xref: /linux/arch/x86/kernel/smpboot.c (revision f2586d921cea4feeddd1cc5ee3495700540dba8f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 
64 #include <asm/acpi.h>
65 #include <asm/cacheinfo.h>
66 #include <asm/desc.h>
67 #include <asm/nmi.h>
68 #include <asm/irq.h>
69 #include <asm/realmode.h>
70 #include <asm/cpu.h>
71 #include <asm/numa.h>
72 #include <asm/tlbflush.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/apic.h>
76 #include <asm/io_apic.h>
77 #include <asm/fpu/api.h>
78 #include <asm/setup.h>
79 #include <asm/uv/uv.h>
80 #include <asm/microcode.h>
81 #include <asm/i8259.h>
82 #include <asm/misc.h>
83 #include <asm/qspinlock.h>
84 #include <asm/intel-family.h>
85 #include <asm/cpu_device_id.h>
86 #include <asm/spec-ctrl.h>
87 #include <asm/hw_irq.h>
88 #include <asm/stackprotector.h>
89 #include <asm/sev.h>
90 
91 /* representing HT siblings of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
94 
95 /* representing HT and core siblings of each logical CPU */
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
97 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
98 
99 /* representing HT, core, and die siblings of each logical CPU */
100 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
101 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
102 
103 /* Per CPU bogomips and other parameters */
104 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
105 EXPORT_PER_CPU_SYMBOL(cpu_info);
106 
107 /* CPUs which are the primary SMT threads */
108 struct cpumask __cpu_primary_thread_mask __read_mostly;
109 
110 /* Representing CPUs for which sibling maps can be computed */
111 static cpumask_var_t cpu_sibling_setup_mask;
112 
113 struct mwait_cpu_dead {
114 	unsigned int	control;
115 	unsigned int	status;
116 };
117 
118 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
119 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
120 
121 /*
122  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
123  * that it's unlikely to be touched by other CPUs.
124  */
125 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
126 
127 /* Logical package management. We might want to allocate that dynamically */
128 unsigned int __max_logical_packages __read_mostly;
129 EXPORT_SYMBOL(__max_logical_packages);
130 static unsigned int logical_packages __read_mostly;
131 static unsigned int logical_die __read_mostly;
132 
133 /* Maximum number of SMT threads on any online core */
134 int __read_mostly __max_smt_threads = 1;
135 
136 /* Flag to indicate if a complete sched domain rebuild is required */
137 bool x86_topology_update;
138 
139 int arch_update_cpu_topology(void)
140 {
141 	int retval = x86_topology_update;
142 
143 	x86_topology_update = false;
144 	return retval;
145 }
146 
147 static unsigned int smpboot_warm_reset_vector_count;
148 
149 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
150 {
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&rtc_lock, flags);
154 	if (!smpboot_warm_reset_vector_count++) {
155 		CMOS_WRITE(0xa, 0xf);
156 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
157 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
158 	}
159 	spin_unlock_irqrestore(&rtc_lock, flags);
160 }
161 
162 static inline void smpboot_restore_warm_reset_vector(void)
163 {
164 	unsigned long flags;
165 
166 	/*
167 	 * Paranoid:  Set warm reset code and vector here back
168 	 * to default values.
169 	 */
170 	spin_lock_irqsave(&rtc_lock, flags);
171 	if (!--smpboot_warm_reset_vector_count) {
172 		CMOS_WRITE(0, 0xf);
173 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
174 	}
175 	spin_unlock_irqrestore(&rtc_lock, flags);
176 
177 }
178 
179 /* Run the next set of setup steps for the upcoming CPU */
180 static void ap_starting(void)
181 {
182 	int cpuid = smp_processor_id();
183 
184 	/* Mop up eventual mwait_play_dead() wreckage */
185 	this_cpu_write(mwait_cpu_dead.status, 0);
186 	this_cpu_write(mwait_cpu_dead.control, 0);
187 
188 	/*
189 	 * If woken up by an INIT in an 82489DX configuration the alive
190 	 * synchronization guarantees that the CPU does not reach this
191 	 * point before an INIT_deassert IPI reaches the local APIC, so it
192 	 * is now safe to touch the local APIC.
193 	 *
194 	 * Set up this CPU, first the APIC, which is probably redundant on
195 	 * most boards.
196 	 */
197 	apic_ap_setup();
198 
199 	/* Save the processor parameters. */
200 	smp_store_cpu_info(cpuid);
201 
202 	/*
203 	 * The topology information must be up to date before
204 	 * notify_cpu_starting().
205 	 */
206 	set_cpu_sibling_map(cpuid);
207 
208 	ap_init_aperfmperf();
209 
210 	pr_debug("Stack at about %p\n", &cpuid);
211 
212 	wmb();
213 
214 	/*
215 	 * This runs the AP through all the cpuhp states to its target
216 	 * state CPUHP_ONLINE.
217 	 */
218 	notify_cpu_starting(cpuid);
219 }
220 
221 static void ap_calibrate_delay(void)
222 {
223 	/*
224 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
225 	 * smp_store_cpu_info() stored a value that is close but not as
226 	 * accurate as the value just calculated.
227 	 *
228 	 * As this is invoked after the TSC synchronization check,
229 	 * calibrate_delay_is_known() will skip the calibration routine
230 	 * when TSC is synchronized across sockets.
231 	 */
232 	calibrate_delay();
233 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
234 }
235 
236 /*
237  * Activate a secondary processor.
238  */
239 static void notrace start_secondary(void *unused)
240 {
241 	/*
242 	 * Don't put *anything* except direct CPU state initialization
243 	 * before cpu_init(), SMP booting is too fragile that we want to
244 	 * limit the things done here to the most necessary things.
245 	 */
246 	cr4_init();
247 
248 	/*
249 	 * 32-bit specific. 64-bit reaches this code with the correct page
250 	 * table established. Yet another historical divergence.
251 	 */
252 	if (IS_ENABLED(CONFIG_X86_32)) {
253 		/* switch away from the initial page table */
254 		load_cr3(swapper_pg_dir);
255 		__flush_tlb_all();
256 	}
257 
258 	cpu_init_exception_handling();
259 
260 	/*
261 	 * 32-bit systems load the microcode from the ASM startup code for
262 	 * historical reasons.
263 	 *
264 	 * On 64-bit systems load it before reaching the AP alive
265 	 * synchronization point below so it is not part of the full per
266 	 * CPU serialized bringup part when "parallel" bringup is enabled.
267 	 *
268 	 * That's even safe when hyperthreading is enabled in the CPU as
269 	 * the core code starts the primary threads first and leaves the
270 	 * secondary threads waiting for SIPI. Loading microcode on
271 	 * physical cores concurrently is a safe operation.
272 	 *
273 	 * This covers both the Intel specific issue that concurrent
274 	 * microcode loading on SMT siblings must be prohibited and the
275 	 * vendor independent issue`that microcode loading which changes
276 	 * CPUID, MSRs etc. must be strictly serialized to maintain
277 	 * software state correctness.
278 	 */
279 	if (IS_ENABLED(CONFIG_X86_64))
280 		load_ucode_ap();
281 
282 	/*
283 	 * Synchronization point with the hotplug core. Sets this CPUs
284 	 * synchronization state to ALIVE and spin-waits for the control CPU to
285 	 * release this CPU for further bringup.
286 	 */
287 	cpuhp_ap_sync_alive();
288 
289 	cpu_init();
290 	fpu__init_cpu();
291 	rcu_cpu_starting(raw_smp_processor_id());
292 	x86_cpuinit.early_percpu_clock_init();
293 
294 	ap_starting();
295 
296 	/* Check TSC synchronization with the control CPU. */
297 	check_tsc_sync_target();
298 
299 	/*
300 	 * Calibrate the delay loop after the TSC synchronization check.
301 	 * This allows to skip the calibration when TSC is synchronized
302 	 * across sockets.
303 	 */
304 	ap_calibrate_delay();
305 
306 	speculative_store_bypass_ht_init();
307 
308 	/*
309 	 * Lock vector_lock, set CPU online and bring the vector
310 	 * allocator online. Online must be set with vector_lock held
311 	 * to prevent a concurrent irq setup/teardown from seeing a
312 	 * half valid vector space.
313 	 */
314 	lock_vector_lock();
315 	set_cpu_online(smp_processor_id(), true);
316 	lapic_online();
317 	unlock_vector_lock();
318 	x86_platform.nmi_init();
319 
320 	/* enable local interrupts */
321 	local_irq_enable();
322 
323 	x86_cpuinit.setup_percpu_clockev();
324 
325 	wmb();
326 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
327 }
328 
329 /**
330  * topology_phys_to_logical_pkg - Map a physical package id to a logical
331  * @phys_pkg:	The physical package id to map
332  *
333  * Returns logical package id or -1 if not found
334  */
335 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
336 {
337 	int cpu;
338 
339 	for_each_possible_cpu(cpu) {
340 		struct cpuinfo_x86 *c = &cpu_data(cpu);
341 
342 		if (c->initialized && c->phys_proc_id == phys_pkg)
343 			return c->logical_proc_id;
344 	}
345 	return -1;
346 }
347 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
348 
349 /**
350  * topology_phys_to_logical_die - Map a physical die id to logical
351  * @die_id:	The physical die id to map
352  * @cur_cpu:	The CPU for which the mapping is done
353  *
354  * Returns logical die id or -1 if not found
355  */
356 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
357 {
358 	int cpu, proc_id = cpu_data(cur_cpu).phys_proc_id;
359 
360 	for_each_possible_cpu(cpu) {
361 		struct cpuinfo_x86 *c = &cpu_data(cpu);
362 
363 		if (c->initialized && c->cpu_die_id == die_id &&
364 		    c->phys_proc_id == proc_id)
365 			return c->logical_die_id;
366 	}
367 	return -1;
368 }
369 
370 /**
371  * topology_update_package_map - Update the physical to logical package map
372  * @pkg:	The physical package id as retrieved via CPUID
373  * @cpu:	The cpu for which this is updated
374  */
375 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
376 {
377 	int new;
378 
379 	/* Already available somewhere? */
380 	new = topology_phys_to_logical_pkg(pkg);
381 	if (new >= 0)
382 		goto found;
383 
384 	new = logical_packages++;
385 	if (new != pkg) {
386 		pr_info("CPU %u Converting physical %u to logical package %u\n",
387 			cpu, pkg, new);
388 	}
389 found:
390 	cpu_data(cpu).logical_proc_id = new;
391 	return 0;
392 }
393 /**
394  * topology_update_die_map - Update the physical to logical die map
395  * @die:	The die id as retrieved via CPUID
396  * @cpu:	The cpu for which this is updated
397  */
398 int topology_update_die_map(unsigned int die, unsigned int cpu)
399 {
400 	int new;
401 
402 	/* Already available somewhere? */
403 	new = topology_phys_to_logical_die(die, cpu);
404 	if (new >= 0)
405 		goto found;
406 
407 	new = logical_die++;
408 	if (new != die) {
409 		pr_info("CPU %u Converting physical %u to logical die %u\n",
410 			cpu, die, new);
411 	}
412 found:
413 	cpu_data(cpu).logical_die_id = new;
414 	return 0;
415 }
416 
417 void __init smp_store_boot_cpu_info(void)
418 {
419 	int id = 0; /* CPU 0 */
420 	struct cpuinfo_x86 *c = &cpu_data(id);
421 
422 	*c = boot_cpu_data;
423 	c->cpu_index = id;
424 	topology_update_package_map(c->phys_proc_id, id);
425 	topology_update_die_map(c->cpu_die_id, id);
426 	c->initialized = true;
427 }
428 
429 /*
430  * The bootstrap kernel entry code has set these up. Save them for
431  * a given CPU
432  */
433 void smp_store_cpu_info(int id)
434 {
435 	struct cpuinfo_x86 *c = &cpu_data(id);
436 
437 	/* Copy boot_cpu_data only on the first bringup */
438 	if (!c->initialized)
439 		*c = boot_cpu_data;
440 	c->cpu_index = id;
441 	/*
442 	 * During boot time, CPU0 has this setup already. Save the info when
443 	 * bringing up an AP.
444 	 */
445 	identify_secondary_cpu(c);
446 	c->initialized = true;
447 }
448 
449 static bool
450 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
451 {
452 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
453 
454 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
455 }
456 
457 static bool
458 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
459 {
460 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
461 
462 	return !WARN_ONCE(!topology_same_node(c, o),
463 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
464 		"[node: %d != %d]. Ignoring dependency.\n",
465 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
466 }
467 
468 #define link_mask(mfunc, c1, c2)					\
469 do {									\
470 	cpumask_set_cpu((c1), mfunc(c2));				\
471 	cpumask_set_cpu((c2), mfunc(c1));				\
472 } while (0)
473 
474 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
475 {
476 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
477 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
478 
479 		if (c->phys_proc_id == o->phys_proc_id &&
480 		    c->cpu_die_id == o->cpu_die_id &&
481 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
482 			if (c->cpu_core_id == o->cpu_core_id)
483 				return topology_sane(c, o, "smt");
484 
485 			if ((c->cu_id != 0xff) &&
486 			    (o->cu_id != 0xff) &&
487 			    (c->cu_id == o->cu_id))
488 				return topology_sane(c, o, "smt");
489 		}
490 
491 	} else if (c->phys_proc_id == o->phys_proc_id &&
492 		   c->cpu_die_id == o->cpu_die_id &&
493 		   c->cpu_core_id == o->cpu_core_id) {
494 		return topology_sane(c, o, "smt");
495 	}
496 
497 	return false;
498 }
499 
500 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
501 {
502 	if (c->phys_proc_id == o->phys_proc_id &&
503 	    c->cpu_die_id == o->cpu_die_id)
504 		return true;
505 	return false;
506 }
507 
508 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
509 {
510 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
511 
512 	/* If the arch didn't set up l2c_id, fall back to SMT */
513 	if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
514 		return match_smt(c, o);
515 
516 	/* Do not match if L2 cache id does not match: */
517 	if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
518 		return false;
519 
520 	return topology_sane(c, o, "l2c");
521 }
522 
523 /*
524  * Unlike the other levels, we do not enforce keeping a
525  * multicore group inside a NUMA node.  If this happens, we will
526  * discard the MC level of the topology later.
527  */
528 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
529 {
530 	if (c->phys_proc_id == o->phys_proc_id)
531 		return true;
532 	return false;
533 }
534 
535 /*
536  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
537  *
538  * Any Intel CPU that has multiple nodes per package and does not
539  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
540  *
541  * When in SNC mode, these CPUs enumerate an LLC that is shared
542  * by multiple NUMA nodes. The LLC is shared for off-package data
543  * access but private to the NUMA node (half of the package) for
544  * on-package access. CPUID (the source of the information about
545  * the LLC) can only enumerate the cache as shared or unshared,
546  * but not this particular configuration.
547  */
548 
549 static const struct x86_cpu_id intel_cod_cpu[] = {
550 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
551 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
552 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
553 	{}
554 };
555 
556 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
557 {
558 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
559 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
560 	bool intel_snc = id && id->driver_data;
561 
562 	/* Do not match if we do not have a valid APICID for cpu: */
563 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
564 		return false;
565 
566 	/* Do not match if LLC id does not match: */
567 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
568 		return false;
569 
570 	/*
571 	 * Allow the SNC topology without warning. Return of false
572 	 * means 'c' does not share the LLC of 'o'. This will be
573 	 * reflected to userspace.
574 	 */
575 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
576 		return false;
577 
578 	return topology_sane(c, o, "llc");
579 }
580 
581 
582 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
583 static inline int x86_sched_itmt_flags(void)
584 {
585 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
586 }
587 
588 #ifdef CONFIG_SCHED_MC
589 static int x86_core_flags(void)
590 {
591 	return cpu_core_flags() | x86_sched_itmt_flags();
592 }
593 #endif
594 #ifdef CONFIG_SCHED_SMT
595 static int x86_smt_flags(void)
596 {
597 	return cpu_smt_flags();
598 }
599 #endif
600 #ifdef CONFIG_SCHED_CLUSTER
601 static int x86_cluster_flags(void)
602 {
603 	return cpu_cluster_flags() | x86_sched_itmt_flags();
604 }
605 #endif
606 #endif
607 
608 /*
609  * Set if a package/die has multiple NUMA nodes inside.
610  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
611  * Sub-NUMA Clustering have this.
612  */
613 static bool x86_has_numa_in_package;
614 
615 static struct sched_domain_topology_level x86_topology[6];
616 
617 static void __init build_sched_topology(void)
618 {
619 	int i = 0;
620 
621 #ifdef CONFIG_SCHED_SMT
622 	x86_topology[i++] = (struct sched_domain_topology_level){
623 		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
624 	};
625 #endif
626 #ifdef CONFIG_SCHED_CLUSTER
627 	x86_topology[i++] = (struct sched_domain_topology_level){
628 		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
629 	};
630 #endif
631 #ifdef CONFIG_SCHED_MC
632 	x86_topology[i++] = (struct sched_domain_topology_level){
633 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
634 	};
635 #endif
636 	/*
637 	 * When there is NUMA topology inside the package skip the DIE domain
638 	 * since the NUMA domains will auto-magically create the right spanning
639 	 * domains based on the SLIT.
640 	 */
641 	if (!x86_has_numa_in_package) {
642 		x86_topology[i++] = (struct sched_domain_topology_level){
643 			cpu_cpu_mask, SD_INIT_NAME(DIE)
644 		};
645 	}
646 
647 	/*
648 	 * There must be one trailing NULL entry left.
649 	 */
650 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
651 
652 	set_sched_topology(x86_topology);
653 }
654 
655 void set_cpu_sibling_map(int cpu)
656 {
657 	bool has_smt = smp_num_siblings > 1;
658 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
659 	struct cpuinfo_x86 *c = &cpu_data(cpu);
660 	struct cpuinfo_x86 *o;
661 	int i, threads;
662 
663 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
664 
665 	if (!has_mp) {
666 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
667 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
668 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
669 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
670 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
671 		c->booted_cores = 1;
672 		return;
673 	}
674 
675 	for_each_cpu(i, cpu_sibling_setup_mask) {
676 		o = &cpu_data(i);
677 
678 		if (match_pkg(c, o) && !topology_same_node(c, o))
679 			x86_has_numa_in_package = true;
680 
681 		if ((i == cpu) || (has_smt && match_smt(c, o)))
682 			link_mask(topology_sibling_cpumask, cpu, i);
683 
684 		if ((i == cpu) || (has_mp && match_llc(c, o)))
685 			link_mask(cpu_llc_shared_mask, cpu, i);
686 
687 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
688 			link_mask(cpu_l2c_shared_mask, cpu, i);
689 
690 		if ((i == cpu) || (has_mp && match_die(c, o)))
691 			link_mask(topology_die_cpumask, cpu, i);
692 	}
693 
694 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
695 	if (threads > __max_smt_threads)
696 		__max_smt_threads = threads;
697 
698 	for_each_cpu(i, topology_sibling_cpumask(cpu))
699 		cpu_data(i).smt_active = threads > 1;
700 
701 	/*
702 	 * This needs a separate iteration over the cpus because we rely on all
703 	 * topology_sibling_cpumask links to be set-up.
704 	 */
705 	for_each_cpu(i, cpu_sibling_setup_mask) {
706 		o = &cpu_data(i);
707 
708 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
709 			link_mask(topology_core_cpumask, cpu, i);
710 
711 			/*
712 			 *  Does this new cpu bringup a new core?
713 			 */
714 			if (threads == 1) {
715 				/*
716 				 * for each core in package, increment
717 				 * the booted_cores for this new cpu
718 				 */
719 				if (cpumask_first(
720 				    topology_sibling_cpumask(i)) == i)
721 					c->booted_cores++;
722 				/*
723 				 * increment the core count for all
724 				 * the other cpus in this package
725 				 */
726 				if (i != cpu)
727 					cpu_data(i).booted_cores++;
728 			} else if (i != cpu && !c->booted_cores)
729 				c->booted_cores = cpu_data(i).booted_cores;
730 		}
731 	}
732 }
733 
734 /* maps the cpu to the sched domain representing multi-core */
735 const struct cpumask *cpu_coregroup_mask(int cpu)
736 {
737 	return cpu_llc_shared_mask(cpu);
738 }
739 
740 const struct cpumask *cpu_clustergroup_mask(int cpu)
741 {
742 	return cpu_l2c_shared_mask(cpu);
743 }
744 
745 static void impress_friends(void)
746 {
747 	int cpu;
748 	unsigned long bogosum = 0;
749 	/*
750 	 * Allow the user to impress friends.
751 	 */
752 	pr_debug("Before bogomips\n");
753 	for_each_online_cpu(cpu)
754 		bogosum += cpu_data(cpu).loops_per_jiffy;
755 
756 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
757 		num_online_cpus(),
758 		bogosum/(500000/HZ),
759 		(bogosum/(5000/HZ))%100);
760 
761 	pr_debug("Before bogocount - setting activated=1\n");
762 }
763 
764 void __inquire_remote_apic(int apicid)
765 {
766 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
767 	const char * const names[] = { "ID", "VERSION", "SPIV" };
768 	int timeout;
769 	u32 status;
770 
771 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
772 
773 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
774 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
775 
776 		/*
777 		 * Wait for idle.
778 		 */
779 		status = safe_apic_wait_icr_idle();
780 		if (status)
781 			pr_cont("a previous APIC delivery may have failed\n");
782 
783 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
784 
785 		timeout = 0;
786 		do {
787 			udelay(100);
788 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
789 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
790 
791 		switch (status) {
792 		case APIC_ICR_RR_VALID:
793 			status = apic_read(APIC_RRR);
794 			pr_cont("%08x\n", status);
795 			break;
796 		default:
797 			pr_cont("failed\n");
798 		}
799 	}
800 }
801 
802 /*
803  * The Multiprocessor Specification 1.4 (1997) example code suggests
804  * that there should be a 10ms delay between the BSP asserting INIT
805  * and de-asserting INIT, when starting a remote processor.
806  * But that slows boot and resume on modern processors, which include
807  * many cores and don't require that delay.
808  *
809  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
810  * Modern processor families are quirked to remove the delay entirely.
811  */
812 #define UDELAY_10MS_DEFAULT 10000
813 
814 static unsigned int init_udelay = UINT_MAX;
815 
816 static int __init cpu_init_udelay(char *str)
817 {
818 	get_option(&str, &init_udelay);
819 
820 	return 0;
821 }
822 early_param("cpu_init_udelay", cpu_init_udelay);
823 
824 static void __init smp_quirk_init_udelay(void)
825 {
826 	/* if cmdline changed it from default, leave it alone */
827 	if (init_udelay != UINT_MAX)
828 		return;
829 
830 	/* if modern processor, use no delay */
831 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
832 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
833 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
834 		init_udelay = 0;
835 		return;
836 	}
837 	/* else, use legacy delay */
838 	init_udelay = UDELAY_10MS_DEFAULT;
839 }
840 
841 /*
842  * Wake up AP by INIT, INIT, STARTUP sequence.
843  */
844 static void send_init_sequence(int phys_apicid)
845 {
846 	int maxlvt = lapic_get_maxlvt();
847 
848 	/* Be paranoid about clearing APIC errors. */
849 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
850 		/* Due to the Pentium erratum 3AP.  */
851 		if (maxlvt > 3)
852 			apic_write(APIC_ESR, 0);
853 		apic_read(APIC_ESR);
854 	}
855 
856 	/* Assert INIT on the target CPU */
857 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
858 	safe_apic_wait_icr_idle();
859 
860 	udelay(init_udelay);
861 
862 	/* Deassert INIT on the target CPU */
863 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
864 	safe_apic_wait_icr_idle();
865 }
866 
867 /*
868  * Wake up AP by INIT, INIT, STARTUP sequence.
869  */
870 static int wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
871 {
872 	unsigned long send_status = 0, accept_status = 0;
873 	int num_starts, j, maxlvt;
874 
875 	preempt_disable();
876 	maxlvt = lapic_get_maxlvt();
877 	send_init_sequence(phys_apicid);
878 
879 	mb();
880 
881 	/*
882 	 * Should we send STARTUP IPIs ?
883 	 *
884 	 * Determine this based on the APIC version.
885 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
886 	 */
887 	if (APIC_INTEGRATED(boot_cpu_apic_version))
888 		num_starts = 2;
889 	else
890 		num_starts = 0;
891 
892 	/*
893 	 * Run STARTUP IPI loop.
894 	 */
895 	pr_debug("#startup loops: %d\n", num_starts);
896 
897 	for (j = 1; j <= num_starts; j++) {
898 		pr_debug("Sending STARTUP #%d\n", j);
899 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
900 			apic_write(APIC_ESR, 0);
901 		apic_read(APIC_ESR);
902 		pr_debug("After apic_write\n");
903 
904 		/*
905 		 * STARTUP IPI
906 		 */
907 
908 		/* Target chip */
909 		/* Boot on the stack */
910 		/* Kick the second */
911 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
912 			       phys_apicid);
913 
914 		/*
915 		 * Give the other CPU some time to accept the IPI.
916 		 */
917 		if (init_udelay == 0)
918 			udelay(10);
919 		else
920 			udelay(300);
921 
922 		pr_debug("Startup point 1\n");
923 
924 		pr_debug("Waiting for send to finish...\n");
925 		send_status = safe_apic_wait_icr_idle();
926 
927 		/*
928 		 * Give the other CPU some time to accept the IPI.
929 		 */
930 		if (init_udelay == 0)
931 			udelay(10);
932 		else
933 			udelay(200);
934 
935 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
936 			apic_write(APIC_ESR, 0);
937 		accept_status = (apic_read(APIC_ESR) & 0xEF);
938 		if (send_status || accept_status)
939 			break;
940 	}
941 	pr_debug("After Startup\n");
942 
943 	if (send_status)
944 		pr_err("APIC never delivered???\n");
945 	if (accept_status)
946 		pr_err("APIC delivery error (%lx)\n", accept_status);
947 
948 	preempt_enable();
949 	return (send_status | accept_status);
950 }
951 
952 /* reduce the number of lines printed when booting a large cpu count system */
953 static void announce_cpu(int cpu, int apicid)
954 {
955 	static int width, node_width, first = 1;
956 	static int current_node = NUMA_NO_NODE;
957 	int node = early_cpu_to_node(cpu);
958 
959 	if (!width)
960 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
961 
962 	if (!node_width)
963 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
964 
965 	if (system_state < SYSTEM_RUNNING) {
966 		if (first)
967 			pr_info("x86: Booting SMP configuration:\n");
968 
969 		if (node != current_node) {
970 			if (current_node > (-1))
971 				pr_cont("\n");
972 			current_node = node;
973 
974 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
975 			       node_width - num_digits(node), " ", node);
976 		}
977 
978 		/* Add padding for the BSP */
979 		if (first)
980 			pr_cont("%*s", width + 1, " ");
981 		first = 0;
982 
983 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
984 	} else
985 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
986 			node, cpu, apicid);
987 }
988 
989 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
990 {
991 	int ret;
992 
993 	/* Just in case we booted with a single CPU. */
994 	alternatives_enable_smp();
995 
996 	per_cpu(pcpu_hot.current_task, cpu) = idle;
997 	cpu_init_stack_canary(cpu, idle);
998 
999 	/* Initialize the interrupt stack(s) */
1000 	ret = irq_init_percpu_irqstack(cpu);
1001 	if (ret)
1002 		return ret;
1003 
1004 #ifdef CONFIG_X86_32
1005 	/* Stack for startup_32 can be just as for start_secondary onwards */
1006 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
1007 #endif
1008 	return 0;
1009 }
1010 
1011 /*
1012  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1013  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1014  * Returns zero if startup was successfully sent, else error code from
1015  * ->wakeup_secondary_cpu.
1016  */
1017 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
1018 {
1019 	unsigned long start_ip = real_mode_header->trampoline_start;
1020 	int ret;
1021 
1022 #ifdef CONFIG_X86_64
1023 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1024 	if (apic->wakeup_secondary_cpu_64)
1025 		start_ip = real_mode_header->trampoline_start64;
1026 #endif
1027 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1028 	initial_code = (unsigned long)start_secondary;
1029 
1030 	if (IS_ENABLED(CONFIG_X86_32)) {
1031 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1032 		initial_stack  = idle->thread.sp;
1033 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1034 		smpboot_control = cpu;
1035 	}
1036 
1037 	/* Enable the espfix hack for this CPU */
1038 	init_espfix_ap(cpu);
1039 
1040 	/* So we see what's up */
1041 	announce_cpu(cpu, apicid);
1042 
1043 	/*
1044 	 * This grunge runs the startup process for
1045 	 * the targeted processor.
1046 	 */
1047 	if (x86_platform.legacy.warm_reset) {
1048 
1049 		pr_debug("Setting warm reset code and vector.\n");
1050 
1051 		smpboot_setup_warm_reset_vector(start_ip);
1052 		/*
1053 		 * Be paranoid about clearing APIC errors.
1054 		*/
1055 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1056 			apic_write(APIC_ESR, 0);
1057 			apic_read(APIC_ESR);
1058 		}
1059 	}
1060 
1061 	smp_mb();
1062 
1063 	/*
1064 	 * Wake up a CPU in difference cases:
1065 	 * - Use a method from the APIC driver if one defined, with wakeup
1066 	 *   straight to 64-bit mode preferred over wakeup to RM.
1067 	 * Otherwise,
1068 	 * - Use an INIT boot APIC message
1069 	 */
1070 	if (apic->wakeup_secondary_cpu_64)
1071 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1072 	else if (apic->wakeup_secondary_cpu)
1073 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1074 	else
1075 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1076 
1077 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1078 	if (ret)
1079 		arch_cpuhp_cleanup_kick_cpu(cpu);
1080 	return ret;
1081 }
1082 
1083 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1084 {
1085 	int apicid = apic->cpu_present_to_apicid(cpu);
1086 	int err;
1087 
1088 	lockdep_assert_irqs_enabled();
1089 
1090 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1091 
1092 	if (apicid == BAD_APICID ||
1093 	    !physid_isset(apicid, phys_cpu_present_map) ||
1094 	    !apic->apic_id_valid(apicid)) {
1095 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1096 		return -EINVAL;
1097 	}
1098 
1099 	/*
1100 	 * Save current MTRR state in case it was changed since early boot
1101 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1102 	 */
1103 	mtrr_save_state();
1104 
1105 	/* the FPU context is blank, nobody can own it */
1106 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1107 
1108 	err = common_cpu_up(cpu, tidle);
1109 	if (err)
1110 		return err;
1111 
1112 	err = do_boot_cpu(apicid, cpu, tidle);
1113 	if (err)
1114 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1115 
1116 	return err;
1117 }
1118 
1119 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1120 {
1121 	return smp_ops.kick_ap_alive(cpu, tidle);
1122 }
1123 
1124 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1125 {
1126 	/* Cleanup possible dangling ends... */
1127 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1128 		smpboot_restore_warm_reset_vector();
1129 }
1130 
1131 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1132 {
1133 	if (smp_ops.cleanup_dead_cpu)
1134 		smp_ops.cleanup_dead_cpu(cpu);
1135 
1136 	if (system_state == SYSTEM_RUNNING)
1137 		pr_info("CPU %u is now offline\n", cpu);
1138 }
1139 
1140 void arch_cpuhp_sync_state_poll(void)
1141 {
1142 	if (smp_ops.poll_sync_state)
1143 		smp_ops.poll_sync_state();
1144 }
1145 
1146 /**
1147  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1148  */
1149 void __init arch_disable_smp_support(void)
1150 {
1151 	disable_ioapic_support();
1152 }
1153 
1154 /*
1155  * Fall back to non SMP mode after errors.
1156  *
1157  * RED-PEN audit/test this more. I bet there is more state messed up here.
1158  */
1159 static __init void disable_smp(void)
1160 {
1161 	pr_info("SMP disabled\n");
1162 
1163 	disable_ioapic_support();
1164 
1165 	init_cpu_present(cpumask_of(0));
1166 	init_cpu_possible(cpumask_of(0));
1167 
1168 	if (smp_found_config)
1169 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1170 	else
1171 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1172 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1173 	cpumask_set_cpu(0, topology_core_cpumask(0));
1174 	cpumask_set_cpu(0, topology_die_cpumask(0));
1175 }
1176 
1177 /*
1178  * Various sanity checks.
1179  */
1180 static void __init smp_sanity_check(void)
1181 {
1182 	preempt_disable();
1183 
1184 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1185 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1186 		unsigned int cpu;
1187 		unsigned nr;
1188 
1189 		pr_warn("More than 8 CPUs detected - skipping them\n"
1190 			"Use CONFIG_X86_BIGSMP\n");
1191 
1192 		nr = 0;
1193 		for_each_present_cpu(cpu) {
1194 			if (nr >= 8)
1195 				set_cpu_present(cpu, false);
1196 			nr++;
1197 		}
1198 
1199 		nr = 0;
1200 		for_each_possible_cpu(cpu) {
1201 			if (nr >= 8)
1202 				set_cpu_possible(cpu, false);
1203 			nr++;
1204 		}
1205 
1206 		set_nr_cpu_ids(8);
1207 	}
1208 #endif
1209 
1210 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1211 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1212 			hard_smp_processor_id());
1213 
1214 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1215 	}
1216 
1217 	/*
1218 	 * Should not be necessary because the MP table should list the boot
1219 	 * CPU too, but we do it for the sake of robustness anyway.
1220 	 */
1221 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1222 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1223 			  boot_cpu_physical_apicid);
1224 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1225 	}
1226 	preempt_enable();
1227 }
1228 
1229 static void __init smp_cpu_index_default(void)
1230 {
1231 	int i;
1232 	struct cpuinfo_x86 *c;
1233 
1234 	for_each_possible_cpu(i) {
1235 		c = &cpu_data(i);
1236 		/* mark all to hotplug */
1237 		c->cpu_index = nr_cpu_ids;
1238 	}
1239 }
1240 
1241 void __init smp_prepare_cpus_common(void)
1242 {
1243 	unsigned int i;
1244 
1245 	smp_cpu_index_default();
1246 
1247 	/*
1248 	 * Setup boot CPU information
1249 	 */
1250 	smp_store_boot_cpu_info(); /* Final full version of the data */
1251 	mb();
1252 
1253 	for_each_possible_cpu(i) {
1254 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1255 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1256 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1257 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1258 		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1259 	}
1260 
1261 	set_cpu_sibling_map(0);
1262 }
1263 
1264 #ifdef CONFIG_X86_64
1265 /* Establish whether parallel bringup can be supported. */
1266 bool __init arch_cpuhp_init_parallel_bringup(void)
1267 {
1268 	if (!x86_cpuinit.parallel_bringup) {
1269 		pr_info("Parallel CPU startup disabled by the platform\n");
1270 		return false;
1271 	}
1272 
1273 	smpboot_control = STARTUP_READ_APICID;
1274 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1275 	return true;
1276 }
1277 #endif
1278 
1279 /*
1280  * Prepare for SMP bootup.
1281  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1282  *            for common interface support.
1283  */
1284 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1285 {
1286 	smp_prepare_cpus_common();
1287 
1288 	smp_sanity_check();
1289 
1290 	switch (apic_intr_mode) {
1291 	case APIC_PIC:
1292 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1293 		disable_smp();
1294 		return;
1295 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1296 		disable_smp();
1297 		/* Setup local timer */
1298 		x86_init.timers.setup_percpu_clockev();
1299 		return;
1300 	case APIC_VIRTUAL_WIRE:
1301 	case APIC_SYMMETRIC_IO:
1302 		break;
1303 	}
1304 
1305 	/* Setup local timer */
1306 	x86_init.timers.setup_percpu_clockev();
1307 
1308 	pr_info("CPU0: ");
1309 	print_cpu_info(&cpu_data(0));
1310 
1311 	uv_system_init();
1312 
1313 	smp_quirk_init_udelay();
1314 
1315 	speculative_store_bypass_ht_init();
1316 
1317 	snp_set_wakeup_secondary_cpu();
1318 }
1319 
1320 void arch_thaw_secondary_cpus_begin(void)
1321 {
1322 	set_cache_aps_delayed_init(true);
1323 }
1324 
1325 void arch_thaw_secondary_cpus_end(void)
1326 {
1327 	cache_aps_init();
1328 }
1329 
1330 bool smp_park_other_cpus_in_init(void)
1331 {
1332 	unsigned int cpu, this_cpu = smp_processor_id();
1333 	unsigned int apicid;
1334 
1335 	if (apic->wakeup_secondary_cpu_64 || apic->wakeup_secondary_cpu)
1336 		return false;
1337 
1338 	/*
1339 	 * If this is a crash stop which does not execute on the boot CPU,
1340 	 * then this cannot use the INIT mechanism because INIT to the boot
1341 	 * CPU will reset the machine.
1342 	 */
1343 	if (this_cpu)
1344 		return false;
1345 
1346 	for_each_present_cpu(cpu) {
1347 		if (cpu == this_cpu)
1348 			continue;
1349 		apicid = apic->cpu_present_to_apicid(cpu);
1350 		if (apicid == BAD_APICID)
1351 			continue;
1352 		send_init_sequence(apicid);
1353 	}
1354 	return true;
1355 }
1356 
1357 /*
1358  * Early setup to make printk work.
1359  */
1360 void __init native_smp_prepare_boot_cpu(void)
1361 {
1362 	int me = smp_processor_id();
1363 
1364 	/* SMP handles this from setup_per_cpu_areas() */
1365 	if (!IS_ENABLED(CONFIG_SMP))
1366 		switch_gdt_and_percpu_base(me);
1367 
1368 	native_pv_lock_init();
1369 }
1370 
1371 void __init calculate_max_logical_packages(void)
1372 {
1373 	int ncpus;
1374 
1375 	/*
1376 	 * Today neither Intel nor AMD support heterogeneous systems so
1377 	 * extrapolate the boot cpu's data to all packages.
1378 	 */
1379 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1380 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1381 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1382 }
1383 
1384 void __init native_smp_cpus_done(unsigned int max_cpus)
1385 {
1386 	pr_debug("Boot done\n");
1387 
1388 	calculate_max_logical_packages();
1389 	build_sched_topology();
1390 	nmi_selftest();
1391 	impress_friends();
1392 	cache_aps_init();
1393 }
1394 
1395 static int __initdata setup_possible_cpus = -1;
1396 static int __init _setup_possible_cpus(char *str)
1397 {
1398 	get_option(&str, &setup_possible_cpus);
1399 	return 0;
1400 }
1401 early_param("possible_cpus", _setup_possible_cpus);
1402 
1403 
1404 /*
1405  * cpu_possible_mask should be static, it cannot change as cpu's
1406  * are onlined, or offlined. The reason is per-cpu data-structures
1407  * are allocated by some modules at init time, and don't expect to
1408  * do this dynamically on cpu arrival/departure.
1409  * cpu_present_mask on the other hand can change dynamically.
1410  * In case when cpu_hotplug is not compiled, then we resort to current
1411  * behaviour, which is cpu_possible == cpu_present.
1412  * - Ashok Raj
1413  *
1414  * Three ways to find out the number of additional hotplug CPUs:
1415  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1416  * - The user can overwrite it with possible_cpus=NUM
1417  * - Otherwise don't reserve additional CPUs.
1418  * We do this because additional CPUs waste a lot of memory.
1419  * -AK
1420  */
1421 __init void prefill_possible_map(void)
1422 {
1423 	int i, possible;
1424 
1425 	/* No boot processor was found in mptable or ACPI MADT */
1426 	if (!num_processors) {
1427 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1428 			int apicid = boot_cpu_physical_apicid;
1429 			int cpu = hard_smp_processor_id();
1430 
1431 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1432 
1433 			/* Make sure boot cpu is enumerated */
1434 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1435 			    apic->apic_id_valid(apicid))
1436 				generic_processor_info(apicid, boot_cpu_apic_version);
1437 		}
1438 
1439 		if (!num_processors)
1440 			num_processors = 1;
1441 	}
1442 
1443 	i = setup_max_cpus ?: 1;
1444 	if (setup_possible_cpus == -1) {
1445 		possible = num_processors;
1446 #ifdef CONFIG_HOTPLUG_CPU
1447 		if (setup_max_cpus)
1448 			possible += disabled_cpus;
1449 #else
1450 		if (possible > i)
1451 			possible = i;
1452 #endif
1453 	} else
1454 		possible = setup_possible_cpus;
1455 
1456 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1457 
1458 	/* nr_cpu_ids could be reduced via nr_cpus= */
1459 	if (possible > nr_cpu_ids) {
1460 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1461 			possible, nr_cpu_ids);
1462 		possible = nr_cpu_ids;
1463 	}
1464 
1465 #ifdef CONFIG_HOTPLUG_CPU
1466 	if (!setup_max_cpus)
1467 #endif
1468 	if (possible > i) {
1469 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1470 			possible, setup_max_cpus);
1471 		possible = i;
1472 	}
1473 
1474 	set_nr_cpu_ids(possible);
1475 
1476 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1477 		possible, max_t(int, possible - num_processors, 0));
1478 
1479 	reset_cpu_possible_mask();
1480 
1481 	for (i = 0; i < possible; i++)
1482 		set_cpu_possible(i, true);
1483 }
1484 
1485 /* correctly size the local cpu masks */
1486 void __init setup_cpu_local_masks(void)
1487 {
1488 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1489 }
1490 
1491 #ifdef CONFIG_HOTPLUG_CPU
1492 
1493 /* Recompute SMT state for all CPUs on offline */
1494 static void recompute_smt_state(void)
1495 {
1496 	int max_threads, cpu;
1497 
1498 	max_threads = 0;
1499 	for_each_online_cpu (cpu) {
1500 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1501 
1502 		if (threads > max_threads)
1503 			max_threads = threads;
1504 	}
1505 	__max_smt_threads = max_threads;
1506 }
1507 
1508 static void remove_siblinginfo(int cpu)
1509 {
1510 	int sibling;
1511 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1512 
1513 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1514 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1515 		/*/
1516 		 * last thread sibling in this cpu core going down
1517 		 */
1518 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1519 			cpu_data(sibling).booted_cores--;
1520 	}
1521 
1522 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1523 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1524 
1525 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1526 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1527 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1528 			cpu_data(sibling).smt_active = false;
1529 	}
1530 
1531 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1532 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1533 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1534 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1535 	cpumask_clear(cpu_llc_shared_mask(cpu));
1536 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1537 	cpumask_clear(topology_sibling_cpumask(cpu));
1538 	cpumask_clear(topology_core_cpumask(cpu));
1539 	cpumask_clear(topology_die_cpumask(cpu));
1540 	c->cpu_core_id = 0;
1541 	c->booted_cores = 0;
1542 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1543 	recompute_smt_state();
1544 }
1545 
1546 static void remove_cpu_from_maps(int cpu)
1547 {
1548 	set_cpu_online(cpu, false);
1549 	numa_remove_cpu(cpu);
1550 }
1551 
1552 void cpu_disable_common(void)
1553 {
1554 	int cpu = smp_processor_id();
1555 
1556 	remove_siblinginfo(cpu);
1557 
1558 	/* It's now safe to remove this processor from the online map */
1559 	lock_vector_lock();
1560 	remove_cpu_from_maps(cpu);
1561 	unlock_vector_lock();
1562 	fixup_irqs();
1563 	lapic_offline();
1564 }
1565 
1566 int native_cpu_disable(void)
1567 {
1568 	int ret;
1569 
1570 	ret = lapic_can_unplug_cpu();
1571 	if (ret)
1572 		return ret;
1573 
1574 	cpu_disable_common();
1575 
1576         /*
1577          * Disable the local APIC. Otherwise IPI broadcasts will reach
1578          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1579          * messages.
1580          *
1581          * Disabling the APIC must happen after cpu_disable_common()
1582          * which invokes fixup_irqs().
1583          *
1584          * Disabling the APIC preserves already set bits in IRR, but
1585          * an interrupt arriving after disabling the local APIC does not
1586          * set the corresponding IRR bit.
1587          *
1588          * fixup_irqs() scans IRR for set bits so it can raise a not
1589          * yet handled interrupt on the new destination CPU via an IPI
1590          * but obviously it can't do so for IRR bits which are not set.
1591          * IOW, interrupts arriving after disabling the local APIC will
1592          * be lost.
1593          */
1594 	apic_soft_disable();
1595 
1596 	return 0;
1597 }
1598 
1599 void play_dead_common(void)
1600 {
1601 	idle_task_exit();
1602 
1603 	cpuhp_ap_report_dead();
1604 	/*
1605 	 * With physical CPU hotplug, we should halt the cpu
1606 	 */
1607 	local_irq_disable();
1608 }
1609 
1610 /*
1611  * We need to flush the caches before going to sleep, lest we have
1612  * dirty data in our caches when we come back up.
1613  */
1614 static inline void mwait_play_dead(void)
1615 {
1616 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1617 	unsigned int eax, ebx, ecx, edx;
1618 	unsigned int highest_cstate = 0;
1619 	unsigned int highest_subcstate = 0;
1620 	int i;
1621 
1622 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1623 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1624 		return;
1625 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1626 		return;
1627 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1628 		return;
1629 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1630 		return;
1631 
1632 	eax = CPUID_MWAIT_LEAF;
1633 	ecx = 0;
1634 	native_cpuid(&eax, &ebx, &ecx, &edx);
1635 
1636 	/*
1637 	 * eax will be 0 if EDX enumeration is not valid.
1638 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1639 	 */
1640 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1641 		eax = 0;
1642 	} else {
1643 		edx >>= MWAIT_SUBSTATE_SIZE;
1644 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1645 			if (edx & MWAIT_SUBSTATE_MASK) {
1646 				highest_cstate = i;
1647 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1648 			}
1649 		}
1650 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1651 			(highest_subcstate - 1);
1652 	}
1653 
1654 	/* Set up state for the kexec() hack below */
1655 	md->status = CPUDEAD_MWAIT_WAIT;
1656 	md->control = CPUDEAD_MWAIT_WAIT;
1657 
1658 	wbinvd();
1659 
1660 	while (1) {
1661 		/*
1662 		 * The CLFLUSH is a workaround for erratum AAI65 for
1663 		 * the Xeon 7400 series.  It's not clear it is actually
1664 		 * needed, but it should be harmless in either case.
1665 		 * The WBINVD is insufficient due to the spurious-wakeup
1666 		 * case where we return around the loop.
1667 		 */
1668 		mb();
1669 		clflush(md);
1670 		mb();
1671 		__monitor(md, 0, 0);
1672 		mb();
1673 		__mwait(eax, 0);
1674 
1675 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1676 			/*
1677 			 * Kexec is about to happen. Don't go back into mwait() as
1678 			 * the kexec kernel might overwrite text and data including
1679 			 * page tables and stack. So mwait() would resume when the
1680 			 * monitor cache line is written to and then the CPU goes
1681 			 * south due to overwritten text, page tables and stack.
1682 			 *
1683 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1684 			 * SMI. They will resume execution at the instruction
1685 			 * following the HLT instruction and run into the problem
1686 			 * which this is trying to prevent.
1687 			 */
1688 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1689 			while(1)
1690 				native_halt();
1691 		}
1692 	}
1693 }
1694 
1695 /*
1696  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1697  * mwait_play_dead().
1698  */
1699 void smp_kick_mwait_play_dead(void)
1700 {
1701 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1702 	struct mwait_cpu_dead *md;
1703 	unsigned int cpu, i;
1704 
1705 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1706 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1707 
1708 		/* Does it sit in mwait_play_dead() ? */
1709 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1710 			continue;
1711 
1712 		/* Wait up to 5ms */
1713 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1714 			/* Bring it out of mwait */
1715 			WRITE_ONCE(md->control, newstate);
1716 			udelay(5);
1717 		}
1718 
1719 		if (READ_ONCE(md->status) != newstate)
1720 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1721 	}
1722 }
1723 
1724 void __noreturn hlt_play_dead(void)
1725 {
1726 	if (__this_cpu_read(cpu_info.x86) >= 4)
1727 		wbinvd();
1728 
1729 	while (1)
1730 		native_halt();
1731 }
1732 
1733 void native_play_dead(void)
1734 {
1735 	play_dead_common();
1736 	tboot_shutdown(TB_SHUTDOWN_WFS);
1737 
1738 	mwait_play_dead();
1739 	if (cpuidle_play_dead())
1740 		hlt_play_dead();
1741 }
1742 
1743 #else /* ... !CONFIG_HOTPLUG_CPU */
1744 int native_cpu_disable(void)
1745 {
1746 	return -ENOSYS;
1747 }
1748 
1749 void native_play_dead(void)
1750 {
1751 	BUG();
1752 }
1753 
1754 #endif
1755