xref: /linux/arch/x86/kernel/smpboot.c (revision e9a83bd2322035ed9d7dcf35753d3f984d76c6a5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58 
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87 
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 
92 /* representing HT, core, and die siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
95 
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
97 
98 /* Per CPU bogomips and other parameters */
99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
100 EXPORT_PER_CPU_SYMBOL(cpu_info);
101 
102 /* Logical package management. We might want to allocate that dynamically */
103 unsigned int __max_logical_packages __read_mostly;
104 EXPORT_SYMBOL(__max_logical_packages);
105 static unsigned int logical_packages __read_mostly;
106 static unsigned int logical_die __read_mostly;
107 
108 /* Maximum number of SMT threads on any online core */
109 int __read_mostly __max_smt_threads = 1;
110 
111 /* Flag to indicate if a complete sched domain rebuild is required */
112 bool x86_topology_update;
113 
114 int arch_update_cpu_topology(void)
115 {
116 	int retval = x86_topology_update;
117 
118 	x86_topology_update = false;
119 	return retval;
120 }
121 
122 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
123 {
124 	unsigned long flags;
125 
126 	spin_lock_irqsave(&rtc_lock, flags);
127 	CMOS_WRITE(0xa, 0xf);
128 	spin_unlock_irqrestore(&rtc_lock, flags);
129 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
130 							start_eip >> 4;
131 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
132 							start_eip & 0xf;
133 }
134 
135 static inline void smpboot_restore_warm_reset_vector(void)
136 {
137 	unsigned long flags;
138 
139 	/*
140 	 * Paranoid:  Set warm reset code and vector here back
141 	 * to default values.
142 	 */
143 	spin_lock_irqsave(&rtc_lock, flags);
144 	CMOS_WRITE(0, 0xf);
145 	spin_unlock_irqrestore(&rtc_lock, flags);
146 
147 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
148 }
149 
150 /*
151  * Report back to the Boot Processor during boot time or to the caller processor
152  * during CPU online.
153  */
154 static void smp_callin(void)
155 {
156 	int cpuid;
157 
158 	/*
159 	 * If waken up by an INIT in an 82489DX configuration
160 	 * cpu_callout_mask guarantees we don't get here before
161 	 * an INIT_deassert IPI reaches our local APIC, so it is
162 	 * now safe to touch our local APIC.
163 	 */
164 	cpuid = smp_processor_id();
165 
166 	/*
167 	 * the boot CPU has finished the init stage and is spinning
168 	 * on callin_map until we finish. We are free to set up this
169 	 * CPU, first the APIC. (this is probably redundant on most
170 	 * boards)
171 	 */
172 	apic_ap_setup();
173 
174 	/*
175 	 * Save our processor parameters. Note: this information
176 	 * is needed for clock calibration.
177 	 */
178 	smp_store_cpu_info(cpuid);
179 
180 	/*
181 	 * The topology information must be up to date before
182 	 * calibrate_delay() and notify_cpu_starting().
183 	 */
184 	set_cpu_sibling_map(raw_smp_processor_id());
185 
186 	/*
187 	 * Get our bogomips.
188 	 * Update loops_per_jiffy in cpu_data. Previous call to
189 	 * smp_store_cpu_info() stored a value that is close but not as
190 	 * accurate as the value just calculated.
191 	 */
192 	calibrate_delay();
193 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
194 	pr_debug("Stack at about %p\n", &cpuid);
195 
196 	wmb();
197 
198 	notify_cpu_starting(cpuid);
199 
200 	/*
201 	 * Allow the master to continue.
202 	 */
203 	cpumask_set_cpu(cpuid, cpu_callin_mask);
204 }
205 
206 static int cpu0_logical_apicid;
207 static int enable_start_cpu0;
208 /*
209  * Activate a secondary processor.
210  */
211 static void notrace start_secondary(void *unused)
212 {
213 	unsigned long cr4 = __read_cr4();
214 
215 	/*
216 	 * Don't put *anything* except direct CPU state initialization
217 	 * before cpu_init(), SMP booting is too fragile that we want to
218 	 * limit the things done here to the most necessary things.
219 	 */
220 	if (boot_cpu_has(X86_FEATURE_PCID))
221 		cr4 |= X86_CR4_PCIDE;
222 	if (static_branch_likely(&cr_pinning))
223 		cr4 |= cr4_pinned_bits;
224 
225 	__write_cr4(cr4);
226 
227 #ifdef CONFIG_X86_32
228 	/* switch away from the initial page table */
229 	load_cr3(swapper_pg_dir);
230 	/*
231 	 * Initialize the CR4 shadow before doing anything that could
232 	 * try to read it.
233 	 */
234 	cr4_init_shadow();
235 	__flush_tlb_all();
236 #endif
237 	load_current_idt();
238 	cpu_init();
239 	x86_cpuinit.early_percpu_clock_init();
240 	preempt_disable();
241 	smp_callin();
242 
243 	enable_start_cpu0 = 0;
244 
245 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
246 	barrier();
247 	/*
248 	 * Check TSC synchronization with the boot CPU:
249 	 */
250 	check_tsc_sync_target();
251 
252 	speculative_store_bypass_ht_init();
253 
254 	/*
255 	 * Lock vector_lock, set CPU online and bring the vector
256 	 * allocator online. Online must be set with vector_lock held
257 	 * to prevent a concurrent irq setup/teardown from seeing a
258 	 * half valid vector space.
259 	 */
260 	lock_vector_lock();
261 	set_cpu_online(smp_processor_id(), true);
262 	lapic_online();
263 	unlock_vector_lock();
264 	cpu_set_state_online(smp_processor_id());
265 	x86_platform.nmi_init();
266 
267 	/* enable local interrupts */
268 	local_irq_enable();
269 
270 	/* to prevent fake stack check failure in clock setup */
271 	boot_init_stack_canary();
272 
273 	x86_cpuinit.setup_percpu_clockev();
274 
275 	wmb();
276 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
277 }
278 
279 /**
280  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
281  * @cpu:	CPU to check
282  */
283 bool topology_is_primary_thread(unsigned int cpu)
284 {
285 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
286 }
287 
288 /**
289  * topology_smt_supported - Check whether SMT is supported by the CPUs
290  */
291 bool topology_smt_supported(void)
292 {
293 	return smp_num_siblings > 1;
294 }
295 
296 /**
297  * topology_phys_to_logical_pkg - Map a physical package id to a logical
298  *
299  * Returns logical package id or -1 if not found
300  */
301 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
302 {
303 	int cpu;
304 
305 	for_each_possible_cpu(cpu) {
306 		struct cpuinfo_x86 *c = &cpu_data(cpu);
307 
308 		if (c->initialized && c->phys_proc_id == phys_pkg)
309 			return c->logical_proc_id;
310 	}
311 	return -1;
312 }
313 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
314 /**
315  * topology_phys_to_logical_die - Map a physical die id to logical
316  *
317  * Returns logical die id or -1 if not found
318  */
319 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
320 {
321 	int cpu;
322 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
323 
324 	for_each_possible_cpu(cpu) {
325 		struct cpuinfo_x86 *c = &cpu_data(cpu);
326 
327 		if (c->initialized && c->cpu_die_id == die_id &&
328 		    c->phys_proc_id == proc_id)
329 			return c->logical_die_id;
330 	}
331 	return -1;
332 }
333 EXPORT_SYMBOL(topology_phys_to_logical_die);
334 
335 /**
336  * topology_update_package_map - Update the physical to logical package map
337  * @pkg:	The physical package id as retrieved via CPUID
338  * @cpu:	The cpu for which this is updated
339  */
340 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
341 {
342 	int new;
343 
344 	/* Already available somewhere? */
345 	new = topology_phys_to_logical_pkg(pkg);
346 	if (new >= 0)
347 		goto found;
348 
349 	new = logical_packages++;
350 	if (new != pkg) {
351 		pr_info("CPU %u Converting physical %u to logical package %u\n",
352 			cpu, pkg, new);
353 	}
354 found:
355 	cpu_data(cpu).logical_proc_id = new;
356 	return 0;
357 }
358 /**
359  * topology_update_die_map - Update the physical to logical die map
360  * @die:	The die id as retrieved via CPUID
361  * @cpu:	The cpu for which this is updated
362  */
363 int topology_update_die_map(unsigned int die, unsigned int cpu)
364 {
365 	int new;
366 
367 	/* Already available somewhere? */
368 	new = topology_phys_to_logical_die(die, cpu);
369 	if (new >= 0)
370 		goto found;
371 
372 	new = logical_die++;
373 	if (new != die) {
374 		pr_info("CPU %u Converting physical %u to logical die %u\n",
375 			cpu, die, new);
376 	}
377 found:
378 	cpu_data(cpu).logical_die_id = new;
379 	return 0;
380 }
381 
382 void __init smp_store_boot_cpu_info(void)
383 {
384 	int id = 0; /* CPU 0 */
385 	struct cpuinfo_x86 *c = &cpu_data(id);
386 
387 	*c = boot_cpu_data;
388 	c->cpu_index = id;
389 	topology_update_package_map(c->phys_proc_id, id);
390 	topology_update_die_map(c->cpu_die_id, id);
391 	c->initialized = true;
392 }
393 
394 /*
395  * The bootstrap kernel entry code has set these up. Save them for
396  * a given CPU
397  */
398 void smp_store_cpu_info(int id)
399 {
400 	struct cpuinfo_x86 *c = &cpu_data(id);
401 
402 	/* Copy boot_cpu_data only on the first bringup */
403 	if (!c->initialized)
404 		*c = boot_cpu_data;
405 	c->cpu_index = id;
406 	/*
407 	 * During boot time, CPU0 has this setup already. Save the info when
408 	 * bringing up AP or offlined CPU0.
409 	 */
410 	identify_secondary_cpu(c);
411 	c->initialized = true;
412 }
413 
414 static bool
415 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
416 {
417 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
418 
419 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
420 }
421 
422 static bool
423 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
424 {
425 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
426 
427 	return !WARN_ONCE(!topology_same_node(c, o),
428 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
429 		"[node: %d != %d]. Ignoring dependency.\n",
430 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
431 }
432 
433 #define link_mask(mfunc, c1, c2)					\
434 do {									\
435 	cpumask_set_cpu((c1), mfunc(c2));				\
436 	cpumask_set_cpu((c2), mfunc(c1));				\
437 } while (0)
438 
439 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
440 {
441 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
442 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
443 
444 		if (c->phys_proc_id == o->phys_proc_id &&
445 		    c->cpu_die_id == o->cpu_die_id &&
446 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
447 			if (c->cpu_core_id == o->cpu_core_id)
448 				return topology_sane(c, o, "smt");
449 
450 			if ((c->cu_id != 0xff) &&
451 			    (o->cu_id != 0xff) &&
452 			    (c->cu_id == o->cu_id))
453 				return topology_sane(c, o, "smt");
454 		}
455 
456 	} else if (c->phys_proc_id == o->phys_proc_id &&
457 		   c->cpu_die_id == o->cpu_die_id &&
458 		   c->cpu_core_id == o->cpu_core_id) {
459 		return topology_sane(c, o, "smt");
460 	}
461 
462 	return false;
463 }
464 
465 /*
466  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
467  *
468  * These are Intel CPUs that enumerate an LLC that is shared by
469  * multiple NUMA nodes. The LLC on these systems is shared for
470  * off-package data access but private to the NUMA node (half
471  * of the package) for on-package access.
472  *
473  * CPUID (the source of the information about the LLC) can only
474  * enumerate the cache as being shared *or* unshared, but not
475  * this particular configuration. The CPU in this case enumerates
476  * the cache to be shared across the entire package (spanning both
477  * NUMA nodes).
478  */
479 
480 static const struct x86_cpu_id snc_cpu[] = {
481 	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
482 	{}
483 };
484 
485 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
486 {
487 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
488 
489 	/* Do not match if we do not have a valid APICID for cpu: */
490 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
491 		return false;
492 
493 	/* Do not match if LLC id does not match: */
494 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
495 		return false;
496 
497 	/*
498 	 * Allow the SNC topology without warning. Return of false
499 	 * means 'c' does not share the LLC of 'o'. This will be
500 	 * reflected to userspace.
501 	 */
502 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
503 		return false;
504 
505 	return topology_sane(c, o, "llc");
506 }
507 
508 /*
509  * Unlike the other levels, we do not enforce keeping a
510  * multicore group inside a NUMA node.  If this happens, we will
511  * discard the MC level of the topology later.
512  */
513 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
514 {
515 	if (c->phys_proc_id == o->phys_proc_id)
516 		return true;
517 	return false;
518 }
519 
520 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
521 {
522 	if ((c->phys_proc_id == o->phys_proc_id) &&
523 		(c->cpu_die_id == o->cpu_die_id))
524 		return true;
525 	return false;
526 }
527 
528 
529 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
530 static inline int x86_sched_itmt_flags(void)
531 {
532 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
533 }
534 
535 #ifdef CONFIG_SCHED_MC
536 static int x86_core_flags(void)
537 {
538 	return cpu_core_flags() | x86_sched_itmt_flags();
539 }
540 #endif
541 #ifdef CONFIG_SCHED_SMT
542 static int x86_smt_flags(void)
543 {
544 	return cpu_smt_flags() | x86_sched_itmt_flags();
545 }
546 #endif
547 #endif
548 
549 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
550 #ifdef CONFIG_SCHED_SMT
551 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
552 #endif
553 #ifdef CONFIG_SCHED_MC
554 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
555 #endif
556 	{ NULL, },
557 };
558 
559 static struct sched_domain_topology_level x86_topology[] = {
560 #ifdef CONFIG_SCHED_SMT
561 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
562 #endif
563 #ifdef CONFIG_SCHED_MC
564 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
565 #endif
566 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
567 	{ NULL, },
568 };
569 
570 /*
571  * Set if a package/die has multiple NUMA nodes inside.
572  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
573  * Sub-NUMA Clustering have this.
574  */
575 static bool x86_has_numa_in_package;
576 
577 void set_cpu_sibling_map(int cpu)
578 {
579 	bool has_smt = smp_num_siblings > 1;
580 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
581 	struct cpuinfo_x86 *c = &cpu_data(cpu);
582 	struct cpuinfo_x86 *o;
583 	int i, threads;
584 
585 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
586 
587 	if (!has_mp) {
588 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
589 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
590 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
591 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
592 		c->booted_cores = 1;
593 		return;
594 	}
595 
596 	for_each_cpu(i, cpu_sibling_setup_mask) {
597 		o = &cpu_data(i);
598 
599 		if ((i == cpu) || (has_smt && match_smt(c, o)))
600 			link_mask(topology_sibling_cpumask, cpu, i);
601 
602 		if ((i == cpu) || (has_mp && match_llc(c, o)))
603 			link_mask(cpu_llc_shared_mask, cpu, i);
604 
605 	}
606 
607 	/*
608 	 * This needs a separate iteration over the cpus because we rely on all
609 	 * topology_sibling_cpumask links to be set-up.
610 	 */
611 	for_each_cpu(i, cpu_sibling_setup_mask) {
612 		o = &cpu_data(i);
613 
614 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
615 			link_mask(topology_core_cpumask, cpu, i);
616 
617 			/*
618 			 *  Does this new cpu bringup a new core?
619 			 */
620 			if (cpumask_weight(
621 			    topology_sibling_cpumask(cpu)) == 1) {
622 				/*
623 				 * for each core in package, increment
624 				 * the booted_cores for this new cpu
625 				 */
626 				if (cpumask_first(
627 				    topology_sibling_cpumask(i)) == i)
628 					c->booted_cores++;
629 				/*
630 				 * increment the core count for all
631 				 * the other cpus in this package
632 				 */
633 				if (i != cpu)
634 					cpu_data(i).booted_cores++;
635 			} else if (i != cpu && !c->booted_cores)
636 				c->booted_cores = cpu_data(i).booted_cores;
637 		}
638 		if (match_pkg(c, o) && !topology_same_node(c, o))
639 			x86_has_numa_in_package = true;
640 
641 		if ((i == cpu) || (has_mp && match_die(c, o)))
642 			link_mask(topology_die_cpumask, cpu, i);
643 	}
644 
645 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
646 	if (threads > __max_smt_threads)
647 		__max_smt_threads = threads;
648 }
649 
650 /* maps the cpu to the sched domain representing multi-core */
651 const struct cpumask *cpu_coregroup_mask(int cpu)
652 {
653 	return cpu_llc_shared_mask(cpu);
654 }
655 
656 static void impress_friends(void)
657 {
658 	int cpu;
659 	unsigned long bogosum = 0;
660 	/*
661 	 * Allow the user to impress friends.
662 	 */
663 	pr_debug("Before bogomips\n");
664 	for_each_possible_cpu(cpu)
665 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
666 			bogosum += cpu_data(cpu).loops_per_jiffy;
667 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
668 		num_online_cpus(),
669 		bogosum/(500000/HZ),
670 		(bogosum/(5000/HZ))%100);
671 
672 	pr_debug("Before bogocount - setting activated=1\n");
673 }
674 
675 void __inquire_remote_apic(int apicid)
676 {
677 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
678 	const char * const names[] = { "ID", "VERSION", "SPIV" };
679 	int timeout;
680 	u32 status;
681 
682 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
683 
684 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
685 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
686 
687 		/*
688 		 * Wait for idle.
689 		 */
690 		status = safe_apic_wait_icr_idle();
691 		if (status)
692 			pr_cont("a previous APIC delivery may have failed\n");
693 
694 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
695 
696 		timeout = 0;
697 		do {
698 			udelay(100);
699 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
700 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
701 
702 		switch (status) {
703 		case APIC_ICR_RR_VALID:
704 			status = apic_read(APIC_RRR);
705 			pr_cont("%08x\n", status);
706 			break;
707 		default:
708 			pr_cont("failed\n");
709 		}
710 	}
711 }
712 
713 /*
714  * The Multiprocessor Specification 1.4 (1997) example code suggests
715  * that there should be a 10ms delay between the BSP asserting INIT
716  * and de-asserting INIT, when starting a remote processor.
717  * But that slows boot and resume on modern processors, which include
718  * many cores and don't require that delay.
719  *
720  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
721  * Modern processor families are quirked to remove the delay entirely.
722  */
723 #define UDELAY_10MS_DEFAULT 10000
724 
725 static unsigned int init_udelay = UINT_MAX;
726 
727 static int __init cpu_init_udelay(char *str)
728 {
729 	get_option(&str, &init_udelay);
730 
731 	return 0;
732 }
733 early_param("cpu_init_udelay", cpu_init_udelay);
734 
735 static void __init smp_quirk_init_udelay(void)
736 {
737 	/* if cmdline changed it from default, leave it alone */
738 	if (init_udelay != UINT_MAX)
739 		return;
740 
741 	/* if modern processor, use no delay */
742 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
743 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
744 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
745 		init_udelay = 0;
746 		return;
747 	}
748 	/* else, use legacy delay */
749 	init_udelay = UDELAY_10MS_DEFAULT;
750 }
751 
752 /*
753  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
754  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
755  * won't ... remember to clear down the APIC, etc later.
756  */
757 int
758 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
759 {
760 	unsigned long send_status, accept_status = 0;
761 	int maxlvt;
762 
763 	/* Target chip */
764 	/* Boot on the stack */
765 	/* Kick the second */
766 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
767 
768 	pr_debug("Waiting for send to finish...\n");
769 	send_status = safe_apic_wait_icr_idle();
770 
771 	/*
772 	 * Give the other CPU some time to accept the IPI.
773 	 */
774 	udelay(200);
775 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
776 		maxlvt = lapic_get_maxlvt();
777 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
778 			apic_write(APIC_ESR, 0);
779 		accept_status = (apic_read(APIC_ESR) & 0xEF);
780 	}
781 	pr_debug("NMI sent\n");
782 
783 	if (send_status)
784 		pr_err("APIC never delivered???\n");
785 	if (accept_status)
786 		pr_err("APIC delivery error (%lx)\n", accept_status);
787 
788 	return (send_status | accept_status);
789 }
790 
791 static int
792 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
793 {
794 	unsigned long send_status = 0, accept_status = 0;
795 	int maxlvt, num_starts, j;
796 
797 	maxlvt = lapic_get_maxlvt();
798 
799 	/*
800 	 * Be paranoid about clearing APIC errors.
801 	 */
802 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
803 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
804 			apic_write(APIC_ESR, 0);
805 		apic_read(APIC_ESR);
806 	}
807 
808 	pr_debug("Asserting INIT\n");
809 
810 	/*
811 	 * Turn INIT on target chip
812 	 */
813 	/*
814 	 * Send IPI
815 	 */
816 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
817 		       phys_apicid);
818 
819 	pr_debug("Waiting for send to finish...\n");
820 	send_status = safe_apic_wait_icr_idle();
821 
822 	udelay(init_udelay);
823 
824 	pr_debug("Deasserting INIT\n");
825 
826 	/* Target chip */
827 	/* Send IPI */
828 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
829 
830 	pr_debug("Waiting for send to finish...\n");
831 	send_status = safe_apic_wait_icr_idle();
832 
833 	mb();
834 
835 	/*
836 	 * Should we send STARTUP IPIs ?
837 	 *
838 	 * Determine this based on the APIC version.
839 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
840 	 */
841 	if (APIC_INTEGRATED(boot_cpu_apic_version))
842 		num_starts = 2;
843 	else
844 		num_starts = 0;
845 
846 	/*
847 	 * Run STARTUP IPI loop.
848 	 */
849 	pr_debug("#startup loops: %d\n", num_starts);
850 
851 	for (j = 1; j <= num_starts; j++) {
852 		pr_debug("Sending STARTUP #%d\n", j);
853 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
854 			apic_write(APIC_ESR, 0);
855 		apic_read(APIC_ESR);
856 		pr_debug("After apic_write\n");
857 
858 		/*
859 		 * STARTUP IPI
860 		 */
861 
862 		/* Target chip */
863 		/* Boot on the stack */
864 		/* Kick the second */
865 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
866 			       phys_apicid);
867 
868 		/*
869 		 * Give the other CPU some time to accept the IPI.
870 		 */
871 		if (init_udelay == 0)
872 			udelay(10);
873 		else
874 			udelay(300);
875 
876 		pr_debug("Startup point 1\n");
877 
878 		pr_debug("Waiting for send to finish...\n");
879 		send_status = safe_apic_wait_icr_idle();
880 
881 		/*
882 		 * Give the other CPU some time to accept the IPI.
883 		 */
884 		if (init_udelay == 0)
885 			udelay(10);
886 		else
887 			udelay(200);
888 
889 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
890 			apic_write(APIC_ESR, 0);
891 		accept_status = (apic_read(APIC_ESR) & 0xEF);
892 		if (send_status || accept_status)
893 			break;
894 	}
895 	pr_debug("After Startup\n");
896 
897 	if (send_status)
898 		pr_err("APIC never delivered???\n");
899 	if (accept_status)
900 		pr_err("APIC delivery error (%lx)\n", accept_status);
901 
902 	return (send_status | accept_status);
903 }
904 
905 /* reduce the number of lines printed when booting a large cpu count system */
906 static void announce_cpu(int cpu, int apicid)
907 {
908 	static int current_node = NUMA_NO_NODE;
909 	int node = early_cpu_to_node(cpu);
910 	static int width, node_width;
911 
912 	if (!width)
913 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
914 
915 	if (!node_width)
916 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
917 
918 	if (cpu == 1)
919 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
920 
921 	if (system_state < SYSTEM_RUNNING) {
922 		if (node != current_node) {
923 			if (current_node > (-1))
924 				pr_cont("\n");
925 			current_node = node;
926 
927 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
928 			       node_width - num_digits(node), " ", node);
929 		}
930 
931 		/* Add padding for the BSP */
932 		if (cpu == 1)
933 			pr_cont("%*s", width + 1, " ");
934 
935 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
936 
937 	} else
938 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
939 			node, cpu, apicid);
940 }
941 
942 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
943 {
944 	int cpu;
945 
946 	cpu = smp_processor_id();
947 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
948 		return NMI_HANDLED;
949 
950 	return NMI_DONE;
951 }
952 
953 /*
954  * Wake up AP by INIT, INIT, STARTUP sequence.
955  *
956  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
957  * boot-strap code which is not a desired behavior for waking up BSP. To
958  * void the boot-strap code, wake up CPU0 by NMI instead.
959  *
960  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
961  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
962  * We'll change this code in the future to wake up hard offlined CPU0 if
963  * real platform and request are available.
964  */
965 static int
966 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
967 	       int *cpu0_nmi_registered)
968 {
969 	int id;
970 	int boot_error;
971 
972 	preempt_disable();
973 
974 	/*
975 	 * Wake up AP by INIT, INIT, STARTUP sequence.
976 	 */
977 	if (cpu) {
978 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
979 		goto out;
980 	}
981 
982 	/*
983 	 * Wake up BSP by nmi.
984 	 *
985 	 * Register a NMI handler to help wake up CPU0.
986 	 */
987 	boot_error = register_nmi_handler(NMI_LOCAL,
988 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
989 
990 	if (!boot_error) {
991 		enable_start_cpu0 = 1;
992 		*cpu0_nmi_registered = 1;
993 		if (apic->dest_logical == APIC_DEST_LOGICAL)
994 			id = cpu0_logical_apicid;
995 		else
996 			id = apicid;
997 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
998 	}
999 
1000 out:
1001 	preempt_enable();
1002 
1003 	return boot_error;
1004 }
1005 
1006 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1007 {
1008 	int ret;
1009 
1010 	/* Just in case we booted with a single CPU. */
1011 	alternatives_enable_smp();
1012 
1013 	per_cpu(current_task, cpu) = idle;
1014 
1015 	/* Initialize the interrupt stack(s) */
1016 	ret = irq_init_percpu_irqstack(cpu);
1017 	if (ret)
1018 		return ret;
1019 
1020 #ifdef CONFIG_X86_32
1021 	/* Stack for startup_32 can be just as for start_secondary onwards */
1022 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1023 #else
1024 	initial_gs = per_cpu_offset(cpu);
1025 #endif
1026 	return 0;
1027 }
1028 
1029 /*
1030  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1031  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1032  * Returns zero if CPU booted OK, else error code from
1033  * ->wakeup_secondary_cpu.
1034  */
1035 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1036 		       int *cpu0_nmi_registered)
1037 {
1038 	volatile u32 *trampoline_status =
1039 		(volatile u32 *) __va(real_mode_header->trampoline_status);
1040 	/* start_ip had better be page-aligned! */
1041 	unsigned long start_ip = real_mode_header->trampoline_start;
1042 
1043 	unsigned long boot_error = 0;
1044 	unsigned long timeout;
1045 
1046 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1047 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1048 	initial_code = (unsigned long)start_secondary;
1049 	initial_stack  = idle->thread.sp;
1050 
1051 	/* Enable the espfix hack for this CPU */
1052 	init_espfix_ap(cpu);
1053 
1054 	/* So we see what's up */
1055 	announce_cpu(cpu, apicid);
1056 
1057 	/*
1058 	 * This grunge runs the startup process for
1059 	 * the targeted processor.
1060 	 */
1061 
1062 	if (x86_platform.legacy.warm_reset) {
1063 
1064 		pr_debug("Setting warm reset code and vector.\n");
1065 
1066 		smpboot_setup_warm_reset_vector(start_ip);
1067 		/*
1068 		 * Be paranoid about clearing APIC errors.
1069 		*/
1070 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1071 			apic_write(APIC_ESR, 0);
1072 			apic_read(APIC_ESR);
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * AP might wait on cpu_callout_mask in cpu_init() with
1078 	 * cpu_initialized_mask set if previous attempt to online
1079 	 * it timed-out. Clear cpu_initialized_mask so that after
1080 	 * INIT/SIPI it could start with a clean state.
1081 	 */
1082 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1083 	smp_mb();
1084 
1085 	/*
1086 	 * Wake up a CPU in difference cases:
1087 	 * - Use the method in the APIC driver if it's defined
1088 	 * Otherwise,
1089 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1090 	 */
1091 	if (apic->wakeup_secondary_cpu)
1092 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1093 	else
1094 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1095 						     cpu0_nmi_registered);
1096 
1097 	if (!boot_error) {
1098 		/*
1099 		 * Wait 10s total for first sign of life from AP
1100 		 */
1101 		boot_error = -1;
1102 		timeout = jiffies + 10*HZ;
1103 		while (time_before(jiffies, timeout)) {
1104 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1105 				/*
1106 				 * Tell AP to proceed with initialization
1107 				 */
1108 				cpumask_set_cpu(cpu, cpu_callout_mask);
1109 				boot_error = 0;
1110 				break;
1111 			}
1112 			schedule();
1113 		}
1114 	}
1115 
1116 	if (!boot_error) {
1117 		/*
1118 		 * Wait till AP completes initial initialization
1119 		 */
1120 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1121 			/*
1122 			 * Allow other tasks to run while we wait for the
1123 			 * AP to come online. This also gives a chance
1124 			 * for the MTRR work(triggered by the AP coming online)
1125 			 * to be completed in the stop machine context.
1126 			 */
1127 			schedule();
1128 		}
1129 	}
1130 
1131 	/* mark "stuck" area as not stuck */
1132 	*trampoline_status = 0;
1133 
1134 	if (x86_platform.legacy.warm_reset) {
1135 		/*
1136 		 * Cleanup possible dangling ends...
1137 		 */
1138 		smpboot_restore_warm_reset_vector();
1139 	}
1140 
1141 	return boot_error;
1142 }
1143 
1144 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1145 {
1146 	int apicid = apic->cpu_present_to_apicid(cpu);
1147 	int cpu0_nmi_registered = 0;
1148 	unsigned long flags;
1149 	int err, ret = 0;
1150 
1151 	lockdep_assert_irqs_enabled();
1152 
1153 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1154 
1155 	if (apicid == BAD_APICID ||
1156 	    !physid_isset(apicid, phys_cpu_present_map) ||
1157 	    !apic->apic_id_valid(apicid)) {
1158 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1159 		return -EINVAL;
1160 	}
1161 
1162 	/*
1163 	 * Already booted CPU?
1164 	 */
1165 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1166 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1167 		return -ENOSYS;
1168 	}
1169 
1170 	/*
1171 	 * Save current MTRR state in case it was changed since early boot
1172 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1173 	 */
1174 	mtrr_save_state();
1175 
1176 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1177 	err = cpu_check_up_prepare(cpu);
1178 	if (err && err != -EBUSY)
1179 		return err;
1180 
1181 	/* the FPU context is blank, nobody can own it */
1182 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1183 
1184 	err = common_cpu_up(cpu, tidle);
1185 	if (err)
1186 		return err;
1187 
1188 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1189 	if (err) {
1190 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1191 		ret = -EIO;
1192 		goto unreg_nmi;
1193 	}
1194 
1195 	/*
1196 	 * Check TSC synchronization with the AP (keep irqs disabled
1197 	 * while doing so):
1198 	 */
1199 	local_irq_save(flags);
1200 	check_tsc_sync_source(cpu);
1201 	local_irq_restore(flags);
1202 
1203 	while (!cpu_online(cpu)) {
1204 		cpu_relax();
1205 		touch_nmi_watchdog();
1206 	}
1207 
1208 unreg_nmi:
1209 	/*
1210 	 * Clean up the nmi handler. Do this after the callin and callout sync
1211 	 * to avoid impact of possible long unregister time.
1212 	 */
1213 	if (cpu0_nmi_registered)
1214 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1215 
1216 	return ret;
1217 }
1218 
1219 /**
1220  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1221  */
1222 void arch_disable_smp_support(void)
1223 {
1224 	disable_ioapic_support();
1225 }
1226 
1227 /*
1228  * Fall back to non SMP mode after errors.
1229  *
1230  * RED-PEN audit/test this more. I bet there is more state messed up here.
1231  */
1232 static __init void disable_smp(void)
1233 {
1234 	pr_info("SMP disabled\n");
1235 
1236 	disable_ioapic_support();
1237 
1238 	init_cpu_present(cpumask_of(0));
1239 	init_cpu_possible(cpumask_of(0));
1240 
1241 	if (smp_found_config)
1242 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1243 	else
1244 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1245 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1246 	cpumask_set_cpu(0, topology_core_cpumask(0));
1247 	cpumask_set_cpu(0, topology_die_cpumask(0));
1248 }
1249 
1250 /*
1251  * Various sanity checks.
1252  */
1253 static void __init smp_sanity_check(void)
1254 {
1255 	preempt_disable();
1256 
1257 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1258 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1259 		unsigned int cpu;
1260 		unsigned nr;
1261 
1262 		pr_warn("More than 8 CPUs detected - skipping them\n"
1263 			"Use CONFIG_X86_BIGSMP\n");
1264 
1265 		nr = 0;
1266 		for_each_present_cpu(cpu) {
1267 			if (nr >= 8)
1268 				set_cpu_present(cpu, false);
1269 			nr++;
1270 		}
1271 
1272 		nr = 0;
1273 		for_each_possible_cpu(cpu) {
1274 			if (nr >= 8)
1275 				set_cpu_possible(cpu, false);
1276 			nr++;
1277 		}
1278 
1279 		nr_cpu_ids = 8;
1280 	}
1281 #endif
1282 
1283 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1284 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1285 			hard_smp_processor_id());
1286 
1287 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1288 	}
1289 
1290 	/*
1291 	 * Should not be necessary because the MP table should list the boot
1292 	 * CPU too, but we do it for the sake of robustness anyway.
1293 	 */
1294 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1295 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1296 			  boot_cpu_physical_apicid);
1297 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1298 	}
1299 	preempt_enable();
1300 }
1301 
1302 static void __init smp_cpu_index_default(void)
1303 {
1304 	int i;
1305 	struct cpuinfo_x86 *c;
1306 
1307 	for_each_possible_cpu(i) {
1308 		c = &cpu_data(i);
1309 		/* mark all to hotplug */
1310 		c->cpu_index = nr_cpu_ids;
1311 	}
1312 }
1313 
1314 static void __init smp_get_logical_apicid(void)
1315 {
1316 	if (x2apic_mode)
1317 		cpu0_logical_apicid = apic_read(APIC_LDR);
1318 	else
1319 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1320 }
1321 
1322 /*
1323  * Prepare for SMP bootup.
1324  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1325  *            for common interface support.
1326  */
1327 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1328 {
1329 	unsigned int i;
1330 
1331 	smp_cpu_index_default();
1332 
1333 	/*
1334 	 * Setup boot CPU information
1335 	 */
1336 	smp_store_boot_cpu_info(); /* Final full version of the data */
1337 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1338 	mb();
1339 
1340 	for_each_possible_cpu(i) {
1341 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1342 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1343 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1344 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1345 	}
1346 
1347 	/*
1348 	 * Set 'default' x86 topology, this matches default_topology() in that
1349 	 * it has NUMA nodes as a topology level. See also
1350 	 * native_smp_cpus_done().
1351 	 *
1352 	 * Must be done before set_cpus_sibling_map() is ran.
1353 	 */
1354 	set_sched_topology(x86_topology);
1355 
1356 	set_cpu_sibling_map(0);
1357 
1358 	smp_sanity_check();
1359 
1360 	switch (apic_intr_mode) {
1361 	case APIC_PIC:
1362 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1363 		disable_smp();
1364 		return;
1365 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1366 		disable_smp();
1367 		/* Setup local timer */
1368 		x86_init.timers.setup_percpu_clockev();
1369 		return;
1370 	case APIC_VIRTUAL_WIRE:
1371 	case APIC_SYMMETRIC_IO:
1372 		break;
1373 	}
1374 
1375 	/* Setup local timer */
1376 	x86_init.timers.setup_percpu_clockev();
1377 
1378 	smp_get_logical_apicid();
1379 
1380 	pr_info("CPU0: ");
1381 	print_cpu_info(&cpu_data(0));
1382 
1383 	native_pv_lock_init();
1384 
1385 	uv_system_init();
1386 
1387 	set_mtrr_aps_delayed_init();
1388 
1389 	smp_quirk_init_udelay();
1390 
1391 	speculative_store_bypass_ht_init();
1392 }
1393 
1394 void arch_enable_nonboot_cpus_begin(void)
1395 {
1396 	set_mtrr_aps_delayed_init();
1397 }
1398 
1399 void arch_enable_nonboot_cpus_end(void)
1400 {
1401 	mtrr_aps_init();
1402 }
1403 
1404 /*
1405  * Early setup to make printk work.
1406  */
1407 void __init native_smp_prepare_boot_cpu(void)
1408 {
1409 	int me = smp_processor_id();
1410 	switch_to_new_gdt(me);
1411 	/* already set me in cpu_online_mask in boot_cpu_init() */
1412 	cpumask_set_cpu(me, cpu_callout_mask);
1413 	cpu_set_state_online(me);
1414 }
1415 
1416 void __init calculate_max_logical_packages(void)
1417 {
1418 	int ncpus;
1419 
1420 	/*
1421 	 * Today neither Intel nor AMD support heterogenous systems so
1422 	 * extrapolate the boot cpu's data to all packages.
1423 	 */
1424 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1425 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1426 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1427 }
1428 
1429 void __init native_smp_cpus_done(unsigned int max_cpus)
1430 {
1431 	pr_debug("Boot done\n");
1432 
1433 	calculate_max_logical_packages();
1434 
1435 	if (x86_has_numa_in_package)
1436 		set_sched_topology(x86_numa_in_package_topology);
1437 
1438 	nmi_selftest();
1439 	impress_friends();
1440 	mtrr_aps_init();
1441 }
1442 
1443 static int __initdata setup_possible_cpus = -1;
1444 static int __init _setup_possible_cpus(char *str)
1445 {
1446 	get_option(&str, &setup_possible_cpus);
1447 	return 0;
1448 }
1449 early_param("possible_cpus", _setup_possible_cpus);
1450 
1451 
1452 /*
1453  * cpu_possible_mask should be static, it cannot change as cpu's
1454  * are onlined, or offlined. The reason is per-cpu data-structures
1455  * are allocated by some modules at init time, and dont expect to
1456  * do this dynamically on cpu arrival/departure.
1457  * cpu_present_mask on the other hand can change dynamically.
1458  * In case when cpu_hotplug is not compiled, then we resort to current
1459  * behaviour, which is cpu_possible == cpu_present.
1460  * - Ashok Raj
1461  *
1462  * Three ways to find out the number of additional hotplug CPUs:
1463  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1464  * - The user can overwrite it with possible_cpus=NUM
1465  * - Otherwise don't reserve additional CPUs.
1466  * We do this because additional CPUs waste a lot of memory.
1467  * -AK
1468  */
1469 __init void prefill_possible_map(void)
1470 {
1471 	int i, possible;
1472 
1473 	/* No boot processor was found in mptable or ACPI MADT */
1474 	if (!num_processors) {
1475 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1476 			int apicid = boot_cpu_physical_apicid;
1477 			int cpu = hard_smp_processor_id();
1478 
1479 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1480 
1481 			/* Make sure boot cpu is enumerated */
1482 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1483 			    apic->apic_id_valid(apicid))
1484 				generic_processor_info(apicid, boot_cpu_apic_version);
1485 		}
1486 
1487 		if (!num_processors)
1488 			num_processors = 1;
1489 	}
1490 
1491 	i = setup_max_cpus ?: 1;
1492 	if (setup_possible_cpus == -1) {
1493 		possible = num_processors;
1494 #ifdef CONFIG_HOTPLUG_CPU
1495 		if (setup_max_cpus)
1496 			possible += disabled_cpus;
1497 #else
1498 		if (possible > i)
1499 			possible = i;
1500 #endif
1501 	} else
1502 		possible = setup_possible_cpus;
1503 
1504 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1505 
1506 	/* nr_cpu_ids could be reduced via nr_cpus= */
1507 	if (possible > nr_cpu_ids) {
1508 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1509 			possible, nr_cpu_ids);
1510 		possible = nr_cpu_ids;
1511 	}
1512 
1513 #ifdef CONFIG_HOTPLUG_CPU
1514 	if (!setup_max_cpus)
1515 #endif
1516 	if (possible > i) {
1517 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1518 			possible, setup_max_cpus);
1519 		possible = i;
1520 	}
1521 
1522 	nr_cpu_ids = possible;
1523 
1524 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1525 		possible, max_t(int, possible - num_processors, 0));
1526 
1527 	reset_cpu_possible_mask();
1528 
1529 	for (i = 0; i < possible; i++)
1530 		set_cpu_possible(i, true);
1531 }
1532 
1533 #ifdef CONFIG_HOTPLUG_CPU
1534 
1535 /* Recompute SMT state for all CPUs on offline */
1536 static void recompute_smt_state(void)
1537 {
1538 	int max_threads, cpu;
1539 
1540 	max_threads = 0;
1541 	for_each_online_cpu (cpu) {
1542 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1543 
1544 		if (threads > max_threads)
1545 			max_threads = threads;
1546 	}
1547 	__max_smt_threads = max_threads;
1548 }
1549 
1550 static void remove_siblinginfo(int cpu)
1551 {
1552 	int sibling;
1553 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1554 
1555 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1556 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1557 		/*/
1558 		 * last thread sibling in this cpu core going down
1559 		 */
1560 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1561 			cpu_data(sibling).booted_cores--;
1562 	}
1563 
1564 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1565 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1566 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1567 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1568 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1569 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1570 	cpumask_clear(cpu_llc_shared_mask(cpu));
1571 	cpumask_clear(topology_sibling_cpumask(cpu));
1572 	cpumask_clear(topology_core_cpumask(cpu));
1573 	cpumask_clear(topology_die_cpumask(cpu));
1574 	c->cpu_core_id = 0;
1575 	c->booted_cores = 0;
1576 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1577 	recompute_smt_state();
1578 }
1579 
1580 static void remove_cpu_from_maps(int cpu)
1581 {
1582 	set_cpu_online(cpu, false);
1583 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1584 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1585 	/* was set by cpu_init() */
1586 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1587 	numa_remove_cpu(cpu);
1588 }
1589 
1590 void cpu_disable_common(void)
1591 {
1592 	int cpu = smp_processor_id();
1593 
1594 	remove_siblinginfo(cpu);
1595 
1596 	/* It's now safe to remove this processor from the online map */
1597 	lock_vector_lock();
1598 	remove_cpu_from_maps(cpu);
1599 	unlock_vector_lock();
1600 	fixup_irqs();
1601 	lapic_offline();
1602 }
1603 
1604 int native_cpu_disable(void)
1605 {
1606 	int ret;
1607 
1608 	ret = lapic_can_unplug_cpu();
1609 	if (ret)
1610 		return ret;
1611 
1612 	clear_local_APIC();
1613 	cpu_disable_common();
1614 
1615 	return 0;
1616 }
1617 
1618 int common_cpu_die(unsigned int cpu)
1619 {
1620 	int ret = 0;
1621 
1622 	/* We don't do anything here: idle task is faking death itself. */
1623 
1624 	/* They ack this in play_dead() by setting CPU_DEAD */
1625 	if (cpu_wait_death(cpu, 5)) {
1626 		if (system_state == SYSTEM_RUNNING)
1627 			pr_info("CPU %u is now offline\n", cpu);
1628 	} else {
1629 		pr_err("CPU %u didn't die...\n", cpu);
1630 		ret = -1;
1631 	}
1632 
1633 	return ret;
1634 }
1635 
1636 void native_cpu_die(unsigned int cpu)
1637 {
1638 	common_cpu_die(cpu);
1639 }
1640 
1641 void play_dead_common(void)
1642 {
1643 	idle_task_exit();
1644 
1645 	/* Ack it */
1646 	(void)cpu_report_death();
1647 
1648 	/*
1649 	 * With physical CPU hotplug, we should halt the cpu
1650 	 */
1651 	local_irq_disable();
1652 }
1653 
1654 static bool wakeup_cpu0(void)
1655 {
1656 	if (smp_processor_id() == 0 && enable_start_cpu0)
1657 		return true;
1658 
1659 	return false;
1660 }
1661 
1662 /*
1663  * We need to flush the caches before going to sleep, lest we have
1664  * dirty data in our caches when we come back up.
1665  */
1666 static inline void mwait_play_dead(void)
1667 {
1668 	unsigned int eax, ebx, ecx, edx;
1669 	unsigned int highest_cstate = 0;
1670 	unsigned int highest_subcstate = 0;
1671 	void *mwait_ptr;
1672 	int i;
1673 
1674 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1675 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1676 		return;
1677 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1678 		return;
1679 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1680 		return;
1681 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1682 		return;
1683 
1684 	eax = CPUID_MWAIT_LEAF;
1685 	ecx = 0;
1686 	native_cpuid(&eax, &ebx, &ecx, &edx);
1687 
1688 	/*
1689 	 * eax will be 0 if EDX enumeration is not valid.
1690 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1691 	 */
1692 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1693 		eax = 0;
1694 	} else {
1695 		edx >>= MWAIT_SUBSTATE_SIZE;
1696 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1697 			if (edx & MWAIT_SUBSTATE_MASK) {
1698 				highest_cstate = i;
1699 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1700 			}
1701 		}
1702 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1703 			(highest_subcstate - 1);
1704 	}
1705 
1706 	/*
1707 	 * This should be a memory location in a cache line which is
1708 	 * unlikely to be touched by other processors.  The actual
1709 	 * content is immaterial as it is not actually modified in any way.
1710 	 */
1711 	mwait_ptr = &current_thread_info()->flags;
1712 
1713 	wbinvd();
1714 
1715 	while (1) {
1716 		/*
1717 		 * The CLFLUSH is a workaround for erratum AAI65 for
1718 		 * the Xeon 7400 series.  It's not clear it is actually
1719 		 * needed, but it should be harmless in either case.
1720 		 * The WBINVD is insufficient due to the spurious-wakeup
1721 		 * case where we return around the loop.
1722 		 */
1723 		mb();
1724 		clflush(mwait_ptr);
1725 		mb();
1726 		__monitor(mwait_ptr, 0, 0);
1727 		mb();
1728 		__mwait(eax, 0);
1729 		/*
1730 		 * If NMI wants to wake up CPU0, start CPU0.
1731 		 */
1732 		if (wakeup_cpu0())
1733 			start_cpu0();
1734 	}
1735 }
1736 
1737 void hlt_play_dead(void)
1738 {
1739 	if (__this_cpu_read(cpu_info.x86) >= 4)
1740 		wbinvd();
1741 
1742 	while (1) {
1743 		native_halt();
1744 		/*
1745 		 * If NMI wants to wake up CPU0, start CPU0.
1746 		 */
1747 		if (wakeup_cpu0())
1748 			start_cpu0();
1749 	}
1750 }
1751 
1752 void native_play_dead(void)
1753 {
1754 	play_dead_common();
1755 	tboot_shutdown(TB_SHUTDOWN_WFS);
1756 
1757 	mwait_play_dead();	/* Only returns on failure */
1758 	if (cpuidle_play_dead())
1759 		hlt_play_dead();
1760 }
1761 
1762 #else /* ... !CONFIG_HOTPLUG_CPU */
1763 int native_cpu_disable(void)
1764 {
1765 	return -ENOSYS;
1766 }
1767 
1768 void native_cpu_die(unsigned int cpu)
1769 {
1770 	/* We said "no" in __cpu_disable */
1771 	BUG();
1772 }
1773 
1774 void native_play_dead(void)
1775 {
1776 	BUG();
1777 }
1778 
1779 #endif
1780