1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/cpu.h>
41 #include <linux/io.h>
42 #include <linux/hardirq.h>
43 #include <linux/atomic.h>
44 #include <linux/iommu.h>
45 #include <linux/ubsan.h>
46
47 #include <asm/stacktrace.h>
48 #include <asm/processor.h>
49 #include <asm/debugreg.h>
50 #include <asm/realmode.h>
51 #include <asm/text-patching.h>
52 #include <asm/ftrace.h>
53 #include <asm/traps.h>
54 #include <asm/desc.h>
55 #include <asm/fred.h>
56 #include <asm/fpu/api.h>
57 #include <asm/cpu.h>
58 #include <asm/cpu_entry_area.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/fpu/xstate.h>
64 #include <asm/vm86.h>
65 #include <asm/umip.h>
66 #include <asm/insn.h>
67 #include <asm/insn-eval.h>
68 #include <asm/vdso.h>
69 #include <asm/tdx.h>
70 #include <asm/cfi.h>
71
72 #ifdef CONFIG_X86_64
73 #include <asm/x86_init.h>
74 #else
75 #include <asm/processor-flags.h>
76 #include <asm/setup.h>
77 #endif
78
79 #include <asm/proto.h>
80
81 DECLARE_BITMAP(system_vectors, NR_VECTORS);
82
is_valid_bugaddr(unsigned long addr)83 __always_inline int is_valid_bugaddr(unsigned long addr)
84 {
85 if (addr < TASK_SIZE_MAX)
86 return 0;
87
88 /*
89 * We got #UD, if the text isn't readable we'd have gotten
90 * a different exception.
91 */
92 return *(unsigned short *)addr == INSN_UD2;
93 }
94
95 /*
96 * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
97 * If it's a UD1, get the ModRM byte to pass along to UBSan.
98 */
decode_bug(unsigned long addr,u32 * imm)99 __always_inline int decode_bug(unsigned long addr, u32 *imm)
100 {
101 u8 v;
102
103 if (addr < TASK_SIZE_MAX)
104 return BUG_NONE;
105
106 v = *(u8 *)(addr++);
107 if (v == INSN_ASOP)
108 v = *(u8 *)(addr++);
109 if (v != OPCODE_ESCAPE)
110 return BUG_NONE;
111
112 v = *(u8 *)(addr++);
113 if (v == SECOND_BYTE_OPCODE_UD2)
114 return BUG_UD2;
115
116 if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1)
117 return BUG_NONE;
118
119 /* Retrieve the immediate (type value) for the UBSAN UD1 */
120 v = *(u8 *)(addr++);
121 if (X86_MODRM_RM(v) == 4)
122 addr++;
123
124 *imm = 0;
125 if (X86_MODRM_MOD(v) == 1)
126 *imm = *(u8 *)addr;
127 else if (X86_MODRM_MOD(v) == 2)
128 *imm = *(u32 *)addr;
129 else
130 WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v));
131
132 return BUG_UD1;
133 }
134
135
136 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)137 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
138 struct pt_regs *regs, long error_code)
139 {
140 if (v8086_mode(regs)) {
141 /*
142 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
143 * On nmi (interrupt 2), do_trap should not be called.
144 */
145 if (trapnr < X86_TRAP_UD) {
146 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
147 error_code, trapnr))
148 return 0;
149 }
150 } else if (!user_mode(regs)) {
151 if (fixup_exception(regs, trapnr, error_code, 0))
152 return 0;
153
154 tsk->thread.error_code = error_code;
155 tsk->thread.trap_nr = trapnr;
156 die(str, regs, error_code);
157 } else {
158 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
159 return 0;
160 }
161
162 /*
163 * We want error_code and trap_nr set for userspace faults and
164 * kernelspace faults which result in die(), but not
165 * kernelspace faults which are fixed up. die() gives the
166 * process no chance to handle the signal and notice the
167 * kernel fault information, so that won't result in polluting
168 * the information about previously queued, but not yet
169 * delivered, faults. See also exc_general_protection below.
170 */
171 tsk->thread.error_code = error_code;
172 tsk->thread.trap_nr = trapnr;
173
174 return -1;
175 }
176
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)177 static void show_signal(struct task_struct *tsk, int signr,
178 const char *type, const char *desc,
179 struct pt_regs *regs, long error_code)
180 {
181 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
182 printk_ratelimit()) {
183 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
184 tsk->comm, task_pid_nr(tsk), type, desc,
185 regs->ip, regs->sp, error_code);
186 print_vma_addr(KERN_CONT " in ", regs->ip);
187 pr_cont("\n");
188 }
189 }
190
191 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)192 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
193 long error_code, int sicode, void __user *addr)
194 {
195 struct task_struct *tsk = current;
196
197 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
198 return;
199
200 show_signal(tsk, signr, "trap ", str, regs, error_code);
201
202 if (!sicode)
203 force_sig(signr);
204 else
205 force_sig_fault(signr, sicode, addr);
206 }
207 NOKPROBE_SYMBOL(do_trap);
208
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)209 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
210 unsigned long trapnr, int signr, int sicode, void __user *addr)
211 {
212 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
213
214 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
215 NOTIFY_STOP) {
216 cond_local_irq_enable(regs);
217 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
218 cond_local_irq_disable(regs);
219 }
220 }
221
222 /*
223 * Posix requires to provide the address of the faulting instruction for
224 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
225 *
226 * This address is usually regs->ip, but when an uprobe moved the code out
227 * of line then regs->ip points to the XOL code which would confuse
228 * anything which analyzes the fault address vs. the unmodified binary. If
229 * a trap happened in XOL code then uprobe maps regs->ip back to the
230 * original instruction address.
231 */
error_get_trap_addr(struct pt_regs * regs)232 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
233 {
234 return (void __user *)uprobe_get_trap_addr(regs);
235 }
236
DEFINE_IDTENTRY(exc_divide_error)237 DEFINE_IDTENTRY(exc_divide_error)
238 {
239 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
240 FPE_INTDIV, error_get_trap_addr(regs));
241 }
242
DEFINE_IDTENTRY(exc_overflow)243 DEFINE_IDTENTRY(exc_overflow)
244 {
245 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
246 }
247
248 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)249 void handle_invalid_op(struct pt_regs *regs)
250 #else
251 static inline void handle_invalid_op(struct pt_regs *regs)
252 #endif
253 {
254 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
255 ILL_ILLOPN, error_get_trap_addr(regs));
256 }
257
handle_bug(struct pt_regs * regs)258 static noinstr bool handle_bug(struct pt_regs *regs)
259 {
260 bool handled = false;
261 int ud_type;
262 u32 imm;
263
264 ud_type = decode_bug(regs->ip, &imm);
265 if (ud_type == BUG_NONE)
266 return handled;
267
268 /*
269 * All lies, just get the WARN/BUG out.
270 */
271 instrumentation_begin();
272 /*
273 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
274 * is a rare case that uses @regs without passing them to
275 * irqentry_enter().
276 */
277 kmsan_unpoison_entry_regs(regs);
278 /*
279 * Since we're emulating a CALL with exceptions, restore the interrupt
280 * state to what it was at the exception site.
281 */
282 if (regs->flags & X86_EFLAGS_IF)
283 raw_local_irq_enable();
284 if (ud_type == BUG_UD2) {
285 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
286 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
287 regs->ip += LEN_UD2;
288 handled = true;
289 }
290 } else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) {
291 pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip);
292 }
293 if (regs->flags & X86_EFLAGS_IF)
294 raw_local_irq_disable();
295 instrumentation_end();
296
297 return handled;
298 }
299
DEFINE_IDTENTRY_RAW(exc_invalid_op)300 DEFINE_IDTENTRY_RAW(exc_invalid_op)
301 {
302 irqentry_state_t state;
303
304 /*
305 * We use UD2 as a short encoding for 'CALL __WARN', as such
306 * handle it before exception entry to avoid recursive WARN
307 * in case exception entry is the one triggering WARNs.
308 */
309 if (!user_mode(regs) && handle_bug(regs))
310 return;
311
312 state = irqentry_enter(regs);
313 instrumentation_begin();
314 handle_invalid_op(regs);
315 instrumentation_end();
316 irqentry_exit(regs, state);
317 }
318
DEFINE_IDTENTRY(exc_coproc_segment_overrun)319 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
320 {
321 do_error_trap(regs, 0, "coprocessor segment overrun",
322 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
323 }
324
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)325 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
326 {
327 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
328 0, NULL);
329 }
330
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)331 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
332 {
333 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
334 SIGBUS, 0, NULL);
335 }
336
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)337 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
338 {
339 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
340 0, NULL);
341 }
342
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)343 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
344 {
345 char *str = "alignment check";
346
347 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
348 return;
349
350 if (!user_mode(regs))
351 die("Split lock detected\n", regs, error_code);
352
353 local_irq_enable();
354
355 if (handle_user_split_lock(regs, error_code))
356 goto out;
357
358 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
359 error_code, BUS_ADRALN, NULL);
360
361 out:
362 local_irq_disable();
363 }
364
365 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)366 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
367 unsigned long fault_address,
368 struct stack_info *info)
369 {
370 const char *name = stack_type_name(info->type);
371
372 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
373 name, (void *)fault_address, info->begin, info->end);
374
375 die("stack guard page", regs, 0);
376
377 /* Be absolutely certain we don't return. */
378 panic("%s stack guard hit", name);
379 }
380 #endif
381
382 /*
383 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
384 *
385 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
386 * SDM's warnings about double faults being unrecoverable, returning works as
387 * expected. Presumably what the SDM actually means is that the CPU may get
388 * the register state wrong on entry, so returning could be a bad idea.
389 *
390 * Various CPU engineers have promised that double faults due to an IRET fault
391 * while the stack is read-only are, in fact, recoverable.
392 *
393 * On x86_32, this is entered through a task gate, and regs are synthesized
394 * from the TSS. Returning is, in principle, okay, but changes to regs will
395 * be lost. If, for some reason, we need to return to a context with modified
396 * regs, the shim code could be adjusted to synchronize the registers.
397 *
398 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
399 * to be read before doing anything else.
400 */
DEFINE_IDTENTRY_DF(exc_double_fault)401 DEFINE_IDTENTRY_DF(exc_double_fault)
402 {
403 static const char str[] = "double fault";
404 struct task_struct *tsk = current;
405
406 #ifdef CONFIG_VMAP_STACK
407 unsigned long address = read_cr2();
408 struct stack_info info;
409 #endif
410
411 #ifdef CONFIG_X86_ESPFIX64
412 extern unsigned char native_irq_return_iret[];
413
414 /*
415 * If IRET takes a non-IST fault on the espfix64 stack, then we
416 * end up promoting it to a doublefault. In that case, take
417 * advantage of the fact that we're not using the normal (TSS.sp0)
418 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
419 * and then modify our own IRET frame so that, when we return,
420 * we land directly at the #GP(0) vector with the stack already
421 * set up according to its expectations.
422 *
423 * The net result is that our #GP handler will think that we
424 * entered from usermode with the bad user context.
425 *
426 * No need for nmi_enter() here because we don't use RCU.
427 */
428 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
429 regs->cs == __KERNEL_CS &&
430 regs->ip == (unsigned long)native_irq_return_iret)
431 {
432 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
433 unsigned long *p = (unsigned long *)regs->sp;
434
435 /*
436 * regs->sp points to the failing IRET frame on the
437 * ESPFIX64 stack. Copy it to the entry stack. This fills
438 * in gpregs->ss through gpregs->ip.
439 *
440 */
441 gpregs->ip = p[0];
442 gpregs->cs = p[1];
443 gpregs->flags = p[2];
444 gpregs->sp = p[3];
445 gpregs->ss = p[4];
446 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
447
448 /*
449 * Adjust our frame so that we return straight to the #GP
450 * vector with the expected RSP value. This is safe because
451 * we won't enable interrupts or schedule before we invoke
452 * general_protection, so nothing will clobber the stack
453 * frame we just set up.
454 *
455 * We will enter general_protection with kernel GSBASE,
456 * which is what the stub expects, given that the faulting
457 * RIP will be the IRET instruction.
458 */
459 regs->ip = (unsigned long)asm_exc_general_protection;
460 regs->sp = (unsigned long)&gpregs->orig_ax;
461
462 return;
463 }
464 #endif
465
466 irqentry_nmi_enter(regs);
467 instrumentation_begin();
468 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
469
470 tsk->thread.error_code = error_code;
471 tsk->thread.trap_nr = X86_TRAP_DF;
472
473 #ifdef CONFIG_VMAP_STACK
474 /*
475 * If we overflow the stack into a guard page, the CPU will fail
476 * to deliver #PF and will send #DF instead. Similarly, if we
477 * take any non-IST exception while too close to the bottom of
478 * the stack, the processor will get a page fault while
479 * delivering the exception and will generate a double fault.
480 *
481 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
482 * Page-Fault Exception (#PF):
483 *
484 * Processors update CR2 whenever a page fault is detected. If a
485 * second page fault occurs while an earlier page fault is being
486 * delivered, the faulting linear address of the second fault will
487 * overwrite the contents of CR2 (replacing the previous
488 * address). These updates to CR2 occur even if the page fault
489 * results in a double fault or occurs during the delivery of a
490 * double fault.
491 *
492 * The logic below has a small possibility of incorrectly diagnosing
493 * some errors as stack overflows. For example, if the IDT or GDT
494 * gets corrupted such that #GP delivery fails due to a bad descriptor
495 * causing #GP and we hit this condition while CR2 coincidentally
496 * points to the stack guard page, we'll think we overflowed the
497 * stack. Given that we're going to panic one way or another
498 * if this happens, this isn't necessarily worth fixing.
499 *
500 * If necessary, we could improve the test by only diagnosing
501 * a stack overflow if the saved RSP points within 47 bytes of
502 * the bottom of the stack: if RSP == tsk_stack + 48 and we
503 * take an exception, the stack is already aligned and there
504 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
505 * possible error code, so a stack overflow would *not* double
506 * fault. With any less space left, exception delivery could
507 * fail, and, as a practical matter, we've overflowed the
508 * stack even if the actual trigger for the double fault was
509 * something else.
510 */
511 if (get_stack_guard_info((void *)address, &info))
512 handle_stack_overflow(regs, address, &info);
513 #endif
514
515 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
516 die("double fault", regs, error_code);
517 panic("Machine halted.");
518 instrumentation_end();
519 }
520
DEFINE_IDTENTRY(exc_bounds)521 DEFINE_IDTENTRY(exc_bounds)
522 {
523 if (notify_die(DIE_TRAP, "bounds", regs, 0,
524 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
525 return;
526 cond_local_irq_enable(regs);
527
528 if (!user_mode(regs))
529 die("bounds", regs, 0);
530
531 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
532
533 cond_local_irq_disable(regs);
534 }
535
536 enum kernel_gp_hint {
537 GP_NO_HINT,
538 GP_NON_CANONICAL,
539 GP_CANONICAL
540 };
541
542 /*
543 * When an uncaught #GP occurs, try to determine the memory address accessed by
544 * the instruction and return that address to the caller. Also, try to figure
545 * out whether any part of the access to that address was non-canonical.
546 */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)547 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
548 unsigned long *addr)
549 {
550 u8 insn_buf[MAX_INSN_SIZE];
551 struct insn insn;
552 int ret;
553
554 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
555 MAX_INSN_SIZE))
556 return GP_NO_HINT;
557
558 ret = insn_decode_kernel(&insn, insn_buf);
559 if (ret < 0)
560 return GP_NO_HINT;
561
562 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
563 if (*addr == -1UL)
564 return GP_NO_HINT;
565
566 #ifdef CONFIG_X86_64
567 /*
568 * Check that:
569 * - the operand is not in the kernel half
570 * - the last byte of the operand is not in the user canonical half
571 */
572 if (*addr < ~__VIRTUAL_MASK &&
573 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
574 return GP_NON_CANONICAL;
575 #endif
576
577 return GP_CANONICAL;
578 }
579
580 #define GPFSTR "general protection fault"
581
fixup_iopl_exception(struct pt_regs * regs)582 static bool fixup_iopl_exception(struct pt_regs *regs)
583 {
584 struct thread_struct *t = ¤t->thread;
585 unsigned char byte;
586 unsigned long ip;
587
588 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
589 return false;
590
591 if (insn_get_effective_ip(regs, &ip))
592 return false;
593
594 if (get_user(byte, (const char __user *)ip))
595 return false;
596
597 if (byte != 0xfa && byte != 0xfb)
598 return false;
599
600 if (!t->iopl_warn && printk_ratelimit()) {
601 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
602 current->comm, task_pid_nr(current), ip);
603 print_vma_addr(KERN_CONT " in ", ip);
604 pr_cont("\n");
605 t->iopl_warn = 1;
606 }
607
608 regs->ip += 1;
609 return true;
610 }
611
612 /*
613 * The unprivileged ENQCMD instruction generates #GPs if the
614 * IA32_PASID MSR has not been populated. If possible, populate
615 * the MSR from a PASID previously allocated to the mm.
616 */
try_fixup_enqcmd_gp(void)617 static bool try_fixup_enqcmd_gp(void)
618 {
619 #ifdef CONFIG_ARCH_HAS_CPU_PASID
620 u32 pasid;
621
622 /*
623 * MSR_IA32_PASID is managed using XSAVE. Directly
624 * writing to the MSR is only possible when fpregs
625 * are valid and the fpstate is not. This is
626 * guaranteed when handling a userspace exception
627 * in *before* interrupts are re-enabled.
628 */
629 lockdep_assert_irqs_disabled();
630
631 /*
632 * Hardware without ENQCMD will not generate
633 * #GPs that can be fixed up here.
634 */
635 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
636 return false;
637
638 /*
639 * If the mm has not been allocated a
640 * PASID, the #GP can not be fixed up.
641 */
642 if (!mm_valid_pasid(current->mm))
643 return false;
644
645 pasid = mm_get_enqcmd_pasid(current->mm);
646
647 /*
648 * Did this thread already have its PASID activated?
649 * If so, the #GP must be from something else.
650 */
651 if (current->pasid_activated)
652 return false;
653
654 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
655 current->pasid_activated = 1;
656
657 return true;
658 #else
659 return false;
660 #endif
661 }
662
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str,unsigned long address)663 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
664 unsigned long error_code, const char *str,
665 unsigned long address)
666 {
667 if (fixup_exception(regs, trapnr, error_code, address))
668 return true;
669
670 current->thread.error_code = error_code;
671 current->thread.trap_nr = trapnr;
672
673 /*
674 * To be potentially processing a kprobe fault and to trust the result
675 * from kprobe_running(), we have to be non-preemptible.
676 */
677 if (!preemptible() && kprobe_running() &&
678 kprobe_fault_handler(regs, trapnr))
679 return true;
680
681 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
682 }
683
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)684 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
685 unsigned long error_code, const char *str)
686 {
687 current->thread.error_code = error_code;
688 current->thread.trap_nr = trapnr;
689 show_signal(current, SIGSEGV, "", str, regs, error_code);
690 force_sig(SIGSEGV);
691 }
692
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)693 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
694 {
695 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
696 enum kernel_gp_hint hint = GP_NO_HINT;
697 unsigned long gp_addr;
698
699 if (user_mode(regs) && try_fixup_enqcmd_gp())
700 return;
701
702 cond_local_irq_enable(regs);
703
704 if (static_cpu_has(X86_FEATURE_UMIP)) {
705 if (user_mode(regs) && fixup_umip_exception(regs))
706 goto exit;
707 }
708
709 if (v8086_mode(regs)) {
710 local_irq_enable();
711 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
712 local_irq_disable();
713 return;
714 }
715
716 if (user_mode(regs)) {
717 if (fixup_iopl_exception(regs))
718 goto exit;
719
720 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
721 goto exit;
722
723 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
724 goto exit;
725 }
726
727 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
728 goto exit;
729
730 if (error_code)
731 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
732 else
733 hint = get_kernel_gp_address(regs, &gp_addr);
734
735 if (hint != GP_NO_HINT)
736 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
737 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
738 : "maybe for address",
739 gp_addr);
740
741 /*
742 * KASAN is interested only in the non-canonical case, clear it
743 * otherwise.
744 */
745 if (hint != GP_NON_CANONICAL)
746 gp_addr = 0;
747
748 die_addr(desc, regs, error_code, gp_addr);
749
750 exit:
751 cond_local_irq_disable(regs);
752 }
753
do_int3(struct pt_regs * regs)754 static bool do_int3(struct pt_regs *regs)
755 {
756 int res;
757
758 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
759 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
760 SIGTRAP) == NOTIFY_STOP)
761 return true;
762 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
763
764 #ifdef CONFIG_KPROBES
765 if (kprobe_int3_handler(regs))
766 return true;
767 #endif
768 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
769
770 return res == NOTIFY_STOP;
771 }
772 NOKPROBE_SYMBOL(do_int3);
773
do_int3_user(struct pt_regs * regs)774 static void do_int3_user(struct pt_regs *regs)
775 {
776 if (do_int3(regs))
777 return;
778
779 cond_local_irq_enable(regs);
780 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
781 cond_local_irq_disable(regs);
782 }
783
DEFINE_IDTENTRY_RAW(exc_int3)784 DEFINE_IDTENTRY_RAW(exc_int3)
785 {
786 /*
787 * poke_int3_handler() is completely self contained code; it does (and
788 * must) *NOT* call out to anything, lest it hits upon yet another
789 * INT3.
790 */
791 if (poke_int3_handler(regs))
792 return;
793
794 /*
795 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
796 * and therefore can trigger INT3, hence poke_int3_handler() must
797 * be done before. If the entry came from kernel mode, then use
798 * nmi_enter() because the INT3 could have been hit in any context
799 * including NMI.
800 */
801 if (user_mode(regs)) {
802 irqentry_enter_from_user_mode(regs);
803 instrumentation_begin();
804 do_int3_user(regs);
805 instrumentation_end();
806 irqentry_exit_to_user_mode(regs);
807 } else {
808 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
809
810 instrumentation_begin();
811 if (!do_int3(regs))
812 die("int3", regs, 0);
813 instrumentation_end();
814 irqentry_nmi_exit(regs, irq_state);
815 }
816 }
817
818 #ifdef CONFIG_X86_64
819 /*
820 * Help handler running on a per-cpu (IST or entry trampoline) stack
821 * to switch to the normal thread stack if the interrupted code was in
822 * user mode. The actual stack switch is done in entry_64.S
823 */
sync_regs(struct pt_regs * eregs)824 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
825 {
826 struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
827 if (regs != eregs)
828 *regs = *eregs;
829 return regs;
830 }
831
832 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)833 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
834 {
835 unsigned long sp, *stack;
836 struct stack_info info;
837 struct pt_regs *regs_ret;
838
839 /*
840 * In the SYSCALL entry path the RSP value comes from user-space - don't
841 * trust it and switch to the current kernel stack
842 */
843 if (ip_within_syscall_gap(regs)) {
844 sp = current_top_of_stack();
845 goto sync;
846 }
847
848 /*
849 * From here on the RSP value is trusted. Now check whether entry
850 * happened from a safe stack. Not safe are the entry or unknown stacks,
851 * use the fall-back stack instead in this case.
852 */
853 sp = regs->sp;
854 stack = (unsigned long *)sp;
855
856 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
857 info.type > STACK_TYPE_EXCEPTION_LAST)
858 sp = __this_cpu_ist_top_va(VC2);
859
860 sync:
861 /*
862 * Found a safe stack - switch to it as if the entry didn't happen via
863 * IST stack. The code below only copies pt_regs, the real switch happens
864 * in assembly code.
865 */
866 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
867
868 regs_ret = (struct pt_regs *)sp;
869 *regs_ret = *regs;
870
871 return regs_ret;
872 }
873 #endif
874
fixup_bad_iret(struct pt_regs * bad_regs)875 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
876 {
877 struct pt_regs tmp, *new_stack;
878
879 /*
880 * This is called from entry_64.S early in handling a fault
881 * caused by a bad iret to user mode. To handle the fault
882 * correctly, we want to move our stack frame to where it would
883 * be had we entered directly on the entry stack (rather than
884 * just below the IRET frame) and we want to pretend that the
885 * exception came from the IRET target.
886 */
887 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
888
889 /* Copy the IRET target to the temporary storage. */
890 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
891
892 /* Copy the remainder of the stack from the current stack. */
893 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
894
895 /* Update the entry stack */
896 __memcpy(new_stack, &tmp, sizeof(tmp));
897
898 BUG_ON(!user_mode(new_stack));
899 return new_stack;
900 }
901 #endif
902
is_sysenter_singlestep(struct pt_regs * regs)903 static bool is_sysenter_singlestep(struct pt_regs *regs)
904 {
905 /*
906 * We don't try for precision here. If we're anywhere in the region of
907 * code that can be single-stepped in the SYSENTER entry path, then
908 * assume that this is a useless single-step trap due to SYSENTER
909 * being invoked with TF set. (We don't know in advance exactly
910 * which instructions will be hit because BTF could plausibly
911 * be set.)
912 */
913 #ifdef CONFIG_X86_32
914 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
915 (unsigned long)__end_SYSENTER_singlestep_region -
916 (unsigned long)__begin_SYSENTER_singlestep_region;
917 #elif defined(CONFIG_IA32_EMULATION)
918 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
919 (unsigned long)__end_entry_SYSENTER_compat -
920 (unsigned long)entry_SYSENTER_compat;
921 #else
922 return false;
923 #endif
924 }
925
debug_read_clear_dr6(void)926 static __always_inline unsigned long debug_read_clear_dr6(void)
927 {
928 unsigned long dr6;
929
930 /*
931 * The Intel SDM says:
932 *
933 * Certain debug exceptions may clear bits 0-3. The remaining
934 * contents of the DR6 register are never cleared by the
935 * processor. To avoid confusion in identifying debug
936 * exceptions, debug handlers should clear the register before
937 * returning to the interrupted task.
938 *
939 * Keep it simple: clear DR6 immediately.
940 */
941 get_debugreg(dr6, 6);
942 set_debugreg(DR6_RESERVED, 6);
943 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
944
945 return dr6;
946 }
947
948 /*
949 * Our handling of the processor debug registers is non-trivial.
950 * We do not clear them on entry and exit from the kernel. Therefore
951 * it is possible to get a watchpoint trap here from inside the kernel.
952 * However, the code in ./ptrace.c has ensured that the user can
953 * only set watchpoints on userspace addresses. Therefore the in-kernel
954 * watchpoint trap can only occur in code which is reading/writing
955 * from user space. Such code must not hold kernel locks (since it
956 * can equally take a page fault), therefore it is safe to call
957 * force_sig_info even though that claims and releases locks.
958 *
959 * Code in ./signal.c ensures that the debug control register
960 * is restored before we deliver any signal, and therefore that
961 * user code runs with the correct debug control register even though
962 * we clear it here.
963 *
964 * Being careful here means that we don't have to be as careful in a
965 * lot of more complicated places (task switching can be a bit lazy
966 * about restoring all the debug state, and ptrace doesn't have to
967 * find every occurrence of the TF bit that could be saved away even
968 * by user code)
969 *
970 * May run on IST stack.
971 */
972
notify_debug(struct pt_regs * regs,unsigned long * dr6)973 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
974 {
975 /*
976 * Notifiers will clear bits in @dr6 to indicate the event has been
977 * consumed - hw_breakpoint_handler(), single_stop_cont().
978 *
979 * Notifiers will set bits in @virtual_dr6 to indicate the desire
980 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
981 */
982 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
983 return true;
984
985 return false;
986 }
987
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)988 static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
989 {
990 /*
991 * Disable breakpoints during exception handling; recursive exceptions
992 * are exceedingly 'fun'.
993 *
994 * Since this function is NOKPROBE, and that also applies to
995 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
996 * HW_BREAKPOINT_W on our stack)
997 *
998 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
999 * includes the entry stack is excluded for everything.
1000 *
1001 * For FRED, nested #DB should just work fine. But when a watchpoint or
1002 * breakpoint is set in the code path which is executed by #DB handler,
1003 * it results in an endless recursion and stack overflow. Thus we stay
1004 * with the IDT approach, i.e., save DR7 and disable #DB.
1005 */
1006 unsigned long dr7 = local_db_save();
1007 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1008 instrumentation_begin();
1009
1010 /*
1011 * If something gets miswired and we end up here for a user mode
1012 * #DB, we will malfunction.
1013 */
1014 WARN_ON_ONCE(user_mode(regs));
1015
1016 if (test_thread_flag(TIF_BLOCKSTEP)) {
1017 /*
1018 * The SDM says "The processor clears the BTF flag when it
1019 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1020 * it for userspace, but we just took a kernel #DB, so re-set
1021 * BTF.
1022 */
1023 unsigned long debugctl;
1024
1025 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1026 debugctl |= DEBUGCTLMSR_BTF;
1027 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1028 }
1029
1030 /*
1031 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1032 * watchpoint at the same time then that will still be handled.
1033 */
1034 if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
1035 (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1036 dr6 &= ~DR_STEP;
1037
1038 /*
1039 * The kernel doesn't use INT1
1040 */
1041 if (!dr6)
1042 goto out;
1043
1044 if (notify_debug(regs, &dr6))
1045 goto out;
1046
1047 /*
1048 * The kernel doesn't use TF single-step outside of:
1049 *
1050 * - Kprobes, consumed through kprobe_debug_handler()
1051 * - KGDB, consumed through notify_debug()
1052 *
1053 * So if we get here with DR_STEP set, something is wonky.
1054 *
1055 * A known way to trigger this is through QEMU's GDB stub,
1056 * which leaks #DB into the guest and causes IST recursion.
1057 */
1058 if (WARN_ON_ONCE(dr6 & DR_STEP))
1059 regs->flags &= ~X86_EFLAGS_TF;
1060 out:
1061 instrumentation_end();
1062 irqentry_nmi_exit(regs, irq_state);
1063
1064 local_db_restore(dr7);
1065 }
1066
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1067 static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1068 {
1069 bool icebp;
1070
1071 /*
1072 * If something gets miswired and we end up here for a kernel mode
1073 * #DB, we will malfunction.
1074 */
1075 WARN_ON_ONCE(!user_mode(regs));
1076
1077 /*
1078 * NB: We can't easily clear DR7 here because
1079 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1080 * user memory, etc. This means that a recursive #DB is possible. If
1081 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1082 * Since we're not on the IST stack right now, everything will be
1083 * fine.
1084 */
1085
1086 irqentry_enter_from_user_mode(regs);
1087 instrumentation_begin();
1088
1089 /*
1090 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1091 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1092 *
1093 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1094 * even if it is not the result of PTRACE_SINGLESTEP.
1095 */
1096 current->thread.virtual_dr6 = (dr6 & DR_STEP);
1097
1098 /*
1099 * The SDM says "The processor clears the BTF flag when it
1100 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1101 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1102 */
1103 clear_thread_flag(TIF_BLOCKSTEP);
1104
1105 /*
1106 * If dr6 has no reason to give us about the origin of this trap,
1107 * then it's very likely the result of an icebp/int01 trap.
1108 * User wants a sigtrap for that.
1109 */
1110 icebp = !dr6;
1111
1112 if (notify_debug(regs, &dr6))
1113 goto out;
1114
1115 /* It's safe to allow irq's after DR6 has been saved */
1116 local_irq_enable();
1117
1118 if (v8086_mode(regs)) {
1119 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1120 goto out_irq;
1121 }
1122
1123 /* #DB for bus lock can only be triggered from userspace. */
1124 if (dr6 & DR_BUS_LOCK)
1125 handle_bus_lock(regs);
1126
1127 /* Add the virtual_dr6 bits for signals. */
1128 dr6 |= current->thread.virtual_dr6;
1129 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1130 send_sigtrap(regs, 0, get_si_code(dr6));
1131
1132 out_irq:
1133 local_irq_disable();
1134 out:
1135 instrumentation_end();
1136 irqentry_exit_to_user_mode(regs);
1137 }
1138
1139 #ifdef CONFIG_X86_64
1140 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1141 DEFINE_IDTENTRY_DEBUG(exc_debug)
1142 {
1143 exc_debug_kernel(regs, debug_read_clear_dr6());
1144 }
1145
1146 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1147 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1148 {
1149 exc_debug_user(regs, debug_read_clear_dr6());
1150 }
1151
1152 #ifdef CONFIG_X86_FRED
1153 /*
1154 * When occurred on different ring level, i.e., from user or kernel
1155 * context, #DB needs to be handled on different stack: User #DB on
1156 * current task stack, while kernel #DB on a dedicated stack.
1157 *
1158 * This is exactly how FRED event delivery invokes an exception
1159 * handler: ring 3 event on level 0 stack, i.e., current task stack;
1160 * ring 0 event on the #DB dedicated stack specified in the
1161 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1162 * entry stub doesn't do stack switch.
1163 */
DEFINE_FREDENTRY_DEBUG(exc_debug)1164 DEFINE_FREDENTRY_DEBUG(exc_debug)
1165 {
1166 /*
1167 * FRED #DB stores DR6 on the stack in the format which
1168 * debug_read_clear_dr6() returns for the IDT entry points.
1169 */
1170 unsigned long dr6 = fred_event_data(regs);
1171
1172 if (user_mode(regs))
1173 exc_debug_user(regs, dr6);
1174 else
1175 exc_debug_kernel(regs, dr6);
1176 }
1177 #endif /* CONFIG_X86_FRED */
1178
1179 #else
1180 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1181 DEFINE_IDTENTRY_RAW(exc_debug)
1182 {
1183 unsigned long dr6 = debug_read_clear_dr6();
1184
1185 if (user_mode(regs))
1186 exc_debug_user(regs, dr6);
1187 else
1188 exc_debug_kernel(regs, dr6);
1189 }
1190 #endif
1191
1192 /*
1193 * Note that we play around with the 'TS' bit in an attempt to get
1194 * the correct behaviour even in the presence of the asynchronous
1195 * IRQ13 behaviour
1196 */
math_error(struct pt_regs * regs,int trapnr)1197 static void math_error(struct pt_regs *regs, int trapnr)
1198 {
1199 struct task_struct *task = current;
1200 struct fpu *fpu = &task->thread.fpu;
1201 int si_code;
1202 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1203 "simd exception";
1204
1205 cond_local_irq_enable(regs);
1206
1207 if (!user_mode(regs)) {
1208 if (fixup_exception(regs, trapnr, 0, 0))
1209 goto exit;
1210
1211 task->thread.error_code = 0;
1212 task->thread.trap_nr = trapnr;
1213
1214 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1215 SIGFPE) != NOTIFY_STOP)
1216 die(str, regs, 0);
1217 goto exit;
1218 }
1219
1220 /*
1221 * Synchronize the FPU register state to the memory register state
1222 * if necessary. This allows the exception handler to inspect it.
1223 */
1224 fpu_sync_fpstate(fpu);
1225
1226 task->thread.trap_nr = trapnr;
1227 task->thread.error_code = 0;
1228
1229 si_code = fpu__exception_code(fpu, trapnr);
1230 /* Retry when we get spurious exceptions: */
1231 if (!si_code)
1232 goto exit;
1233
1234 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1235 goto exit;
1236
1237 force_sig_fault(SIGFPE, si_code,
1238 (void __user *)uprobe_get_trap_addr(regs));
1239 exit:
1240 cond_local_irq_disable(regs);
1241 }
1242
DEFINE_IDTENTRY(exc_coprocessor_error)1243 DEFINE_IDTENTRY(exc_coprocessor_error)
1244 {
1245 math_error(regs, X86_TRAP_MF);
1246 }
1247
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1248 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1249 {
1250 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1251 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1252 if (!static_cpu_has(X86_FEATURE_XMM)) {
1253 __exc_general_protection(regs, 0);
1254 return;
1255 }
1256 }
1257 math_error(regs, X86_TRAP_XF);
1258 }
1259
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1260 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1261 {
1262 /*
1263 * This addresses a Pentium Pro Erratum:
1264 *
1265 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1266 * Virtual Wire mode implemented through the local APIC, an
1267 * interrupt vector of 0Fh (Intel reserved encoding) may be
1268 * generated by the local APIC (Int 15). This vector may be
1269 * generated upon receipt of a spurious interrupt (an interrupt
1270 * which is removed before the system receives the INTA sequence)
1271 * instead of the programmed 8259 spurious interrupt vector.
1272 *
1273 * IMPLICATION: The spurious interrupt vector programmed in the
1274 * 8259 is normally handled by an operating system's spurious
1275 * interrupt handler. However, a vector of 0Fh is unknown to some
1276 * operating systems, which would crash if this erratum occurred.
1277 *
1278 * In theory this could be limited to 32bit, but the handler is not
1279 * hurting and who knows which other CPUs suffer from this.
1280 */
1281 }
1282
handle_xfd_event(struct pt_regs * regs)1283 static bool handle_xfd_event(struct pt_regs *regs)
1284 {
1285 u64 xfd_err;
1286 int err;
1287
1288 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1289 return false;
1290
1291 rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1292 if (!xfd_err)
1293 return false;
1294
1295 wrmsrl(MSR_IA32_XFD_ERR, 0);
1296
1297 /* Die if that happens in kernel space */
1298 if (WARN_ON(!user_mode(regs)))
1299 return false;
1300
1301 local_irq_enable();
1302
1303 err = xfd_enable_feature(xfd_err);
1304
1305 switch (err) {
1306 case -EPERM:
1307 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1308 break;
1309 case -EFAULT:
1310 force_sig(SIGSEGV);
1311 break;
1312 }
1313
1314 local_irq_disable();
1315 return true;
1316 }
1317
DEFINE_IDTENTRY(exc_device_not_available)1318 DEFINE_IDTENTRY(exc_device_not_available)
1319 {
1320 unsigned long cr0 = read_cr0();
1321
1322 if (handle_xfd_event(regs))
1323 return;
1324
1325 #ifdef CONFIG_MATH_EMULATION
1326 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1327 struct math_emu_info info = { };
1328
1329 cond_local_irq_enable(regs);
1330
1331 info.regs = regs;
1332 math_emulate(&info);
1333
1334 cond_local_irq_disable(regs);
1335 return;
1336 }
1337 #endif
1338
1339 /* This should not happen. */
1340 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1341 /* Try to fix it up and carry on. */
1342 write_cr0(cr0 & ~X86_CR0_TS);
1343 } else {
1344 /*
1345 * Something terrible happened, and we're better off trying
1346 * to kill the task than getting stuck in a never-ending
1347 * loop of #NM faults.
1348 */
1349 die("unexpected #NM exception", regs, 0);
1350 }
1351 }
1352
1353 #ifdef CONFIG_INTEL_TDX_GUEST
1354
1355 #define VE_FAULT_STR "VE fault"
1356
ve_raise_fault(struct pt_regs * regs,long error_code,unsigned long address)1357 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1358 unsigned long address)
1359 {
1360 if (user_mode(regs)) {
1361 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1362 return;
1363 }
1364
1365 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1366 VE_FAULT_STR, address)) {
1367 return;
1368 }
1369
1370 die_addr(VE_FAULT_STR, regs, error_code, address);
1371 }
1372
1373 /*
1374 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1375 * specific guest actions which may happen in either user space or the
1376 * kernel:
1377 *
1378 * * Specific instructions (WBINVD, for example)
1379 * * Specific MSR accesses
1380 * * Specific CPUID leaf accesses
1381 * * Access to specific guest physical addresses
1382 *
1383 * In the settings that Linux will run in, virtualization exceptions are
1384 * never generated on accesses to normal, TD-private memory that has been
1385 * accepted (by BIOS or with tdx_enc_status_changed()).
1386 *
1387 * Syscall entry code has a critical window where the kernel stack is not
1388 * yet set up. Any exception in this window leads to hard to debug issues
1389 * and can be exploited for privilege escalation. Exceptions in the NMI
1390 * entry code also cause issues. Returning from the exception handler with
1391 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1392 *
1393 * For these reasons, the kernel avoids #VEs during the syscall gap and
1394 * the NMI entry code. Entry code paths do not access TD-shared memory,
1395 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1396 * that might generate #VE. VMM can remove memory from TD at any point,
1397 * but access to unaccepted (or missing) private memory leads to VM
1398 * termination, not to #VE.
1399 *
1400 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1401 * handlers once the kernel is ready to deal with nested NMIs.
1402 *
1403 * During #VE delivery, all interrupts, including NMIs, are blocked until
1404 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1405 * the VE info.
1406 *
1407 * If a guest kernel action which would normally cause a #VE occurs in
1408 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1409 * exception) is delivered to the guest which will result in an oops.
1410 *
1411 * The entry code has been audited carefully for following these expectations.
1412 * Changes in the entry code have to be audited for correctness vs. this
1413 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1414 * privilege escalation or may lead to random crashes.
1415 */
DEFINE_IDTENTRY(exc_virtualization_exception)1416 DEFINE_IDTENTRY(exc_virtualization_exception)
1417 {
1418 struct ve_info ve;
1419
1420 /*
1421 * NMIs/Machine-checks/Interrupts will be in a disabled state
1422 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1423 * info cannot be overwritten by a nested #VE.
1424 */
1425 tdx_get_ve_info(&ve);
1426
1427 cond_local_irq_enable(regs);
1428
1429 /*
1430 * If tdx_handle_virt_exception() could not process
1431 * it successfully, treat it as #GP(0) and handle it.
1432 */
1433 if (!tdx_handle_virt_exception(regs, &ve))
1434 ve_raise_fault(regs, 0, ve.gla);
1435
1436 cond_local_irq_disable(regs);
1437 }
1438
1439 #endif
1440
1441 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1442 DEFINE_IDTENTRY_SW(iret_error)
1443 {
1444 local_irq_enable();
1445 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1446 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1447 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1448 ILL_BADSTK, (void __user *)NULL);
1449 }
1450 local_irq_disable();
1451 }
1452 #endif
1453
trap_init(void)1454 void __init trap_init(void)
1455 {
1456 /* Init cpu_entry_area before IST entries are set up */
1457 setup_cpu_entry_areas();
1458
1459 /* Init GHCB memory pages when running as an SEV-ES guest */
1460 sev_es_init_vc_handling();
1461
1462 /* Initialize TSS before setting up traps so ISTs work */
1463 cpu_init_exception_handling(true);
1464
1465 /* Setup traps as cpu_init() might #GP */
1466 if (!cpu_feature_enabled(X86_FEATURE_FRED))
1467 idt_setup_traps();
1468
1469 cpu_init();
1470 }
1471