1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * x86 SMP booting functions 4 * 5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 7 * Copyright 2001 Andi Kleen, SuSE Labs. 8 * 9 * Much of the core SMP work is based on previous work by Thomas Radke, to 10 * whom a great many thanks are extended. 11 * 12 * Thanks to Intel for making available several different Pentium, 13 * Pentium Pro and Pentium-II/Xeon MP machines. 14 * Original development of Linux SMP code supported by Caldera. 15 * 16 * Fixes 17 * Felix Koop : NR_CPUS used properly 18 * Jose Renau : Handle single CPU case. 19 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 20 * Greg Wright : Fix for kernel stacks panic. 21 * Erich Boleyn : MP v1.4 and additional changes. 22 * Matthias Sattler : Changes for 2.1 kernel map. 23 * Michel Lespinasse : Changes for 2.1 kernel map. 24 * Michael Chastain : Change trampoline.S to gnu as. 25 * Alan Cox : Dumb bug: 'B' step PPro's are fine 26 * Ingo Molnar : Added APIC timers, based on code 27 * from Jose Renau 28 * Ingo Molnar : various cleanups and rewrites 29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 31 * Andi Kleen : Changed for SMP boot into long mode. 32 * Martin J. Bligh : Added support for multi-quad systems 33 * Dave Jones : Report invalid combinations of Athlon CPUs. 34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 35 * Andi Kleen : Converted to new state machine. 36 * Ashok Raj : CPU hotplug support 37 * Glauber Costa : i386 and x86_64 integration 38 */ 39 40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 41 42 #include <linux/init.h> 43 #include <linux/smp.h> 44 #include <linux/export.h> 45 #include <linux/sched.h> 46 #include <linux/sched/topology.h> 47 #include <linux/sched/hotplug.h> 48 #include <linux/sched/task_stack.h> 49 #include <linux/percpu.h> 50 #include <linux/memblock.h> 51 #include <linux/err.h> 52 #include <linux/nmi.h> 53 #include <linux/tboot.h> 54 #include <linux/gfp.h> 55 #include <linux/cpuidle.h> 56 #include <linux/kexec.h> 57 #include <linux/numa.h> 58 #include <linux/pgtable.h> 59 #include <linux/overflow.h> 60 #include <linux/stackprotector.h> 61 #include <linux/cpuhotplug.h> 62 #include <linux/mc146818rtc.h> 63 #include <linux/acpi.h> 64 65 #include <asm/acpi.h> 66 #include <asm/cacheinfo.h> 67 #include <asm/cpuid.h> 68 #include <asm/desc.h> 69 #include <asm/nmi.h> 70 #include <asm/irq.h> 71 #include <asm/realmode.h> 72 #include <asm/cpu.h> 73 #include <asm/numa.h> 74 #include <asm/tlbflush.h> 75 #include <asm/mtrr.h> 76 #include <asm/mwait.h> 77 #include <asm/apic.h> 78 #include <asm/io_apic.h> 79 #include <asm/fpu/api.h> 80 #include <asm/setup.h> 81 #include <asm/uv/uv.h> 82 #include <asm/microcode.h> 83 #include <asm/i8259.h> 84 #include <asm/misc.h> 85 #include <asm/qspinlock.h> 86 #include <asm/intel-family.h> 87 #include <asm/cpu_device_id.h> 88 #include <asm/spec-ctrl.h> 89 #include <asm/hw_irq.h> 90 #include <asm/stackprotector.h> 91 #include <asm/sev.h> 92 #include <asm/spec-ctrl.h> 93 94 /* representing HT siblings of each logical CPU */ 95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); 96 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 97 98 /* representing HT and core siblings of each logical CPU */ 99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); 100 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 101 102 /* representing HT, core, and die siblings of each logical CPU */ 103 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); 104 EXPORT_PER_CPU_SYMBOL(cpu_die_map); 105 106 /* CPUs which are the primary SMT threads */ 107 struct cpumask __cpu_primary_thread_mask __read_mostly; 108 109 /* Representing CPUs for which sibling maps can be computed */ 110 static cpumask_var_t cpu_sibling_setup_mask; 111 112 struct mwait_cpu_dead { 113 unsigned int control; 114 unsigned int status; 115 }; 116 117 #define CPUDEAD_MWAIT_WAIT 0xDEADBEEF 118 #define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD 119 120 /* 121 * Cache line aligned data for mwait_play_dead(). Separate on purpose so 122 * that it's unlikely to be touched by other CPUs. 123 */ 124 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead); 125 126 /* Maximum number of SMT threads on any online core */ 127 int __read_mostly __max_smt_threads = 1; 128 129 /* Flag to indicate if a complete sched domain rebuild is required */ 130 bool x86_topology_update; 131 132 int arch_update_cpu_topology(void) 133 { 134 int retval = x86_topology_update; 135 136 x86_topology_update = false; 137 return retval; 138 } 139 140 static unsigned int smpboot_warm_reset_vector_count; 141 142 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) 143 { 144 unsigned long flags; 145 146 spin_lock_irqsave(&rtc_lock, flags); 147 if (!smpboot_warm_reset_vector_count++) { 148 CMOS_WRITE(0xa, 0xf); 149 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4; 150 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf; 151 } 152 spin_unlock_irqrestore(&rtc_lock, flags); 153 } 154 155 static inline void smpboot_restore_warm_reset_vector(void) 156 { 157 unsigned long flags; 158 159 /* 160 * Paranoid: Set warm reset code and vector here back 161 * to default values. 162 */ 163 spin_lock_irqsave(&rtc_lock, flags); 164 if (!--smpboot_warm_reset_vector_count) { 165 CMOS_WRITE(0, 0xf); 166 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; 167 } 168 spin_unlock_irqrestore(&rtc_lock, flags); 169 170 } 171 172 /* Run the next set of setup steps for the upcoming CPU */ 173 static void ap_starting(void) 174 { 175 int cpuid = smp_processor_id(); 176 177 /* Mop up eventual mwait_play_dead() wreckage */ 178 this_cpu_write(mwait_cpu_dead.status, 0); 179 this_cpu_write(mwait_cpu_dead.control, 0); 180 181 /* 182 * If woken up by an INIT in an 82489DX configuration the alive 183 * synchronization guarantees that the CPU does not reach this 184 * point before an INIT_deassert IPI reaches the local APIC, so it 185 * is now safe to touch the local APIC. 186 * 187 * Set up this CPU, first the APIC, which is probably redundant on 188 * most boards. 189 */ 190 apic_ap_setup(); 191 192 /* Save the processor parameters. */ 193 smp_store_cpu_info(cpuid); 194 195 /* 196 * The topology information must be up to date before 197 * notify_cpu_starting(). 198 */ 199 set_cpu_sibling_map(cpuid); 200 201 ap_init_aperfmperf(); 202 203 pr_debug("Stack at about %p\n", &cpuid); 204 205 wmb(); 206 207 /* 208 * This runs the AP through all the cpuhp states to its target 209 * state CPUHP_ONLINE. 210 */ 211 notify_cpu_starting(cpuid); 212 } 213 214 static void ap_calibrate_delay(void) 215 { 216 /* 217 * Calibrate the delay loop and update loops_per_jiffy in cpu_data. 218 * smp_store_cpu_info() stored a value that is close but not as 219 * accurate as the value just calculated. 220 * 221 * As this is invoked after the TSC synchronization check, 222 * calibrate_delay_is_known() will skip the calibration routine 223 * when TSC is synchronized across sockets. 224 */ 225 calibrate_delay(); 226 cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy; 227 } 228 229 /* 230 * Activate a secondary processor. 231 */ 232 static void notrace start_secondary(void *unused) 233 { 234 /* 235 * Don't put *anything* except direct CPU state initialization 236 * before cpu_init(), SMP booting is too fragile that we want to 237 * limit the things done here to the most necessary things. 238 */ 239 cr4_init(); 240 241 /* 242 * 32-bit specific. 64-bit reaches this code with the correct page 243 * table established. Yet another historical divergence. 244 */ 245 if (IS_ENABLED(CONFIG_X86_32)) { 246 /* switch away from the initial page table */ 247 load_cr3(swapper_pg_dir); 248 __flush_tlb_all(); 249 } 250 251 cpu_init_exception_handling(false); 252 253 /* 254 * Load the microcode before reaching the AP alive synchronization 255 * point below so it is not part of the full per CPU serialized 256 * bringup part when "parallel" bringup is enabled. 257 * 258 * That's even safe when hyperthreading is enabled in the CPU as 259 * the core code starts the primary threads first and leaves the 260 * secondary threads waiting for SIPI. Loading microcode on 261 * physical cores concurrently is a safe operation. 262 * 263 * This covers both the Intel specific issue that concurrent 264 * microcode loading on SMT siblings must be prohibited and the 265 * vendor independent issue`that microcode loading which changes 266 * CPUID, MSRs etc. must be strictly serialized to maintain 267 * software state correctness. 268 */ 269 load_ucode_ap(); 270 271 /* 272 * Synchronization point with the hotplug core. Sets this CPUs 273 * synchronization state to ALIVE and spin-waits for the control CPU to 274 * release this CPU for further bringup. 275 */ 276 cpuhp_ap_sync_alive(); 277 278 cpu_init(); 279 fpu__init_cpu(); 280 rcutree_report_cpu_starting(raw_smp_processor_id()); 281 x86_cpuinit.early_percpu_clock_init(); 282 283 ap_starting(); 284 285 /* Check TSC synchronization with the control CPU. */ 286 check_tsc_sync_target(); 287 288 /* 289 * Calibrate the delay loop after the TSC synchronization check. 290 * This allows to skip the calibration when TSC is synchronized 291 * across sockets. 292 */ 293 ap_calibrate_delay(); 294 295 speculative_store_bypass_ht_init(); 296 297 /* 298 * Lock vector_lock, set CPU online and bring the vector 299 * allocator online. Online must be set with vector_lock held 300 * to prevent a concurrent irq setup/teardown from seeing a 301 * half valid vector space. 302 */ 303 lock_vector_lock(); 304 set_cpu_online(smp_processor_id(), true); 305 lapic_online(); 306 unlock_vector_lock(); 307 x86_platform.nmi_init(); 308 309 /* enable local interrupts */ 310 local_irq_enable(); 311 312 x86_cpuinit.setup_percpu_clockev(); 313 314 wmb(); 315 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 316 } 317 318 /* 319 * The bootstrap kernel entry code has set these up. Save them for 320 * a given CPU 321 */ 322 void smp_store_cpu_info(int id) 323 { 324 struct cpuinfo_x86 *c = &cpu_data(id); 325 326 /* Copy boot_cpu_data only on the first bringup */ 327 if (!c->initialized) 328 *c = boot_cpu_data; 329 c->cpu_index = id; 330 /* 331 * During boot time, CPU0 has this setup already. Save the info when 332 * bringing up an AP. 333 */ 334 identify_secondary_cpu(c); 335 c->initialized = true; 336 } 337 338 static bool 339 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 340 { 341 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 342 343 return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); 344 } 345 346 static bool 347 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) 348 { 349 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 350 351 return !WARN_ONCE(!topology_same_node(c, o), 352 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " 353 "[node: %d != %d]. Ignoring dependency.\n", 354 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); 355 } 356 357 #define link_mask(mfunc, c1, c2) \ 358 do { \ 359 cpumask_set_cpu((c1), mfunc(c2)); \ 360 cpumask_set_cpu((c2), mfunc(c1)); \ 361 } while (0) 362 363 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 364 { 365 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 366 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 367 368 if (c->topo.pkg_id == o->topo.pkg_id && 369 c->topo.die_id == o->topo.die_id && 370 c->topo.amd_node_id == o->topo.amd_node_id && 371 per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) { 372 if (c->topo.core_id == o->topo.core_id) 373 return topology_sane(c, o, "smt"); 374 375 if ((c->topo.cu_id != 0xff) && 376 (o->topo.cu_id != 0xff) && 377 (c->topo.cu_id == o->topo.cu_id)) 378 return topology_sane(c, o, "smt"); 379 } 380 381 } else if (c->topo.pkg_id == o->topo.pkg_id && 382 c->topo.die_id == o->topo.die_id && 383 c->topo.core_id == o->topo.core_id) { 384 return topology_sane(c, o, "smt"); 385 } 386 387 return false; 388 } 389 390 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 391 { 392 if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id) 393 return false; 394 395 if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1) 396 return c->topo.amd_node_id == o->topo.amd_node_id; 397 398 return true; 399 } 400 401 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 402 { 403 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 404 405 /* If the arch didn't set up l2c_id, fall back to SMT */ 406 if (per_cpu_l2c_id(cpu1) == BAD_APICID) 407 return match_smt(c, o); 408 409 /* Do not match if L2 cache id does not match: */ 410 if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2)) 411 return false; 412 413 return topology_sane(c, o, "l2c"); 414 } 415 416 /* 417 * Unlike the other levels, we do not enforce keeping a 418 * multicore group inside a NUMA node. If this happens, we will 419 * discard the MC level of the topology later. 420 */ 421 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 422 { 423 if (c->topo.pkg_id == o->topo.pkg_id) 424 return true; 425 return false; 426 } 427 428 /* 429 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs. 430 * 431 * Any Intel CPU that has multiple nodes per package and does not 432 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology. 433 * 434 * When in SNC mode, these CPUs enumerate an LLC that is shared 435 * by multiple NUMA nodes. The LLC is shared for off-package data 436 * access but private to the NUMA node (half of the package) for 437 * on-package access. CPUID (the source of the information about 438 * the LLC) can only enumerate the cache as shared or unshared, 439 * but not this particular configuration. 440 */ 441 442 static const struct x86_cpu_id intel_cod_cpu[] = { 443 X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */ 444 X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */ 445 X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */ 446 {} 447 }; 448 449 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 450 { 451 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu); 452 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 453 bool intel_snc = id && id->driver_data; 454 455 /* Do not match if we do not have a valid APICID for cpu: */ 456 if (per_cpu_llc_id(cpu1) == BAD_APICID) 457 return false; 458 459 /* Do not match if LLC id does not match: */ 460 if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2)) 461 return false; 462 463 /* 464 * Allow the SNC topology without warning. Return of false 465 * means 'c' does not share the LLC of 'o'. This will be 466 * reflected to userspace. 467 */ 468 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc) 469 return false; 470 471 return topology_sane(c, o, "llc"); 472 } 473 474 475 static inline int x86_sched_itmt_flags(void) 476 { 477 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; 478 } 479 480 #ifdef CONFIG_SCHED_MC 481 static int x86_core_flags(void) 482 { 483 return cpu_core_flags() | x86_sched_itmt_flags(); 484 } 485 #endif 486 #ifdef CONFIG_SCHED_CLUSTER 487 static int x86_cluster_flags(void) 488 { 489 return cpu_cluster_flags() | x86_sched_itmt_flags(); 490 } 491 #endif 492 493 /* 494 * Set if a package/die has multiple NUMA nodes inside. 495 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel 496 * Sub-NUMA Clustering have this. 497 */ 498 static bool x86_has_numa_in_package; 499 500 static struct sched_domain_topology_level x86_topology[6]; 501 502 static void __init build_sched_topology(void) 503 { 504 int i = 0; 505 506 #ifdef CONFIG_SCHED_SMT 507 x86_topology[i++] = (struct sched_domain_topology_level){ 508 cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) 509 }; 510 #endif 511 #ifdef CONFIG_SCHED_CLUSTER 512 x86_topology[i++] = (struct sched_domain_topology_level){ 513 cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) 514 }; 515 #endif 516 #ifdef CONFIG_SCHED_MC 517 x86_topology[i++] = (struct sched_domain_topology_level){ 518 cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) 519 }; 520 #endif 521 /* 522 * When there is NUMA topology inside the package skip the PKG domain 523 * since the NUMA domains will auto-magically create the right spanning 524 * domains based on the SLIT. 525 */ 526 if (!x86_has_numa_in_package) { 527 x86_topology[i++] = (struct sched_domain_topology_level){ 528 cpu_cpu_mask, x86_sched_itmt_flags, SD_INIT_NAME(PKG) 529 }; 530 } 531 532 /* 533 * There must be one trailing NULL entry left. 534 */ 535 BUG_ON(i >= ARRAY_SIZE(x86_topology)-1); 536 537 set_sched_topology(x86_topology); 538 } 539 540 void set_cpu_sibling_map(int cpu) 541 { 542 bool has_smt = __max_threads_per_core > 1; 543 bool has_mp = has_smt || topology_num_cores_per_package() > 1; 544 struct cpuinfo_x86 *c = &cpu_data(cpu); 545 struct cpuinfo_x86 *o; 546 int i, threads; 547 548 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 549 550 if (!has_mp) { 551 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); 552 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 553 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu)); 554 cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); 555 cpumask_set_cpu(cpu, topology_die_cpumask(cpu)); 556 c->booted_cores = 1; 557 return; 558 } 559 560 for_each_cpu(i, cpu_sibling_setup_mask) { 561 o = &cpu_data(i); 562 563 if (match_pkg(c, o) && !topology_same_node(c, o)) 564 x86_has_numa_in_package = true; 565 566 if ((i == cpu) || (has_smt && match_smt(c, o))) 567 link_mask(topology_sibling_cpumask, cpu, i); 568 569 if ((i == cpu) || (has_mp && match_llc(c, o))) 570 link_mask(cpu_llc_shared_mask, cpu, i); 571 572 if ((i == cpu) || (has_mp && match_l2c(c, o))) 573 link_mask(cpu_l2c_shared_mask, cpu, i); 574 575 if ((i == cpu) || (has_mp && match_die(c, o))) 576 link_mask(topology_die_cpumask, cpu, i); 577 } 578 579 threads = cpumask_weight(topology_sibling_cpumask(cpu)); 580 if (threads > __max_smt_threads) 581 __max_smt_threads = threads; 582 583 for_each_cpu(i, topology_sibling_cpumask(cpu)) 584 cpu_data(i).smt_active = threads > 1; 585 586 /* 587 * This needs a separate iteration over the cpus because we rely on all 588 * topology_sibling_cpumask links to be set-up. 589 */ 590 for_each_cpu(i, cpu_sibling_setup_mask) { 591 o = &cpu_data(i); 592 593 if ((i == cpu) || (has_mp && match_pkg(c, o))) { 594 link_mask(topology_core_cpumask, cpu, i); 595 596 /* 597 * Does this new cpu bringup a new core? 598 */ 599 if (threads == 1) { 600 /* 601 * for each core in package, increment 602 * the booted_cores for this new cpu 603 */ 604 if (cpumask_first( 605 topology_sibling_cpumask(i)) == i) 606 c->booted_cores++; 607 /* 608 * increment the core count for all 609 * the other cpus in this package 610 */ 611 if (i != cpu) 612 cpu_data(i).booted_cores++; 613 } else if (i != cpu && !c->booted_cores) 614 c->booted_cores = cpu_data(i).booted_cores; 615 } 616 } 617 } 618 619 /* maps the cpu to the sched domain representing multi-core */ 620 const struct cpumask *cpu_coregroup_mask(int cpu) 621 { 622 return cpu_llc_shared_mask(cpu); 623 } 624 625 const struct cpumask *cpu_clustergroup_mask(int cpu) 626 { 627 return cpu_l2c_shared_mask(cpu); 628 } 629 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask); 630 631 static void impress_friends(void) 632 { 633 int cpu; 634 unsigned long bogosum = 0; 635 /* 636 * Allow the user to impress friends. 637 */ 638 pr_debug("Before bogomips\n"); 639 for_each_online_cpu(cpu) 640 bogosum += cpu_data(cpu).loops_per_jiffy; 641 642 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", 643 num_online_cpus(), 644 bogosum/(500000/HZ), 645 (bogosum/(5000/HZ))%100); 646 647 pr_debug("Before bogocount - setting activated=1\n"); 648 } 649 650 /* 651 * The Multiprocessor Specification 1.4 (1997) example code suggests 652 * that there should be a 10ms delay between the BSP asserting INIT 653 * and de-asserting INIT, when starting a remote processor. 654 * But that slows boot and resume on modern processors, which include 655 * many cores and don't require that delay. 656 * 657 * Cmdline "init_cpu_udelay=" is available to over-ride this delay. 658 * Modern processor families are quirked to remove the delay entirely. 659 */ 660 #define UDELAY_10MS_DEFAULT 10000 661 662 static unsigned int init_udelay = UINT_MAX; 663 664 static int __init cpu_init_udelay(char *str) 665 { 666 get_option(&str, &init_udelay); 667 668 return 0; 669 } 670 early_param("cpu_init_udelay", cpu_init_udelay); 671 672 static void __init smp_quirk_init_udelay(void) 673 { 674 /* if cmdline changed it from default, leave it alone */ 675 if (init_udelay != UINT_MAX) 676 return; 677 678 /* if modern processor, use no delay */ 679 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || 680 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) || 681 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { 682 init_udelay = 0; 683 return; 684 } 685 /* else, use legacy delay */ 686 init_udelay = UDELAY_10MS_DEFAULT; 687 } 688 689 /* 690 * Wake up AP by INIT, INIT, STARTUP sequence. 691 */ 692 static void send_init_sequence(u32 phys_apicid) 693 { 694 int maxlvt = lapic_get_maxlvt(); 695 696 /* Be paranoid about clearing APIC errors. */ 697 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 698 /* Due to the Pentium erratum 3AP. */ 699 if (maxlvt > 3) 700 apic_write(APIC_ESR, 0); 701 apic_read(APIC_ESR); 702 } 703 704 /* Assert INIT on the target CPU */ 705 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid); 706 safe_apic_wait_icr_idle(); 707 708 udelay(init_udelay); 709 710 /* Deassert INIT on the target CPU */ 711 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 712 safe_apic_wait_icr_idle(); 713 } 714 715 /* 716 * Wake up AP by INIT, INIT, STARTUP sequence. 717 */ 718 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip) 719 { 720 unsigned long send_status = 0, accept_status = 0; 721 int num_starts, j, maxlvt; 722 723 preempt_disable(); 724 maxlvt = lapic_get_maxlvt(); 725 send_init_sequence(phys_apicid); 726 727 mb(); 728 729 /* 730 * Should we send STARTUP IPIs ? 731 * 732 * Determine this based on the APIC version. 733 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 734 */ 735 if (APIC_INTEGRATED(boot_cpu_apic_version)) 736 num_starts = 2; 737 else 738 num_starts = 0; 739 740 /* 741 * Run STARTUP IPI loop. 742 */ 743 pr_debug("#startup loops: %d\n", num_starts); 744 745 for (j = 1; j <= num_starts; j++) { 746 pr_debug("Sending STARTUP #%d\n", j); 747 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 748 apic_write(APIC_ESR, 0); 749 apic_read(APIC_ESR); 750 pr_debug("After apic_write\n"); 751 752 /* 753 * STARTUP IPI 754 */ 755 756 /* Target chip */ 757 /* Boot on the stack */ 758 /* Kick the second */ 759 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 760 phys_apicid); 761 762 /* 763 * Give the other CPU some time to accept the IPI. 764 */ 765 if (init_udelay == 0) 766 udelay(10); 767 else 768 udelay(300); 769 770 pr_debug("Startup point 1\n"); 771 772 pr_debug("Waiting for send to finish...\n"); 773 send_status = safe_apic_wait_icr_idle(); 774 775 /* 776 * Give the other CPU some time to accept the IPI. 777 */ 778 if (init_udelay == 0) 779 udelay(10); 780 else 781 udelay(200); 782 783 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 784 apic_write(APIC_ESR, 0); 785 accept_status = (apic_read(APIC_ESR) & 0xEF); 786 if (send_status || accept_status) 787 break; 788 } 789 pr_debug("After Startup\n"); 790 791 if (send_status) 792 pr_err("APIC never delivered???\n"); 793 if (accept_status) 794 pr_err("APIC delivery error (%lx)\n", accept_status); 795 796 preempt_enable(); 797 return (send_status | accept_status); 798 } 799 800 /* reduce the number of lines printed when booting a large cpu count system */ 801 static void announce_cpu(int cpu, int apicid) 802 { 803 static int width, node_width, first = 1; 804 static int current_node = NUMA_NO_NODE; 805 int node = early_cpu_to_node(cpu); 806 807 if (!width) 808 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ 809 810 if (!node_width) 811 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ 812 813 if (system_state < SYSTEM_RUNNING) { 814 if (first) 815 pr_info("x86: Booting SMP configuration:\n"); 816 817 if (node != current_node) { 818 if (current_node > (-1)) 819 pr_cont("\n"); 820 current_node = node; 821 822 printk(KERN_INFO ".... node %*s#%d, CPUs: ", 823 node_width - num_digits(node), " ", node); 824 } 825 826 /* Add padding for the BSP */ 827 if (first) 828 pr_cont("%*s", width + 1, " "); 829 first = 0; 830 831 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); 832 } else 833 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 834 node, cpu, apicid); 835 } 836 837 int common_cpu_up(unsigned int cpu, struct task_struct *idle) 838 { 839 int ret; 840 841 /* Just in case we booted with a single CPU. */ 842 alternatives_enable_smp(); 843 844 per_cpu(pcpu_hot.current_task, cpu) = idle; 845 cpu_init_stack_canary(cpu, idle); 846 847 /* Initialize the interrupt stack(s) */ 848 ret = irq_init_percpu_irqstack(cpu); 849 if (ret) 850 return ret; 851 852 #ifdef CONFIG_X86_32 853 /* Stack for startup_32 can be just as for start_secondary onwards */ 854 per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle); 855 #endif 856 return 0; 857 } 858 859 /* 860 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 861 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 862 * Returns zero if startup was successfully sent, else error code from 863 * ->wakeup_secondary_cpu. 864 */ 865 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle) 866 { 867 unsigned long start_ip = real_mode_header->trampoline_start; 868 int ret; 869 870 #ifdef CONFIG_X86_64 871 /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */ 872 if (apic->wakeup_secondary_cpu_64) 873 start_ip = real_mode_header->trampoline_start64; 874 #endif 875 idle->thread.sp = (unsigned long)task_pt_regs(idle); 876 initial_code = (unsigned long)start_secondary; 877 878 if (IS_ENABLED(CONFIG_X86_32)) { 879 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu); 880 initial_stack = idle->thread.sp; 881 } else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) { 882 smpboot_control = cpu; 883 } 884 885 /* Enable the espfix hack for this CPU */ 886 init_espfix_ap(cpu); 887 888 /* So we see what's up */ 889 announce_cpu(cpu, apicid); 890 891 /* 892 * This grunge runs the startup process for 893 * the targeted processor. 894 */ 895 if (x86_platform.legacy.warm_reset) { 896 897 pr_debug("Setting warm reset code and vector.\n"); 898 899 smpboot_setup_warm_reset_vector(start_ip); 900 /* 901 * Be paranoid about clearing APIC errors. 902 */ 903 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 904 apic_write(APIC_ESR, 0); 905 apic_read(APIC_ESR); 906 } 907 } 908 909 smp_mb(); 910 911 /* 912 * Wake up a CPU in difference cases: 913 * - Use a method from the APIC driver if one defined, with wakeup 914 * straight to 64-bit mode preferred over wakeup to RM. 915 * Otherwise, 916 * - Use an INIT boot APIC message 917 */ 918 if (apic->wakeup_secondary_cpu_64) 919 ret = apic->wakeup_secondary_cpu_64(apicid, start_ip); 920 else if (apic->wakeup_secondary_cpu) 921 ret = apic->wakeup_secondary_cpu(apicid, start_ip); 922 else 923 ret = wakeup_secondary_cpu_via_init(apicid, start_ip); 924 925 /* If the wakeup mechanism failed, cleanup the warm reset vector */ 926 if (ret) 927 arch_cpuhp_cleanup_kick_cpu(cpu); 928 return ret; 929 } 930 931 int native_kick_ap(unsigned int cpu, struct task_struct *tidle) 932 { 933 u32 apicid = apic->cpu_present_to_apicid(cpu); 934 int err; 935 936 lockdep_assert_irqs_enabled(); 937 938 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 939 940 if (apicid == BAD_APICID || !apic_id_valid(apicid)) { 941 pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid); 942 return -EINVAL; 943 } 944 945 if (!test_bit(apicid, phys_cpu_present_map)) { 946 pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid); 947 return -EINVAL; 948 } 949 950 /* 951 * Save current MTRR state in case it was changed since early boot 952 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 953 */ 954 mtrr_save_state(); 955 956 /* the FPU context is blank, nobody can own it */ 957 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; 958 959 err = common_cpu_up(cpu, tidle); 960 if (err) 961 return err; 962 963 err = do_boot_cpu(apicid, cpu, tidle); 964 if (err) 965 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); 966 967 return err; 968 } 969 970 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle) 971 { 972 return smp_ops.kick_ap_alive(cpu, tidle); 973 } 974 975 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) 976 { 977 /* Cleanup possible dangling ends... */ 978 if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset) 979 smpboot_restore_warm_reset_vector(); 980 } 981 982 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 983 { 984 if (smp_ops.cleanup_dead_cpu) 985 smp_ops.cleanup_dead_cpu(cpu); 986 987 if (system_state == SYSTEM_RUNNING) 988 pr_info("CPU %u is now offline\n", cpu); 989 } 990 991 void arch_cpuhp_sync_state_poll(void) 992 { 993 if (smp_ops.poll_sync_state) 994 smp_ops.poll_sync_state(); 995 } 996 997 /** 998 * arch_disable_smp_support() - Disables SMP support for x86 at boottime 999 */ 1000 void __init arch_disable_smp_support(void) 1001 { 1002 disable_ioapic_support(); 1003 } 1004 1005 /* 1006 * Fall back to non SMP mode after errors. 1007 * 1008 * RED-PEN audit/test this more. I bet there is more state messed up here. 1009 */ 1010 static __init void disable_smp(void) 1011 { 1012 pr_info("SMP disabled\n"); 1013 1014 disable_ioapic_support(); 1015 topology_reset_possible_cpus_up(); 1016 1017 cpumask_set_cpu(0, topology_sibling_cpumask(0)); 1018 cpumask_set_cpu(0, topology_core_cpumask(0)); 1019 cpumask_set_cpu(0, topology_die_cpumask(0)); 1020 } 1021 1022 void __init smp_prepare_cpus_common(void) 1023 { 1024 unsigned int cpu, node; 1025 1026 /* Mark all except the boot CPU as hotpluggable */ 1027 for_each_possible_cpu(cpu) { 1028 if (cpu) 1029 per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids; 1030 } 1031 1032 for_each_possible_cpu(cpu) { 1033 node = cpu_to_node(cpu); 1034 1035 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), GFP_KERNEL, node); 1036 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), GFP_KERNEL, node); 1037 zalloc_cpumask_var_node(&per_cpu(cpu_die_map, cpu), GFP_KERNEL, node); 1038 zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node); 1039 zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node); 1040 } 1041 1042 set_cpu_sibling_map(0); 1043 } 1044 1045 void __init smp_prepare_boot_cpu(void) 1046 { 1047 smp_ops.smp_prepare_boot_cpu(); 1048 } 1049 1050 #ifdef CONFIG_X86_64 1051 /* Establish whether parallel bringup can be supported. */ 1052 bool __init arch_cpuhp_init_parallel_bringup(void) 1053 { 1054 if (!x86_cpuinit.parallel_bringup) { 1055 pr_info("Parallel CPU startup disabled by the platform\n"); 1056 return false; 1057 } 1058 1059 smpboot_control = STARTUP_READ_APICID; 1060 pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control); 1061 return true; 1062 } 1063 #endif 1064 1065 /* 1066 * Prepare for SMP bootup. 1067 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter 1068 * for common interface support. 1069 */ 1070 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1071 { 1072 smp_prepare_cpus_common(); 1073 1074 switch (apic_intr_mode) { 1075 case APIC_PIC: 1076 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1077 disable_smp(); 1078 return; 1079 case APIC_SYMMETRIC_IO_NO_ROUTING: 1080 disable_smp(); 1081 /* Setup local timer */ 1082 x86_init.timers.setup_percpu_clockev(); 1083 return; 1084 case APIC_VIRTUAL_WIRE: 1085 case APIC_SYMMETRIC_IO: 1086 break; 1087 } 1088 1089 /* Setup local timer */ 1090 x86_init.timers.setup_percpu_clockev(); 1091 1092 pr_info("CPU0: "); 1093 print_cpu_info(&cpu_data(0)); 1094 1095 uv_system_init(); 1096 1097 smp_quirk_init_udelay(); 1098 1099 speculative_store_bypass_ht_init(); 1100 1101 snp_set_wakeup_secondary_cpu(); 1102 } 1103 1104 void arch_thaw_secondary_cpus_begin(void) 1105 { 1106 set_cache_aps_delayed_init(true); 1107 } 1108 1109 void arch_thaw_secondary_cpus_end(void) 1110 { 1111 cache_aps_init(); 1112 } 1113 1114 /* 1115 * Early setup to make printk work. 1116 */ 1117 void __init native_smp_prepare_boot_cpu(void) 1118 { 1119 int me = smp_processor_id(); 1120 1121 /* SMP handles this from setup_per_cpu_areas() */ 1122 if (!IS_ENABLED(CONFIG_SMP)) 1123 switch_gdt_and_percpu_base(me); 1124 1125 native_pv_lock_init(); 1126 } 1127 1128 void __init native_smp_cpus_done(unsigned int max_cpus) 1129 { 1130 pr_debug("Boot done\n"); 1131 1132 build_sched_topology(); 1133 nmi_selftest(); 1134 impress_friends(); 1135 cache_aps_init(); 1136 } 1137 1138 /* correctly size the local cpu masks */ 1139 void __init setup_cpu_local_masks(void) 1140 { 1141 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 1142 } 1143 1144 #ifdef CONFIG_HOTPLUG_CPU 1145 1146 /* Recompute SMT state for all CPUs on offline */ 1147 static void recompute_smt_state(void) 1148 { 1149 int max_threads, cpu; 1150 1151 max_threads = 0; 1152 for_each_online_cpu (cpu) { 1153 int threads = cpumask_weight(topology_sibling_cpumask(cpu)); 1154 1155 if (threads > max_threads) 1156 max_threads = threads; 1157 } 1158 __max_smt_threads = max_threads; 1159 } 1160 1161 static void remove_siblinginfo(int cpu) 1162 { 1163 int sibling; 1164 struct cpuinfo_x86 *c = &cpu_data(cpu); 1165 1166 for_each_cpu(sibling, topology_core_cpumask(cpu)) { 1167 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 1168 /*/ 1169 * last thread sibling in this cpu core going down 1170 */ 1171 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) 1172 cpu_data(sibling).booted_cores--; 1173 } 1174 1175 for_each_cpu(sibling, topology_die_cpumask(cpu)) 1176 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling)); 1177 1178 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) { 1179 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 1180 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1) 1181 cpu_data(sibling).smt_active = false; 1182 } 1183 1184 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) 1185 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); 1186 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu)) 1187 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling)); 1188 cpumask_clear(cpu_llc_shared_mask(cpu)); 1189 cpumask_clear(cpu_l2c_shared_mask(cpu)); 1190 cpumask_clear(topology_sibling_cpumask(cpu)); 1191 cpumask_clear(topology_core_cpumask(cpu)); 1192 cpumask_clear(topology_die_cpumask(cpu)); 1193 c->topo.core_id = 0; 1194 c->booted_cores = 0; 1195 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1196 recompute_smt_state(); 1197 } 1198 1199 static void remove_cpu_from_maps(int cpu) 1200 { 1201 set_cpu_online(cpu, false); 1202 numa_remove_cpu(cpu); 1203 } 1204 1205 void cpu_disable_common(void) 1206 { 1207 int cpu = smp_processor_id(); 1208 1209 remove_siblinginfo(cpu); 1210 1211 /* It's now safe to remove this processor from the online map */ 1212 lock_vector_lock(); 1213 remove_cpu_from_maps(cpu); 1214 unlock_vector_lock(); 1215 fixup_irqs(); 1216 lapic_offline(); 1217 } 1218 1219 int native_cpu_disable(void) 1220 { 1221 int ret; 1222 1223 ret = lapic_can_unplug_cpu(); 1224 if (ret) 1225 return ret; 1226 1227 cpu_disable_common(); 1228 1229 /* 1230 * Disable the local APIC. Otherwise IPI broadcasts will reach 1231 * it. It still responds normally to INIT, NMI, SMI, and SIPI 1232 * messages. 1233 * 1234 * Disabling the APIC must happen after cpu_disable_common() 1235 * which invokes fixup_irqs(). 1236 * 1237 * Disabling the APIC preserves already set bits in IRR, but 1238 * an interrupt arriving after disabling the local APIC does not 1239 * set the corresponding IRR bit. 1240 * 1241 * fixup_irqs() scans IRR for set bits so it can raise a not 1242 * yet handled interrupt on the new destination CPU via an IPI 1243 * but obviously it can't do so for IRR bits which are not set. 1244 * IOW, interrupts arriving after disabling the local APIC will 1245 * be lost. 1246 */ 1247 apic_soft_disable(); 1248 1249 return 0; 1250 } 1251 1252 void play_dead_common(void) 1253 { 1254 idle_task_exit(); 1255 1256 cpuhp_ap_report_dead(); 1257 1258 local_irq_disable(); 1259 } 1260 1261 /* 1262 * We need to flush the caches before going to sleep, lest we have 1263 * dirty data in our caches when we come back up. 1264 */ 1265 static inline void mwait_play_dead(void) 1266 { 1267 struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead); 1268 unsigned int eax, ebx, ecx, edx; 1269 unsigned int highest_cstate = 0; 1270 unsigned int highest_subcstate = 0; 1271 int i; 1272 1273 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1274 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 1275 return; 1276 if (!this_cpu_has(X86_FEATURE_MWAIT)) 1277 return; 1278 if (!this_cpu_has(X86_FEATURE_CLFLUSH)) 1279 return; 1280 1281 eax = CPUID_LEAF_MWAIT; 1282 ecx = 0; 1283 native_cpuid(&eax, &ebx, &ecx, &edx); 1284 1285 /* 1286 * eax will be 0 if EDX enumeration is not valid. 1287 * Initialized below to cstate, sub_cstate value when EDX is valid. 1288 */ 1289 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1290 eax = 0; 1291 } else { 1292 edx >>= MWAIT_SUBSTATE_SIZE; 1293 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1294 if (edx & MWAIT_SUBSTATE_MASK) { 1295 highest_cstate = i; 1296 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1297 } 1298 } 1299 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1300 (highest_subcstate - 1); 1301 } 1302 1303 /* Set up state for the kexec() hack below */ 1304 md->status = CPUDEAD_MWAIT_WAIT; 1305 md->control = CPUDEAD_MWAIT_WAIT; 1306 1307 wbinvd(); 1308 1309 while (1) { 1310 /* 1311 * The CLFLUSH is a workaround for erratum AAI65 for 1312 * the Xeon 7400 series. It's not clear it is actually 1313 * needed, but it should be harmless in either case. 1314 * The WBINVD is insufficient due to the spurious-wakeup 1315 * case where we return around the loop. 1316 */ 1317 mb(); 1318 clflush(md); 1319 mb(); 1320 __monitor(md, 0, 0); 1321 mb(); 1322 __mwait(eax, 0); 1323 1324 if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) { 1325 /* 1326 * Kexec is about to happen. Don't go back into mwait() as 1327 * the kexec kernel might overwrite text and data including 1328 * page tables and stack. So mwait() would resume when the 1329 * monitor cache line is written to and then the CPU goes 1330 * south due to overwritten text, page tables and stack. 1331 * 1332 * Note: This does _NOT_ protect against a stray MCE, NMI, 1333 * SMI. They will resume execution at the instruction 1334 * following the HLT instruction and run into the problem 1335 * which this is trying to prevent. 1336 */ 1337 WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT); 1338 while(1) 1339 native_halt(); 1340 } 1341 } 1342 } 1343 1344 /* 1345 * Kick all "offline" CPUs out of mwait on kexec(). See comment in 1346 * mwait_play_dead(). 1347 */ 1348 void smp_kick_mwait_play_dead(void) 1349 { 1350 u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT; 1351 struct mwait_cpu_dead *md; 1352 unsigned int cpu, i; 1353 1354 for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) { 1355 md = per_cpu_ptr(&mwait_cpu_dead, cpu); 1356 1357 /* Does it sit in mwait_play_dead() ? */ 1358 if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT) 1359 continue; 1360 1361 /* Wait up to 5ms */ 1362 for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) { 1363 /* Bring it out of mwait */ 1364 WRITE_ONCE(md->control, newstate); 1365 udelay(5); 1366 } 1367 1368 if (READ_ONCE(md->status) != newstate) 1369 pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu); 1370 } 1371 } 1372 1373 void __noreturn hlt_play_dead(void) 1374 { 1375 if (__this_cpu_read(cpu_info.x86) >= 4) 1376 wbinvd(); 1377 1378 while (1) 1379 native_halt(); 1380 } 1381 1382 /* 1383 * native_play_dead() is essentially a __noreturn function, but it can't 1384 * be marked as such as the compiler may complain about it. 1385 */ 1386 void native_play_dead(void) 1387 { 1388 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) 1389 __update_spec_ctrl(0); 1390 1391 play_dead_common(); 1392 tboot_shutdown(TB_SHUTDOWN_WFS); 1393 1394 mwait_play_dead(); 1395 if (cpuidle_play_dead()) 1396 hlt_play_dead(); 1397 } 1398 1399 #else /* ... !CONFIG_HOTPLUG_CPU */ 1400 int native_cpu_disable(void) 1401 { 1402 return -ENOSYS; 1403 } 1404 1405 void native_play_dead(void) 1406 { 1407 BUG(); 1408 } 1409 1410 #endif 1411