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1; 827 if (regs != eregs) 828 *regs = *eregs; 829 return regs; 830 } 831 832 #ifdef CONFIG_AMD_MEM_ENCRYPT 833 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) 834 { 835 unsigned long sp, *stack; 836 struct stack_info info; 837 struct pt_regs *regs_ret; 838 839 /* 840 * In the SYSCALL entry path the RSP value comes from user-space - don't 841 * trust it and switch to the current kernel stack 842 */ 843 if (ip_within_syscall_gap(regs)) { 844 sp = current_top_of_stack(); 845 goto sync; 846 } 847 848 /* 849 * From here on the RSP value is trusted. Now check whether entry 850 * happened from a safe stack. Not safe are the entry or unknown stacks, 851 * use the fall-back stack instead in this case. 852 */ 853 sp = regs->sp; 854 stack = (unsigned long *)sp; 855 856 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || 857 info.type > STACK_TYPE_EXCEPTION_LAST) 858 sp = __this_cpu_ist_top_va(VC2); 859 860 sync: 861 /* 862 * Found a safe stack - switch to it as if the entry didn't happen via 863 * IST stack. The code below only copies pt_regs, the real switch happens 864 * in assembly code. 865 */ 866 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); 867 868 regs_ret = (struct pt_regs *)sp; 869 *regs_ret = *regs; 870 871 return regs_ret; 872 } 873 #endif 874 875 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) 876 { 877 struct pt_regs tmp, *new_stack; 878 879 /* 880 * This is called from entry_64.S early in handling a fault 881 * caused by a bad iret to user mode. To handle the fault 882 * correctly, we want to move our stack frame to where it would 883 * be had we entered directly on the entry stack (rather than 884 * just below the IRET frame) and we want to pretend that the 885 * exception came from the IRET target. 886 */ 887 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 888 889 /* Copy the IRET target to the temporary storage. */ 890 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8); 891 892 /* Copy the remainder of the stack from the current stack. */ 893 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip)); 894 895 /* Update the entry stack */ 896 __memcpy(new_stack, &tmp, sizeof(tmp)); 897 898 BUG_ON(!user_mode(new_stack)); 899 return new_stack; 900 } 901 #endif 902 903 static bool is_sysenter_singlestep(struct pt_regs *regs) 904 { 905 /* 906 * We don't try for precision here. If we're anywhere in the region of 907 * code that can be single-stepped in the SYSENTER entry path, then 908 * assume that this is a useless single-step trap due to SYSENTER 909 * being invoked with TF set. (We don't know in advance exactly 910 * which instructions will be hit because BTF could plausibly 911 * be set.) 912 */ 913 #ifdef CONFIG_X86_32 914 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 915 (unsigned long)__end_SYSENTER_singlestep_region - 916 (unsigned long)__begin_SYSENTER_singlestep_region; 917 #elif defined(CONFIG_IA32_EMULATION) 918 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 919 (unsigned long)__end_entry_SYSENTER_compat - 920 (unsigned long)entry_SYSENTER_compat; 921 #else 922 return false; 923 #endif 924 } 925 926 static __always_inline unsigned long debug_read_clear_dr6(void) 927 { 928 unsigned long dr6; 929 930 /* 931 * The Intel SDM says: 932 * 933 * Certain debug exceptions may clear bits 0-3. The remaining 934 * contents of the DR6 register are never cleared by the 935 * processor. To avoid confusion in identifying debug 936 * exceptions, debug handlers should clear the register before 937 * returning to the interrupted task. 938 * 939 * Keep it simple: clear DR6 immediately. 940 */ 941 get_debugreg(dr6, 6); 942 set_debugreg(DR6_RESERVED, 6); 943 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ 944 945 return dr6; 946 } 947 948 /* 949 * Our handling of the processor debug registers is non-trivial. 950 * We do not clear them on entry and exit from the kernel. Therefore 951 * it is possible to get a watchpoint trap here from inside the kernel. 952 * However, the code in ./ptrace.c has ensured that the user can 953 * only set watchpoints on userspace addresses. Therefore the in-kernel 954 * watchpoint trap can only occur in code which is reading/writing 955 * from user space. Such code must not hold kernel locks (since it 956 * can equally take a page fault), therefore it is safe to call 957 * force_sig_info even though that claims and releases locks. 958 * 959 * Code in ./signal.c ensures that the debug control register 960 * is restored before we deliver any signal, and therefore that 961 * user code runs with the correct debug control register even though 962 * we clear it here. 963 * 964 * Being careful here means that we don't have to be as careful in a 965 * lot of more complicated places (task switching can be a bit lazy 966 * about restoring all the debug state, and ptrace doesn't have to 967 * find every occurrence of the TF bit that could be saved away even 968 * by user code) 969 * 970 * May run on IST stack. 971 */ 972 973 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) 974 { 975 /* 976 * Notifiers will clear bits in @dr6 to indicate the event has been 977 * consumed - hw_breakpoint_handler(), single_stop_cont(). 978 * 979 * Notifiers will set bits in @virtual_dr6 to indicate the desire 980 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). 981 */ 982 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) 983 return true; 984 985 return false; 986 } 987 988 static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6) 989 { 990 /* 991 * Disable breakpoints during exception handling; recursive exceptions 992 * are exceedingly 'fun'. 993 * 994 * Since this function is NOKPROBE, and that also applies to 995 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 996 * HW_BREAKPOINT_W on our stack) 997 * 998 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 999 * includes the entry stack is excluded for everything. 1000 * 1001 * For FRED, nested #DB should just work fine. But when a watchpoint or 1002 * breakpoint is set in the code path which is executed by #DB handler, 1003 * it results in an endless recursion and stack overflow. Thus we stay 1004 * with the IDT approach, i.e., save DR7 and disable #DB. 1005 */ 1006 unsigned long dr7 = local_db_save(); 1007 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 1008 instrumentation_begin(); 1009 1010 /* 1011 * If something gets miswired and we end up here for a user mode 1012 * #DB, we will malfunction. 1013 */ 1014 WARN_ON_ONCE(user_mode(regs)); 1015 1016 if (test_thread_flag(TIF_BLOCKSTEP)) { 1017 /* 1018 * The SDM says "The processor clears the BTF flag when it 1019 * generates a debug exception." but PTRACE_BLOCKSTEP requested 1020 * it for userspace, but we just took a kernel #DB, so re-set 1021 * BTF. 1022 */ 1023 unsigned long debugctl; 1024 1025 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1026 debugctl |= DEBUGCTLMSR_BTF; 1027 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1028 } 1029 1030 /* 1031 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 1032 * watchpoint at the same time then that will still be handled. 1033 */ 1034 if (!cpu_feature_enabled(X86_FEATURE_FRED) && 1035 (dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 1036 dr6 &= ~DR_STEP; 1037 1038 /* 1039 * The kernel doesn't use INT1 1040 */ 1041 if (!dr6) 1042 goto out; 1043 1044 if (notify_debug(regs, &dr6)) 1045 goto out; 1046 1047 /* 1048 * The kernel doesn't use TF single-step outside of: 1049 * 1050 * - Kprobes, consumed through kprobe_debug_handler() 1051 * - KGDB, consumed through notify_debug() 1052 * 1053 * So if we get here with DR_STEP set, something is wonky. 1054 * 1055 * A known way to trigger this is through QEMU's GDB stub, 1056 * which leaks #DB into the guest and causes IST recursion. 1057 */ 1058 if (WARN_ON_ONCE(dr6 & DR_STEP)) 1059 regs->flags &= ~X86_EFLAGS_TF; 1060 out: 1061 instrumentation_end(); 1062 irqentry_nmi_exit(regs, irq_state); 1063 1064 local_db_restore(dr7); 1065 } 1066 1067 static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6) 1068 { 1069 bool icebp; 1070 1071 /* 1072 * If something gets miswired and we end up here for a kernel mode 1073 * #DB, we will malfunction. 1074 */ 1075 WARN_ON_ONCE(!user_mode(regs)); 1076 1077 /* 1078 * NB: We can't easily clear DR7 here because 1079 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access 1080 * user memory, etc. This means that a recursive #DB is possible. If 1081 * this happens, that #DB will hit exc_debug_kernel() and clear DR7. 1082 * Since we're not on the IST stack right now, everything will be 1083 * fine. 1084 */ 1085 1086 irqentry_enter_from_user_mode(regs); 1087 instrumentation_begin(); 1088 1089 /* 1090 * Start the virtual/ptrace DR6 value with just the DR_STEP mask 1091 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. 1092 * 1093 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) 1094 * even if it is not the result of PTRACE_SINGLESTEP. 1095 */ 1096 current->thread.virtual_dr6 = (dr6 & DR_STEP); 1097 1098 /* 1099 * The SDM says "The processor clears the BTF flag when it 1100 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 1101 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 1102 */ 1103 clear_thread_flag(TIF_BLOCKSTEP); 1104 1105 /* 1106 * If dr6 has no reason to give us about the origin of this trap, 1107 * then it's very likely the result of an icebp/int01 trap. 1108 * User wants a sigtrap for that. 1109 */ 1110 icebp = !dr6; 1111 1112 if (notify_debug(regs, &dr6)) 1113 goto out; 1114 1115 /* It's safe to allow irq's after DR6 has been saved */ 1116 local_irq_enable(); 1117 1118 if (v8086_mode(regs)) { 1119 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); 1120 goto out_irq; 1121 } 1122 1123 /* #DB for bus lock can only be triggered from userspace. */ 1124 if (dr6 & DR_BUS_LOCK) 1125 handle_bus_lock(regs); 1126 1127 /* Add the virtual_dr6 bits for signals. */ 1128 dr6 |= current->thread.virtual_dr6; 1129 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) 1130 send_sigtrap(regs, 0, get_si_code(dr6)); 1131 1132 out_irq: 1133 local_irq_disable(); 1134 out: 1135 instrumentation_end(); 1136 irqentry_exit_to_user_mode(regs); 1137 } 1138 1139 #ifdef CONFIG_X86_64 1140 /* IST stack entry */ 1141 DEFINE_IDTENTRY_DEBUG(exc_debug) 1142 { 1143 exc_debug_kernel(regs, debug_read_clear_dr6()); 1144 } 1145 1146 /* User entry, runs on regular task stack */ 1147 DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 1148 { 1149 exc_debug_user(regs, debug_read_clear_dr6()); 1150 } 1151 1152 #ifdef CONFIG_X86_FRED 1153 /* 1154 * When occurred on different ring level, i.e., from user or kernel 1155 * context, #DB needs to be handled on different stack: User #DB on 1156 * current task stack, while kernel #DB on a dedicated stack. 1157 * 1158 * This is exactly how FRED event delivery invokes an exception 1159 * handler: ring 3 event on level 0 stack, i.e., current task stack; 1160 * ring 0 event on the #DB dedicated stack specified in the 1161 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception 1162 * entry stub doesn't do stack switch. 1163 */ 1164 DEFINE_FREDENTRY_DEBUG(exc_debug) 1165 { 1166 /* 1167 * FRED #DB stores DR6 on the stack in the format which 1168 * debug_read_clear_dr6() returns for the IDT entry points. 1169 */ 1170 unsigned long dr6 = fred_event_data(regs); 1171 1172 if (user_mode(regs)) 1173 exc_debug_user(regs, dr6); 1174 else 1175 exc_debug_kernel(regs, dr6); 1176 } 1177 #endif /* CONFIG_X86_FRED */ 1178 1179 #else 1180 /* 32 bit does not have separate entry points. */ 1181 DEFINE_IDTENTRY_RAW(exc_debug) 1182 { 1183 unsigned long dr6 = debug_read_clear_dr6(); 1184 1185 if (user_mode(regs)) 1186 exc_debug_user(regs, dr6); 1187 else 1188 exc_debug_kernel(regs, dr6); 1189 } 1190 #endif 1191 1192 /* 1193 * Note that we play around with the 'TS' bit in an attempt to get 1194 * the correct behaviour even in the presence of the asynchronous 1195 * IRQ13 behaviour 1196 */ 1197 static void math_error(struct pt_regs *regs, int trapnr) 1198 { 1199 struct task_struct *task = current; 1200 struct fpu *fpu = &task->thread.fpu; 1201 int si_code; 1202 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 1203 "simd exception"; 1204 1205 cond_local_irq_enable(regs); 1206 1207 if (!user_mode(regs)) { 1208 if (fixup_exception(regs, trapnr, 0, 0)) 1209 goto exit; 1210 1211 task->thread.error_code = 0; 1212 task->thread.trap_nr = trapnr; 1213 1214 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 1215 SIGFPE) != NOTIFY_STOP) 1216 die(str, regs, 0); 1217 goto exit; 1218 } 1219 1220 /* 1221 * Synchronize the FPU register state to the memory register state 1222 * if necessary. This allows the exception handler to inspect it. 1223 */ 1224 fpu_sync_fpstate(fpu); 1225 1226 task->thread.trap_nr = trapnr; 1227 task->thread.error_code = 0; 1228 1229 si_code = fpu__exception_code(fpu, trapnr); 1230 /* Retry when we get spurious exceptions: */ 1231 if (!si_code) 1232 goto exit; 1233 1234 if (fixup_vdso_exception(regs, trapnr, 0, 0)) 1235 goto exit; 1236 1237 force_sig_fault(SIGFPE, si_code, 1238 (void __user *)uprobe_get_trap_addr(regs)); 1239 exit: 1240 cond_local_irq_disable(regs); 1241 } 1242 1243 DEFINE_IDTENTRY(exc_coprocessor_error) 1244 { 1245 math_error(regs, X86_TRAP_MF); 1246 } 1247 1248 DEFINE_IDTENTRY(exc_simd_coprocessor_error) 1249 { 1250 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 1251 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 1252 if (!static_cpu_has(X86_FEATURE_XMM)) { 1253 __exc_general_protection(regs, 0); 1254 return; 1255 } 1256 } 1257 math_error(regs, X86_TRAP_XF); 1258 } 1259 1260 DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 1261 { 1262 /* 1263 * This addresses a Pentium Pro Erratum: 1264 * 1265 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1266 * Virtual Wire mode implemented through the local APIC, an 1267 * interrupt vector of 0Fh (Intel reserved encoding) may be 1268 * generated by the local APIC (Int 15). This vector may be 1269 * generated upon receipt of a spurious interrupt (an interrupt 1270 * which is removed before the system receives the INTA sequence) 1271 * instead of the programmed 8259 spurious interrupt vector. 1272 * 1273 * IMPLICATION: The spurious interrupt vector programmed in the 1274 * 8259 is normally handled by an operating system's spurious 1275 * interrupt handler. However, a vector of 0Fh is unknown to some 1276 * operating systems, which would crash if this erratum occurred. 1277 * 1278 * In theory this could be limited to 32bit, but the handler is not 1279 * hurting and who knows which other CPUs suffer from this. 1280 */ 1281 } 1282 1283 static bool handle_xfd_event(struct pt_regs *regs) 1284 { 1285 u64 xfd_err; 1286 int err; 1287 1288 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD)) 1289 return false; 1290 1291 rdmsrl(MSR_IA32_XFD_ERR, xfd_err); 1292 if (!xfd_err) 1293 return false; 1294 1295 wrmsrl(MSR_IA32_XFD_ERR, 0); 1296 1297 /* Die if that happens in kernel space */ 1298 if (WARN_ON(!user_mode(regs))) 1299 return false; 1300 1301 local_irq_enable(); 1302 1303 err = xfd_enable_feature(xfd_err); 1304 1305 switch (err) { 1306 case -EPERM: 1307 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs)); 1308 break; 1309 case -EFAULT: 1310 force_sig(SIGSEGV); 1311 break; 1312 } 1313 1314 local_irq_disable(); 1315 return true; 1316 } 1317 1318 DEFINE_IDTENTRY(exc_device_not_available) 1319 { 1320 unsigned long cr0 = read_cr0(); 1321 1322 if (handle_xfd_event(regs)) 1323 return; 1324 1325 #ifdef CONFIG_MATH_EMULATION 1326 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1327 struct math_emu_info info = { }; 1328 1329 cond_local_irq_enable(regs); 1330 1331 info.regs = regs; 1332 math_emulate(&info); 1333 1334 cond_local_irq_disable(regs); 1335 return; 1336 } 1337 #endif 1338 1339 /* This should not happen. */ 1340 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1341 /* Try to fix it up and carry on. */ 1342 write_cr0(cr0 & ~X86_CR0_TS); 1343 } else { 1344 /* 1345 * Something terrible happened, and we're better off trying 1346 * to kill the task than getting stuck in a never-ending 1347 * loop of #NM faults. 1348 */ 1349 die("unexpected #NM exception", regs, 0); 1350 } 1351 } 1352 1353 #ifdef CONFIG_INTEL_TDX_GUEST 1354 1355 #define VE_FAULT_STR "VE fault" 1356 1357 static void ve_raise_fault(struct pt_regs *regs, long error_code, 1358 unsigned long address) 1359 { 1360 if (user_mode(regs)) { 1361 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR); 1362 return; 1363 } 1364 1365 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, 1366 VE_FAULT_STR, address)) { 1367 return; 1368 } 1369 1370 die_addr(VE_FAULT_STR, regs, error_code, address); 1371 } 1372 1373 /* 1374 * Virtualization Exceptions (#VE) are delivered to TDX guests due to 1375 * specific guest actions which may happen in either user space or the 1376 * kernel: 1377 * 1378 * * Specific instructions (WBINVD, for example) 1379 * * Specific MSR accesses 1380 * * Specific CPUID leaf accesses 1381 * * Access to specific guest physical addresses 1382 * 1383 * In the settings that Linux will run in, virtualization exceptions are 1384 * never generated on accesses to normal, TD-private memory that has been 1385 * accepted (by BIOS or with tdx_enc_status_changed()). 1386 * 1387 * Syscall entry code has a critical window where the kernel stack is not 1388 * yet set up. Any exception in this window leads to hard to debug issues 1389 * and can be exploited for privilege escalation. Exceptions in the NMI 1390 * entry code also cause issues. Returning from the exception handler with 1391 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack. 1392 * 1393 * For these reasons, the kernel avoids #VEs during the syscall gap and 1394 * the NMI entry code. Entry code paths do not access TD-shared memory, 1395 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves 1396 * that might generate #VE. VMM can remove memory from TD at any point, 1397 * but access to unaccepted (or missing) private memory leads to VM 1398 * termination, not to #VE. 1399 * 1400 * Similarly to page faults and breakpoints, #VEs are allowed in NMI 1401 * handlers once the kernel is ready to deal with nested NMIs. 1402 * 1403 * During #VE delivery, all interrupts, including NMIs, are blocked until 1404 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads 1405 * the VE info. 1406 * 1407 * If a guest kernel action which would normally cause a #VE occurs in 1408 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault 1409 * exception) is delivered to the guest which will result in an oops. 1410 * 1411 * The entry code has been audited carefully for following these expectations. 1412 * Changes in the entry code have to be audited for correctness vs. this 1413 * aspect. Similarly to #PF, #VE in these places will expose kernel to 1414 * privilege escalation or may lead to random crashes. 1415 */ 1416 DEFINE_IDTENTRY(exc_virtualization_exception) 1417 { 1418 struct ve_info ve; 1419 1420 /* 1421 * NMIs/Machine-checks/Interrupts will be in a disabled state 1422 * till TDGETVEINFO TDCALL is executed. This ensures that VE 1423 * info cannot be overwritten by a nested #VE. 1424 */ 1425 tdx_get_ve_info(&ve); 1426 1427 cond_local_irq_enable(regs); 1428 1429 /* 1430 * If tdx_handle_virt_exception() could not process 1431 * it successfully, treat it as #GP(0) and handle it. 1432 */ 1433 if (!tdx_handle_virt_exception(regs, &ve)) 1434 ve_raise_fault(regs, 0, ve.gla); 1435 1436 cond_local_irq_disable(regs); 1437 } 1438 1439 #endif 1440 1441 #ifdef CONFIG_X86_32 1442 DEFINE_IDTENTRY_SW(iret_error) 1443 { 1444 local_irq_enable(); 1445 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1446 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1447 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1448 ILL_BADSTK, (void __user *)NULL); 1449 } 1450 local_irq_disable(); 1451 } 1452 #endif 1453 1454 void __init trap_init(void) 1455 { 1456 /* Init cpu_entry_area before IST entries are set up */ 1457 setup_cpu_entry_areas(); 1458 1459 /* Init GHCB memory pages when running as an SEV-ES guest */ 1460 sev_es_init_vc_handling(); 1461 1462 /* Initialize TSS before setting up traps so ISTs work */ 1463 cpu_init_exception_handling(true); 1464 1465 /* Setup traps as cpu_init() might #GP */ 1466 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 1467 idt_setup_traps(); 1468 1469 cpu_init(); 1470 } 1471