xref: /linux/arch/x86/kernel/smpboot.c (revision f96a974170b749e3a56844e25b31d46a7233b6f6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 #include <linux/acpi.h>
64 
65 #include <asm/acpi.h>
66 #include <asm/cacheinfo.h>
67 #include <asm/cpuid.h>
68 #include <asm/desc.h>
69 #include <asm/nmi.h>
70 #include <asm/irq.h>
71 #include <asm/realmode.h>
72 #include <asm/cpu.h>
73 #include <asm/numa.h>
74 #include <asm/tlbflush.h>
75 #include <asm/mtrr.h>
76 #include <asm/mwait.h>
77 #include <asm/apic.h>
78 #include <asm/io_apic.h>
79 #include <asm/fpu/api.h>
80 #include <asm/setup.h>
81 #include <asm/uv/uv.h>
82 #include <asm/microcode.h>
83 #include <asm/i8259.h>
84 #include <asm/misc.h>
85 #include <asm/qspinlock.h>
86 #include <asm/intel-family.h>
87 #include <asm/cpu_device_id.h>
88 #include <asm/spec-ctrl.h>
89 #include <asm/hw_irq.h>
90 #include <asm/stackprotector.h>
91 #include <asm/sev.h>
92 #include <asm/spec-ctrl.h>
93 
94 /* representing HT siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
97 
98 /* representing HT and core siblings of each logical CPU */
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
100 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
101 
102 /* representing HT, core, and die siblings of each logical CPU */
103 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
104 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
105 
106 /* CPUs which are the primary SMT threads */
107 struct cpumask __cpu_primary_thread_mask __read_mostly;
108 
109 /* Representing CPUs for which sibling maps can be computed */
110 static cpumask_var_t cpu_sibling_setup_mask;
111 
112 struct mwait_cpu_dead {
113 	unsigned int	control;
114 	unsigned int	status;
115 };
116 
117 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
118 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
119 
120 /*
121  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
122  * that it's unlikely to be touched by other CPUs.
123  */
124 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
125 
126 /* Maximum number of SMT threads on any online core */
127 int __read_mostly __max_smt_threads = 1;
128 
129 /* Flag to indicate if a complete sched domain rebuild is required */
130 bool x86_topology_update;
131 
132 int arch_update_cpu_topology(void)
133 {
134 	int retval = x86_topology_update;
135 
136 	x86_topology_update = false;
137 	return retval;
138 }
139 
140 static unsigned int smpboot_warm_reset_vector_count;
141 
142 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
143 {
144 	unsigned long flags;
145 
146 	spin_lock_irqsave(&rtc_lock, flags);
147 	if (!smpboot_warm_reset_vector_count++) {
148 		CMOS_WRITE(0xa, 0xf);
149 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
150 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
151 	}
152 	spin_unlock_irqrestore(&rtc_lock, flags);
153 }
154 
155 static inline void smpboot_restore_warm_reset_vector(void)
156 {
157 	unsigned long flags;
158 
159 	/*
160 	 * Paranoid:  Set warm reset code and vector here back
161 	 * to default values.
162 	 */
163 	spin_lock_irqsave(&rtc_lock, flags);
164 	if (!--smpboot_warm_reset_vector_count) {
165 		CMOS_WRITE(0, 0xf);
166 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
167 	}
168 	spin_unlock_irqrestore(&rtc_lock, flags);
169 
170 }
171 
172 /* Run the next set of setup steps for the upcoming CPU */
173 static void ap_starting(void)
174 {
175 	int cpuid = smp_processor_id();
176 
177 	/* Mop up eventual mwait_play_dead() wreckage */
178 	this_cpu_write(mwait_cpu_dead.status, 0);
179 	this_cpu_write(mwait_cpu_dead.control, 0);
180 
181 	/*
182 	 * If woken up by an INIT in an 82489DX configuration the alive
183 	 * synchronization guarantees that the CPU does not reach this
184 	 * point before an INIT_deassert IPI reaches the local APIC, so it
185 	 * is now safe to touch the local APIC.
186 	 *
187 	 * Set up this CPU, first the APIC, which is probably redundant on
188 	 * most boards.
189 	 */
190 	apic_ap_setup();
191 
192 	/* Save the processor parameters. */
193 	smp_store_cpu_info(cpuid);
194 
195 	/*
196 	 * The topology information must be up to date before
197 	 * notify_cpu_starting().
198 	 */
199 	set_cpu_sibling_map(cpuid);
200 
201 	ap_init_aperfmperf();
202 
203 	pr_debug("Stack at about %p\n", &cpuid);
204 
205 	wmb();
206 
207 	/*
208 	 * This runs the AP through all the cpuhp states to its target
209 	 * state CPUHP_ONLINE.
210 	 */
211 	notify_cpu_starting(cpuid);
212 }
213 
214 static void ap_calibrate_delay(void)
215 {
216 	/*
217 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
218 	 * smp_store_cpu_info() stored a value that is close but not as
219 	 * accurate as the value just calculated.
220 	 *
221 	 * As this is invoked after the TSC synchronization check,
222 	 * calibrate_delay_is_known() will skip the calibration routine
223 	 * when TSC is synchronized across sockets.
224 	 */
225 	calibrate_delay();
226 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
227 }
228 
229 /*
230  * Activate a secondary processor.
231  */
232 static void notrace start_secondary(void *unused)
233 {
234 	/*
235 	 * Don't put *anything* except direct CPU state initialization
236 	 * before cpu_init(), SMP booting is too fragile that we want to
237 	 * limit the things done here to the most necessary things.
238 	 */
239 	cr4_init();
240 
241 	/*
242 	 * 32-bit specific. 64-bit reaches this code with the correct page
243 	 * table established. Yet another historical divergence.
244 	 */
245 	if (IS_ENABLED(CONFIG_X86_32)) {
246 		/* switch away from the initial page table */
247 		load_cr3(swapper_pg_dir);
248 		__flush_tlb_all();
249 	}
250 
251 	cpu_init_exception_handling(false);
252 
253 	/*
254 	 * Load the microcode before reaching the AP alive synchronization
255 	 * point below so it is not part of the full per CPU serialized
256 	 * bringup part when "parallel" bringup is enabled.
257 	 *
258 	 * That's even safe when hyperthreading is enabled in the CPU as
259 	 * the core code starts the primary threads first and leaves the
260 	 * secondary threads waiting for SIPI. Loading microcode on
261 	 * physical cores concurrently is a safe operation.
262 	 *
263 	 * This covers both the Intel specific issue that concurrent
264 	 * microcode loading on SMT siblings must be prohibited and the
265 	 * vendor independent issue`that microcode loading which changes
266 	 * CPUID, MSRs etc. must be strictly serialized to maintain
267 	 * software state correctness.
268 	 */
269 	load_ucode_ap();
270 
271 	/*
272 	 * Synchronization point with the hotplug core. Sets this CPUs
273 	 * synchronization state to ALIVE and spin-waits for the control CPU to
274 	 * release this CPU for further bringup.
275 	 */
276 	cpuhp_ap_sync_alive();
277 
278 	cpu_init();
279 	fpu__init_cpu();
280 	rcutree_report_cpu_starting(raw_smp_processor_id());
281 	x86_cpuinit.early_percpu_clock_init();
282 
283 	ap_starting();
284 
285 	/* Check TSC synchronization with the control CPU. */
286 	check_tsc_sync_target();
287 
288 	/*
289 	 * Calibrate the delay loop after the TSC synchronization check.
290 	 * This allows to skip the calibration when TSC is synchronized
291 	 * across sockets.
292 	 */
293 	ap_calibrate_delay();
294 
295 	speculative_store_bypass_ht_init();
296 
297 	/*
298 	 * Lock vector_lock, set CPU online and bring the vector
299 	 * allocator online. Online must be set with vector_lock held
300 	 * to prevent a concurrent irq setup/teardown from seeing a
301 	 * half valid vector space.
302 	 */
303 	lock_vector_lock();
304 	set_cpu_online(smp_processor_id(), true);
305 	lapic_online();
306 	unlock_vector_lock();
307 	x86_platform.nmi_init();
308 
309 	/* enable local interrupts */
310 	local_irq_enable();
311 
312 	x86_cpuinit.setup_percpu_clockev();
313 
314 	wmb();
315 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
316 }
317 
318 /*
319  * The bootstrap kernel entry code has set these up. Save them for
320  * a given CPU
321  */
322 void smp_store_cpu_info(int id)
323 {
324 	struct cpuinfo_x86 *c = &cpu_data(id);
325 
326 	/* Copy boot_cpu_data only on the first bringup */
327 	if (!c->initialized)
328 		*c = boot_cpu_data;
329 	c->cpu_index = id;
330 	/*
331 	 * During boot time, CPU0 has this setup already. Save the info when
332 	 * bringing up an AP.
333 	 */
334 	identify_secondary_cpu(c);
335 	c->initialized = true;
336 }
337 
338 static bool
339 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
340 {
341 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
342 
343 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
344 }
345 
346 static bool
347 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
348 {
349 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
350 
351 	return !WARN_ONCE(!topology_same_node(c, o),
352 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
353 		"[node: %d != %d]. Ignoring dependency.\n",
354 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
355 }
356 
357 #define link_mask(mfunc, c1, c2)					\
358 do {									\
359 	cpumask_set_cpu((c1), mfunc(c2));				\
360 	cpumask_set_cpu((c2), mfunc(c1));				\
361 } while (0)
362 
363 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
364 {
365 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
366 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
367 
368 		if (c->topo.pkg_id == o->topo.pkg_id &&
369 		    c->topo.die_id == o->topo.die_id &&
370 		    c->topo.amd_node_id == o->topo.amd_node_id &&
371 		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
372 			if (c->topo.core_id == o->topo.core_id)
373 				return topology_sane(c, o, "smt");
374 
375 			if ((c->topo.cu_id != 0xff) &&
376 			    (o->topo.cu_id != 0xff) &&
377 			    (c->topo.cu_id == o->topo.cu_id))
378 				return topology_sane(c, o, "smt");
379 		}
380 
381 	} else if (c->topo.pkg_id == o->topo.pkg_id &&
382 		   c->topo.die_id == o->topo.die_id &&
383 		   c->topo.core_id == o->topo.core_id) {
384 		return topology_sane(c, o, "smt");
385 	}
386 
387 	return false;
388 }
389 
390 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
391 {
392 	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
393 		return false;
394 
395 	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
396 		return c->topo.amd_node_id == o->topo.amd_node_id;
397 
398 	return true;
399 }
400 
401 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
402 {
403 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
404 
405 	/* If the arch didn't set up l2c_id, fall back to SMT */
406 	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
407 		return match_smt(c, o);
408 
409 	/* Do not match if L2 cache id does not match: */
410 	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
411 		return false;
412 
413 	return topology_sane(c, o, "l2c");
414 }
415 
416 /*
417  * Unlike the other levels, we do not enforce keeping a
418  * multicore group inside a NUMA node.  If this happens, we will
419  * discard the MC level of the topology later.
420  */
421 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
422 {
423 	if (c->topo.pkg_id == o->topo.pkg_id)
424 		return true;
425 	return false;
426 }
427 
428 /*
429  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
430  *
431  * Any Intel CPU that has multiple nodes per package and does not
432  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
433  *
434  * When in SNC mode, these CPUs enumerate an LLC that is shared
435  * by multiple NUMA nodes. The LLC is shared for off-package data
436  * access but private to the NUMA node (half of the package) for
437  * on-package access. CPUID (the source of the information about
438  * the LLC) can only enumerate the cache as shared or unshared,
439  * but not this particular configuration.
440  */
441 
442 static const struct x86_cpu_id intel_cod_cpu[] = {
443 	X86_MATCH_VFM(INTEL_HASWELL_X,	 0),	/* COD */
444 	X86_MATCH_VFM(INTEL_BROADWELL_X, 0),	/* COD */
445 	X86_MATCH_VFM(INTEL_ANY,	 1),	/* SNC */
446 	{}
447 };
448 
449 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
450 {
451 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
452 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
453 	bool intel_snc = id && id->driver_data;
454 
455 	/* Do not match if we do not have a valid APICID for cpu: */
456 	if (per_cpu_llc_id(cpu1) == BAD_APICID)
457 		return false;
458 
459 	/* Do not match if LLC id does not match: */
460 	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
461 		return false;
462 
463 	/*
464 	 * Allow the SNC topology without warning. Return of false
465 	 * means 'c' does not share the LLC of 'o'. This will be
466 	 * reflected to userspace.
467 	 */
468 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
469 		return false;
470 
471 	return topology_sane(c, o, "llc");
472 }
473 
474 
475 static inline int x86_sched_itmt_flags(void)
476 {
477 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
478 }
479 
480 #ifdef CONFIG_SCHED_MC
481 static int x86_core_flags(void)
482 {
483 	return cpu_core_flags() | x86_sched_itmt_flags();
484 }
485 #endif
486 #ifdef CONFIG_SCHED_CLUSTER
487 static int x86_cluster_flags(void)
488 {
489 	return cpu_cluster_flags() | x86_sched_itmt_flags();
490 }
491 #endif
492 
493 /*
494  * Set if a package/die has multiple NUMA nodes inside.
495  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
496  * Sub-NUMA Clustering have this.
497  */
498 static bool x86_has_numa_in_package;
499 
500 static struct sched_domain_topology_level x86_topology[6];
501 
502 static void __init build_sched_topology(void)
503 {
504 	int i = 0;
505 
506 #ifdef CONFIG_SCHED_SMT
507 	x86_topology[i++] = (struct sched_domain_topology_level){
508 		cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT)
509 	};
510 #endif
511 #ifdef CONFIG_SCHED_CLUSTER
512 	x86_topology[i++] = (struct sched_domain_topology_level){
513 		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
514 	};
515 #endif
516 #ifdef CONFIG_SCHED_MC
517 	x86_topology[i++] = (struct sched_domain_topology_level){
518 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
519 	};
520 #endif
521 	/*
522 	 * When there is NUMA topology inside the package skip the PKG domain
523 	 * since the NUMA domains will auto-magically create the right spanning
524 	 * domains based on the SLIT.
525 	 */
526 	if (!x86_has_numa_in_package) {
527 		x86_topology[i++] = (struct sched_domain_topology_level){
528 			cpu_cpu_mask, x86_sched_itmt_flags, SD_INIT_NAME(PKG)
529 		};
530 	}
531 
532 	/*
533 	 * There must be one trailing NULL entry left.
534 	 */
535 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
536 
537 	set_sched_topology(x86_topology);
538 }
539 
540 void set_cpu_sibling_map(int cpu)
541 {
542 	bool has_smt = __max_threads_per_core > 1;
543 	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
544 	struct cpuinfo_x86 *c = &cpu_data(cpu);
545 	struct cpuinfo_x86 *o;
546 	int i, threads;
547 
548 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
549 
550 	if (!has_mp) {
551 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
552 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
553 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
554 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
555 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
556 		c->booted_cores = 1;
557 		return;
558 	}
559 
560 	for_each_cpu(i, cpu_sibling_setup_mask) {
561 		o = &cpu_data(i);
562 
563 		if (match_pkg(c, o) && !topology_same_node(c, o))
564 			x86_has_numa_in_package = true;
565 
566 		if ((i == cpu) || (has_smt && match_smt(c, o)))
567 			link_mask(topology_sibling_cpumask, cpu, i);
568 
569 		if ((i == cpu) || (has_mp && match_llc(c, o)))
570 			link_mask(cpu_llc_shared_mask, cpu, i);
571 
572 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
573 			link_mask(cpu_l2c_shared_mask, cpu, i);
574 
575 		if ((i == cpu) || (has_mp && match_die(c, o)))
576 			link_mask(topology_die_cpumask, cpu, i);
577 	}
578 
579 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
580 	if (threads > __max_smt_threads)
581 		__max_smt_threads = threads;
582 
583 	for_each_cpu(i, topology_sibling_cpumask(cpu))
584 		cpu_data(i).smt_active = threads > 1;
585 
586 	/*
587 	 * This needs a separate iteration over the cpus because we rely on all
588 	 * topology_sibling_cpumask links to be set-up.
589 	 */
590 	for_each_cpu(i, cpu_sibling_setup_mask) {
591 		o = &cpu_data(i);
592 
593 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
594 			link_mask(topology_core_cpumask, cpu, i);
595 
596 			/*
597 			 *  Does this new cpu bringup a new core?
598 			 */
599 			if (threads == 1) {
600 				/*
601 				 * for each core in package, increment
602 				 * the booted_cores for this new cpu
603 				 */
604 				if (cpumask_first(
605 				    topology_sibling_cpumask(i)) == i)
606 					c->booted_cores++;
607 				/*
608 				 * increment the core count for all
609 				 * the other cpus in this package
610 				 */
611 				if (i != cpu)
612 					cpu_data(i).booted_cores++;
613 			} else if (i != cpu && !c->booted_cores)
614 				c->booted_cores = cpu_data(i).booted_cores;
615 		}
616 	}
617 }
618 
619 /* maps the cpu to the sched domain representing multi-core */
620 const struct cpumask *cpu_coregroup_mask(int cpu)
621 {
622 	return cpu_llc_shared_mask(cpu);
623 }
624 
625 const struct cpumask *cpu_clustergroup_mask(int cpu)
626 {
627 	return cpu_l2c_shared_mask(cpu);
628 }
629 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
630 
631 static void impress_friends(void)
632 {
633 	int cpu;
634 	unsigned long bogosum = 0;
635 	/*
636 	 * Allow the user to impress friends.
637 	 */
638 	pr_debug("Before bogomips\n");
639 	for_each_online_cpu(cpu)
640 		bogosum += cpu_data(cpu).loops_per_jiffy;
641 
642 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
643 		num_online_cpus(),
644 		bogosum/(500000/HZ),
645 		(bogosum/(5000/HZ))%100);
646 
647 	pr_debug("Before bogocount - setting activated=1\n");
648 }
649 
650 /*
651  * The Multiprocessor Specification 1.4 (1997) example code suggests
652  * that there should be a 10ms delay between the BSP asserting INIT
653  * and de-asserting INIT, when starting a remote processor.
654  * But that slows boot and resume on modern processors, which include
655  * many cores and don't require that delay.
656  *
657  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
658  * Modern processor families are quirked to remove the delay entirely.
659  */
660 #define UDELAY_10MS_DEFAULT 10000
661 
662 static unsigned int init_udelay = UINT_MAX;
663 
664 static int __init cpu_init_udelay(char *str)
665 {
666 	get_option(&str, &init_udelay);
667 
668 	return 0;
669 }
670 early_param("cpu_init_udelay", cpu_init_udelay);
671 
672 static void __init smp_quirk_init_udelay(void)
673 {
674 	/* if cmdline changed it from default, leave it alone */
675 	if (init_udelay != UINT_MAX)
676 		return;
677 
678 	/* if modern processor, use no delay */
679 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
680 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
681 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
682 		init_udelay = 0;
683 		return;
684 	}
685 	/* else, use legacy delay */
686 	init_udelay = UDELAY_10MS_DEFAULT;
687 }
688 
689 /*
690  * Wake up AP by INIT, INIT, STARTUP sequence.
691  */
692 static void send_init_sequence(u32 phys_apicid)
693 {
694 	int maxlvt = lapic_get_maxlvt();
695 
696 	/* Be paranoid about clearing APIC errors. */
697 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
698 		/* Due to the Pentium erratum 3AP.  */
699 		if (maxlvt > 3)
700 			apic_write(APIC_ESR, 0);
701 		apic_read(APIC_ESR);
702 	}
703 
704 	/* Assert INIT on the target CPU */
705 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
706 	safe_apic_wait_icr_idle();
707 
708 	udelay(init_udelay);
709 
710 	/* Deassert INIT on the target CPU */
711 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
712 	safe_apic_wait_icr_idle();
713 }
714 
715 /*
716  * Wake up AP by INIT, INIT, STARTUP sequence.
717  */
718 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
719 {
720 	unsigned long send_status = 0, accept_status = 0;
721 	int num_starts, j, maxlvt;
722 
723 	preempt_disable();
724 	maxlvt = lapic_get_maxlvt();
725 	send_init_sequence(phys_apicid);
726 
727 	mb();
728 
729 	/*
730 	 * Should we send STARTUP IPIs ?
731 	 *
732 	 * Determine this based on the APIC version.
733 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
734 	 */
735 	if (APIC_INTEGRATED(boot_cpu_apic_version))
736 		num_starts = 2;
737 	else
738 		num_starts = 0;
739 
740 	/*
741 	 * Run STARTUP IPI loop.
742 	 */
743 	pr_debug("#startup loops: %d\n", num_starts);
744 
745 	for (j = 1; j <= num_starts; j++) {
746 		pr_debug("Sending STARTUP #%d\n", j);
747 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
748 			apic_write(APIC_ESR, 0);
749 		apic_read(APIC_ESR);
750 		pr_debug("After apic_write\n");
751 
752 		/*
753 		 * STARTUP IPI
754 		 */
755 
756 		/* Target chip */
757 		/* Boot on the stack */
758 		/* Kick the second */
759 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
760 			       phys_apicid);
761 
762 		/*
763 		 * Give the other CPU some time to accept the IPI.
764 		 */
765 		if (init_udelay == 0)
766 			udelay(10);
767 		else
768 			udelay(300);
769 
770 		pr_debug("Startup point 1\n");
771 
772 		pr_debug("Waiting for send to finish...\n");
773 		send_status = safe_apic_wait_icr_idle();
774 
775 		/*
776 		 * Give the other CPU some time to accept the IPI.
777 		 */
778 		if (init_udelay == 0)
779 			udelay(10);
780 		else
781 			udelay(200);
782 
783 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
784 			apic_write(APIC_ESR, 0);
785 		accept_status = (apic_read(APIC_ESR) & 0xEF);
786 		if (send_status || accept_status)
787 			break;
788 	}
789 	pr_debug("After Startup\n");
790 
791 	if (send_status)
792 		pr_err("APIC never delivered???\n");
793 	if (accept_status)
794 		pr_err("APIC delivery error (%lx)\n", accept_status);
795 
796 	preempt_enable();
797 	return (send_status | accept_status);
798 }
799 
800 /* reduce the number of lines printed when booting a large cpu count system */
801 static void announce_cpu(int cpu, int apicid)
802 {
803 	static int width, node_width, first = 1;
804 	static int current_node = NUMA_NO_NODE;
805 	int node = early_cpu_to_node(cpu);
806 
807 	if (!width)
808 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
809 
810 	if (!node_width)
811 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
812 
813 	if (system_state < SYSTEM_RUNNING) {
814 		if (first)
815 			pr_info("x86: Booting SMP configuration:\n");
816 
817 		if (node != current_node) {
818 			if (current_node > (-1))
819 				pr_cont("\n");
820 			current_node = node;
821 
822 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
823 			       node_width - num_digits(node), " ", node);
824 		}
825 
826 		/* Add padding for the BSP */
827 		if (first)
828 			pr_cont("%*s", width + 1, " ");
829 		first = 0;
830 
831 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
832 	} else
833 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
834 			node, cpu, apicid);
835 }
836 
837 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
838 {
839 	int ret;
840 
841 	/* Just in case we booted with a single CPU. */
842 	alternatives_enable_smp();
843 
844 	per_cpu(pcpu_hot.current_task, cpu) = idle;
845 	cpu_init_stack_canary(cpu, idle);
846 
847 	/* Initialize the interrupt stack(s) */
848 	ret = irq_init_percpu_irqstack(cpu);
849 	if (ret)
850 		return ret;
851 
852 #ifdef CONFIG_X86_32
853 	/* Stack for startup_32 can be just as for start_secondary onwards */
854 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
855 #endif
856 	return 0;
857 }
858 
859 /*
860  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
861  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
862  * Returns zero if startup was successfully sent, else error code from
863  * ->wakeup_secondary_cpu.
864  */
865 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
866 {
867 	unsigned long start_ip = real_mode_header->trampoline_start;
868 	int ret;
869 
870 #ifdef CONFIG_X86_64
871 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
872 	if (apic->wakeup_secondary_cpu_64)
873 		start_ip = real_mode_header->trampoline_start64;
874 #endif
875 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
876 	initial_code = (unsigned long)start_secondary;
877 
878 	if (IS_ENABLED(CONFIG_X86_32)) {
879 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
880 		initial_stack  = idle->thread.sp;
881 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
882 		smpboot_control = cpu;
883 	}
884 
885 	/* Enable the espfix hack for this CPU */
886 	init_espfix_ap(cpu);
887 
888 	/* So we see what's up */
889 	announce_cpu(cpu, apicid);
890 
891 	/*
892 	 * This grunge runs the startup process for
893 	 * the targeted processor.
894 	 */
895 	if (x86_platform.legacy.warm_reset) {
896 
897 		pr_debug("Setting warm reset code and vector.\n");
898 
899 		smpboot_setup_warm_reset_vector(start_ip);
900 		/*
901 		 * Be paranoid about clearing APIC errors.
902 		*/
903 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
904 			apic_write(APIC_ESR, 0);
905 			apic_read(APIC_ESR);
906 		}
907 	}
908 
909 	smp_mb();
910 
911 	/*
912 	 * Wake up a CPU in difference cases:
913 	 * - Use a method from the APIC driver if one defined, with wakeup
914 	 *   straight to 64-bit mode preferred over wakeup to RM.
915 	 * Otherwise,
916 	 * - Use an INIT boot APIC message
917 	 */
918 	if (apic->wakeup_secondary_cpu_64)
919 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
920 	else if (apic->wakeup_secondary_cpu)
921 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
922 	else
923 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
924 
925 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
926 	if (ret)
927 		arch_cpuhp_cleanup_kick_cpu(cpu);
928 	return ret;
929 }
930 
931 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
932 {
933 	u32 apicid = apic->cpu_present_to_apicid(cpu);
934 	int err;
935 
936 	lockdep_assert_irqs_enabled();
937 
938 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
939 
940 	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
941 		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
942 		return -EINVAL;
943 	}
944 
945 	if (!test_bit(apicid, phys_cpu_present_map)) {
946 		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
947 		return -EINVAL;
948 	}
949 
950 	/*
951 	 * Save current MTRR state in case it was changed since early boot
952 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
953 	 */
954 	mtrr_save_state();
955 
956 	/* the FPU context is blank, nobody can own it */
957 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
958 
959 	err = common_cpu_up(cpu, tidle);
960 	if (err)
961 		return err;
962 
963 	err = do_boot_cpu(apicid, cpu, tidle);
964 	if (err)
965 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
966 
967 	return err;
968 }
969 
970 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
971 {
972 	return smp_ops.kick_ap_alive(cpu, tidle);
973 }
974 
975 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
976 {
977 	/* Cleanup possible dangling ends... */
978 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
979 		smpboot_restore_warm_reset_vector();
980 }
981 
982 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
983 {
984 	if (smp_ops.cleanup_dead_cpu)
985 		smp_ops.cleanup_dead_cpu(cpu);
986 
987 	if (system_state == SYSTEM_RUNNING)
988 		pr_info("CPU %u is now offline\n", cpu);
989 }
990 
991 void arch_cpuhp_sync_state_poll(void)
992 {
993 	if (smp_ops.poll_sync_state)
994 		smp_ops.poll_sync_state();
995 }
996 
997 /**
998  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
999  */
1000 void __init arch_disable_smp_support(void)
1001 {
1002 	disable_ioapic_support();
1003 }
1004 
1005 /*
1006  * Fall back to non SMP mode after errors.
1007  *
1008  * RED-PEN audit/test this more. I bet there is more state messed up here.
1009  */
1010 static __init void disable_smp(void)
1011 {
1012 	pr_info("SMP disabled\n");
1013 
1014 	disable_ioapic_support();
1015 	topology_reset_possible_cpus_up();
1016 
1017 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1018 	cpumask_set_cpu(0, topology_core_cpumask(0));
1019 	cpumask_set_cpu(0, topology_die_cpumask(0));
1020 }
1021 
1022 void __init smp_prepare_cpus_common(void)
1023 {
1024 	unsigned int cpu, node;
1025 
1026 	/* Mark all except the boot CPU as hotpluggable */
1027 	for_each_possible_cpu(cpu) {
1028 		if (cpu)
1029 			per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
1030 	}
1031 
1032 	for_each_possible_cpu(cpu) {
1033 		node = cpu_to_node(cpu);
1034 
1035 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map,    cpu), GFP_KERNEL, node);
1036 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map,       cpu), GFP_KERNEL, node);
1037 		zalloc_cpumask_var_node(&per_cpu(cpu_die_map,        cpu), GFP_KERNEL, node);
1038 		zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
1039 		zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
1040 	}
1041 
1042 	set_cpu_sibling_map(0);
1043 }
1044 
1045 void __init smp_prepare_boot_cpu(void)
1046 {
1047 	smp_ops.smp_prepare_boot_cpu();
1048 }
1049 
1050 #ifdef CONFIG_X86_64
1051 /* Establish whether parallel bringup can be supported. */
1052 bool __init arch_cpuhp_init_parallel_bringup(void)
1053 {
1054 	if (!x86_cpuinit.parallel_bringup) {
1055 		pr_info("Parallel CPU startup disabled by the platform\n");
1056 		return false;
1057 	}
1058 
1059 	smpboot_control = STARTUP_READ_APICID;
1060 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1061 	return true;
1062 }
1063 #endif
1064 
1065 /*
1066  * Prepare for SMP bootup.
1067  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1068  *            for common interface support.
1069  */
1070 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1071 {
1072 	smp_prepare_cpus_common();
1073 
1074 	switch (apic_intr_mode) {
1075 	case APIC_PIC:
1076 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1077 		disable_smp();
1078 		return;
1079 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1080 		disable_smp();
1081 		/* Setup local timer */
1082 		x86_init.timers.setup_percpu_clockev();
1083 		return;
1084 	case APIC_VIRTUAL_WIRE:
1085 	case APIC_SYMMETRIC_IO:
1086 		break;
1087 	}
1088 
1089 	/* Setup local timer */
1090 	x86_init.timers.setup_percpu_clockev();
1091 
1092 	pr_info("CPU0: ");
1093 	print_cpu_info(&cpu_data(0));
1094 
1095 	uv_system_init();
1096 
1097 	smp_quirk_init_udelay();
1098 
1099 	speculative_store_bypass_ht_init();
1100 
1101 	snp_set_wakeup_secondary_cpu();
1102 }
1103 
1104 void arch_thaw_secondary_cpus_begin(void)
1105 {
1106 	set_cache_aps_delayed_init(true);
1107 }
1108 
1109 void arch_thaw_secondary_cpus_end(void)
1110 {
1111 	cache_aps_init();
1112 }
1113 
1114 /*
1115  * Early setup to make printk work.
1116  */
1117 void __init native_smp_prepare_boot_cpu(void)
1118 {
1119 	int me = smp_processor_id();
1120 
1121 	/* SMP handles this from setup_per_cpu_areas() */
1122 	if (!IS_ENABLED(CONFIG_SMP))
1123 		switch_gdt_and_percpu_base(me);
1124 
1125 	native_pv_lock_init();
1126 }
1127 
1128 void __init native_smp_cpus_done(unsigned int max_cpus)
1129 {
1130 	pr_debug("Boot done\n");
1131 
1132 	build_sched_topology();
1133 	nmi_selftest();
1134 	impress_friends();
1135 	cache_aps_init();
1136 }
1137 
1138 /* correctly size the local cpu masks */
1139 void __init setup_cpu_local_masks(void)
1140 {
1141 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1142 }
1143 
1144 #ifdef CONFIG_HOTPLUG_CPU
1145 
1146 /* Recompute SMT state for all CPUs on offline */
1147 static void recompute_smt_state(void)
1148 {
1149 	int max_threads, cpu;
1150 
1151 	max_threads = 0;
1152 	for_each_online_cpu (cpu) {
1153 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1154 
1155 		if (threads > max_threads)
1156 			max_threads = threads;
1157 	}
1158 	__max_smt_threads = max_threads;
1159 }
1160 
1161 static void remove_siblinginfo(int cpu)
1162 {
1163 	int sibling;
1164 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1165 
1166 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1167 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1168 		/*/
1169 		 * last thread sibling in this cpu core going down
1170 		 */
1171 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1172 			cpu_data(sibling).booted_cores--;
1173 	}
1174 
1175 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1176 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1177 
1178 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1179 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1180 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1181 			cpu_data(sibling).smt_active = false;
1182 	}
1183 
1184 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1185 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1186 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1187 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1188 	cpumask_clear(cpu_llc_shared_mask(cpu));
1189 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1190 	cpumask_clear(topology_sibling_cpumask(cpu));
1191 	cpumask_clear(topology_core_cpumask(cpu));
1192 	cpumask_clear(topology_die_cpumask(cpu));
1193 	c->topo.core_id = 0;
1194 	c->booted_cores = 0;
1195 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1196 	recompute_smt_state();
1197 }
1198 
1199 static void remove_cpu_from_maps(int cpu)
1200 {
1201 	set_cpu_online(cpu, false);
1202 	numa_remove_cpu(cpu);
1203 }
1204 
1205 void cpu_disable_common(void)
1206 {
1207 	int cpu = smp_processor_id();
1208 
1209 	remove_siblinginfo(cpu);
1210 
1211 	/* It's now safe to remove this processor from the online map */
1212 	lock_vector_lock();
1213 	remove_cpu_from_maps(cpu);
1214 	unlock_vector_lock();
1215 	fixup_irqs();
1216 	lapic_offline();
1217 }
1218 
1219 int native_cpu_disable(void)
1220 {
1221 	int ret;
1222 
1223 	ret = lapic_can_unplug_cpu();
1224 	if (ret)
1225 		return ret;
1226 
1227 	cpu_disable_common();
1228 
1229         /*
1230          * Disable the local APIC. Otherwise IPI broadcasts will reach
1231          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1232          * messages.
1233          *
1234          * Disabling the APIC must happen after cpu_disable_common()
1235          * which invokes fixup_irqs().
1236          *
1237          * Disabling the APIC preserves already set bits in IRR, but
1238          * an interrupt arriving after disabling the local APIC does not
1239          * set the corresponding IRR bit.
1240          *
1241          * fixup_irqs() scans IRR for set bits so it can raise a not
1242          * yet handled interrupt on the new destination CPU via an IPI
1243          * but obviously it can't do so for IRR bits which are not set.
1244          * IOW, interrupts arriving after disabling the local APIC will
1245          * be lost.
1246          */
1247 	apic_soft_disable();
1248 
1249 	return 0;
1250 }
1251 
1252 void play_dead_common(void)
1253 {
1254 	idle_task_exit();
1255 
1256 	cpuhp_ap_report_dead();
1257 
1258 	local_irq_disable();
1259 }
1260 
1261 /*
1262  * We need to flush the caches before going to sleep, lest we have
1263  * dirty data in our caches when we come back up.
1264  */
1265 static inline void mwait_play_dead(void)
1266 {
1267 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1268 	unsigned int eax, ebx, ecx, edx;
1269 	unsigned int highest_cstate = 0;
1270 	unsigned int highest_subcstate = 0;
1271 	int i;
1272 
1273 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1274 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1275 		return;
1276 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1277 		return;
1278 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1279 		return;
1280 
1281 	eax = CPUID_LEAF_MWAIT;
1282 	ecx = 0;
1283 	native_cpuid(&eax, &ebx, &ecx, &edx);
1284 
1285 	/*
1286 	 * eax will be 0 if EDX enumeration is not valid.
1287 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1288 	 */
1289 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1290 		eax = 0;
1291 	} else {
1292 		edx >>= MWAIT_SUBSTATE_SIZE;
1293 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1294 			if (edx & MWAIT_SUBSTATE_MASK) {
1295 				highest_cstate = i;
1296 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1297 			}
1298 		}
1299 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1300 			(highest_subcstate - 1);
1301 	}
1302 
1303 	/* Set up state for the kexec() hack below */
1304 	md->status = CPUDEAD_MWAIT_WAIT;
1305 	md->control = CPUDEAD_MWAIT_WAIT;
1306 
1307 	wbinvd();
1308 
1309 	while (1) {
1310 		/*
1311 		 * The CLFLUSH is a workaround for erratum AAI65 for
1312 		 * the Xeon 7400 series.  It's not clear it is actually
1313 		 * needed, but it should be harmless in either case.
1314 		 * The WBINVD is insufficient due to the spurious-wakeup
1315 		 * case where we return around the loop.
1316 		 */
1317 		mb();
1318 		clflush(md);
1319 		mb();
1320 		__monitor(md, 0, 0);
1321 		mb();
1322 		__mwait(eax, 0);
1323 
1324 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1325 			/*
1326 			 * Kexec is about to happen. Don't go back into mwait() as
1327 			 * the kexec kernel might overwrite text and data including
1328 			 * page tables and stack. So mwait() would resume when the
1329 			 * monitor cache line is written to and then the CPU goes
1330 			 * south due to overwritten text, page tables and stack.
1331 			 *
1332 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1333 			 * SMI. They will resume execution at the instruction
1334 			 * following the HLT instruction and run into the problem
1335 			 * which this is trying to prevent.
1336 			 */
1337 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1338 			while(1)
1339 				native_halt();
1340 		}
1341 	}
1342 }
1343 
1344 /*
1345  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1346  * mwait_play_dead().
1347  */
1348 void smp_kick_mwait_play_dead(void)
1349 {
1350 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1351 	struct mwait_cpu_dead *md;
1352 	unsigned int cpu, i;
1353 
1354 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1355 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1356 
1357 		/* Does it sit in mwait_play_dead() ? */
1358 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1359 			continue;
1360 
1361 		/* Wait up to 5ms */
1362 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1363 			/* Bring it out of mwait */
1364 			WRITE_ONCE(md->control, newstate);
1365 			udelay(5);
1366 		}
1367 
1368 		if (READ_ONCE(md->status) != newstate)
1369 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1370 	}
1371 }
1372 
1373 void __noreturn hlt_play_dead(void)
1374 {
1375 	if (__this_cpu_read(cpu_info.x86) >= 4)
1376 		wbinvd();
1377 
1378 	while (1)
1379 		native_halt();
1380 }
1381 
1382 /*
1383  * native_play_dead() is essentially a __noreturn function, but it can't
1384  * be marked as such as the compiler may complain about it.
1385  */
1386 void native_play_dead(void)
1387 {
1388 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1389 		__update_spec_ctrl(0);
1390 
1391 	play_dead_common();
1392 	tboot_shutdown(TB_SHUTDOWN_WFS);
1393 
1394 	mwait_play_dead();
1395 	if (cpuidle_play_dead())
1396 		hlt_play_dead();
1397 }
1398 
1399 #else /* ... !CONFIG_HOTPLUG_CPU */
1400 int native_cpu_disable(void)
1401 {
1402 	return -ENOSYS;
1403 }
1404 
1405 void native_play_dead(void)
1406 {
1407 	BUG();
1408 }
1409 
1410 #endif
1411