1 /* 2 * x86 SMP booting functions 3 * 4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 6 * Copyright 2001 Andi Kleen, SuSE Labs. 7 * 8 * Much of the core SMP work is based on previous work by Thomas Radke, to 9 * whom a great many thanks are extended. 10 * 11 * Thanks to Intel for making available several different Pentium, 12 * Pentium Pro and Pentium-II/Xeon MP machines. 13 * Original development of Linux SMP code supported by Caldera. 14 * 15 * This code is released under the GNU General Public License version 2 or 16 * later. 17 * 18 * Fixes 19 * Felix Koop : NR_CPUS used properly 20 * Jose Renau : Handle single CPU case. 21 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 22 * Greg Wright : Fix for kernel stacks panic. 23 * Erich Boleyn : MP v1.4 and additional changes. 24 * Matthias Sattler : Changes for 2.1 kernel map. 25 * Michel Lespinasse : Changes for 2.1 kernel map. 26 * Michael Chastain : Change trampoline.S to gnu as. 27 * Alan Cox : Dumb bug: 'B' step PPro's are fine 28 * Ingo Molnar : Added APIC timers, based on code 29 * from Jose Renau 30 * Ingo Molnar : various cleanups and rewrites 31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 33 * Andi Kleen : Changed for SMP boot into long mode. 34 * Martin J. Bligh : Added support for multi-quad systems 35 * Dave Jones : Report invalid combinations of Athlon CPUs. 36 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 37 * Andi Kleen : Converted to new state machine. 38 * Ashok Raj : CPU hotplug support 39 * Glauber Costa : i386 and x86_64 integration 40 */ 41 42 #include <linux/init.h> 43 #include <linux/smp.h> 44 #include <linux/module.h> 45 #include <linux/sched.h> 46 #include <linux/percpu.h> 47 #include <linux/bootmem.h> 48 #include <linux/err.h> 49 #include <linux/nmi.h> 50 #include <linux/tboot.h> 51 #include <linux/stackprotector.h> 52 #include <linux/gfp.h> 53 54 #include <asm/acpi.h> 55 #include <asm/desc.h> 56 #include <asm/nmi.h> 57 #include <asm/irq.h> 58 #include <asm/idle.h> 59 #include <asm/trampoline.h> 60 #include <asm/cpu.h> 61 #include <asm/numa.h> 62 #include <asm/pgtable.h> 63 #include <asm/tlbflush.h> 64 #include <asm/mtrr.h> 65 #include <asm/mwait.h> 66 #include <asm/apic.h> 67 #include <asm/io_apic.h> 68 #include <asm/setup.h> 69 #include <asm/uv/uv.h> 70 #include <linux/mc146818rtc.h> 71 72 #include <asm/smpboot_hooks.h> 73 #include <asm/i8259.h> 74 75 /* State of each CPU */ 76 DEFINE_PER_CPU(int, cpu_state) = { 0 }; 77 78 /* Store all idle threads, this can be reused instead of creating 79 * a new thread. Also avoids complicated thread destroy functionality 80 * for idle threads. 81 */ 82 #ifdef CONFIG_HOTPLUG_CPU 83 /* 84 * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is 85 * removed after init for !CONFIG_HOTPLUG_CPU. 86 */ 87 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array); 88 #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x)) 89 #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p)) 90 91 /* 92 * We need this for trampoline_base protection from concurrent accesses when 93 * off- and onlining cores wildly. 94 */ 95 static DEFINE_MUTEX(x86_cpu_hotplug_driver_mutex); 96 97 void cpu_hotplug_driver_lock(void) 98 { 99 mutex_lock(&x86_cpu_hotplug_driver_mutex); 100 } 101 102 void cpu_hotplug_driver_unlock(void) 103 { 104 mutex_unlock(&x86_cpu_hotplug_driver_mutex); 105 } 106 107 ssize_t arch_cpu_probe(const char *buf, size_t count) { return -1; } 108 ssize_t arch_cpu_release(const char *buf, size_t count) { return -1; } 109 #else 110 static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ; 111 #define get_idle_for_cpu(x) (idle_thread_array[(x)]) 112 #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p)) 113 #endif 114 115 /* Number of siblings per CPU package */ 116 int smp_num_siblings = 1; 117 EXPORT_SYMBOL(smp_num_siblings); 118 119 /* Last level cache ID of each logical CPU */ 120 DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID; 121 122 /* representing HT siblings of each logical CPU */ 123 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 124 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 125 126 /* representing HT and core siblings of each logical CPU */ 127 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 128 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 129 130 DEFINE_PER_CPU(cpumask_var_t, cpu_llc_shared_map); 131 132 /* Per CPU bogomips and other parameters */ 133 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info); 134 EXPORT_PER_CPU_SYMBOL(cpu_info); 135 136 atomic_t init_deasserted; 137 138 /* 139 * Report back to the Boot Processor. 140 * Running on AP. 141 */ 142 static void __cpuinit smp_callin(void) 143 { 144 int cpuid, phys_id; 145 unsigned long timeout; 146 147 /* 148 * If waken up by an INIT in an 82489DX configuration 149 * we may get here before an INIT-deassert IPI reaches 150 * our local APIC. We have to wait for the IPI or we'll 151 * lock up on an APIC access. 152 */ 153 if (apic->wait_for_init_deassert) 154 apic->wait_for_init_deassert(&init_deasserted); 155 156 /* 157 * (This works even if the APIC is not enabled.) 158 */ 159 phys_id = read_apic_id(); 160 cpuid = smp_processor_id(); 161 if (cpumask_test_cpu(cpuid, cpu_callin_mask)) { 162 panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__, 163 phys_id, cpuid); 164 } 165 pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); 166 167 /* 168 * STARTUP IPIs are fragile beasts as they might sometimes 169 * trigger some glue motherboard logic. Complete APIC bus 170 * silence for 1 second, this overestimates the time the 171 * boot CPU is spending to send the up to 2 STARTUP IPIs 172 * by a factor of two. This should be enough. 173 */ 174 175 /* 176 * Waiting 2s total for startup (udelay is not yet working) 177 */ 178 timeout = jiffies + 2*HZ; 179 while (time_before(jiffies, timeout)) { 180 /* 181 * Has the boot CPU finished it's STARTUP sequence? 182 */ 183 if (cpumask_test_cpu(cpuid, cpu_callout_mask)) 184 break; 185 cpu_relax(); 186 } 187 188 if (!time_before(jiffies, timeout)) { 189 panic("%s: CPU%d started up but did not get a callout!\n", 190 __func__, cpuid); 191 } 192 193 /* 194 * the boot CPU has finished the init stage and is spinning 195 * on callin_map until we finish. We are free to set up this 196 * CPU, first the APIC. (this is probably redundant on most 197 * boards) 198 */ 199 200 pr_debug("CALLIN, before setup_local_APIC().\n"); 201 if (apic->smp_callin_clear_local_apic) 202 apic->smp_callin_clear_local_apic(); 203 setup_local_APIC(); 204 end_local_APIC_setup(); 205 206 /* 207 * Need to setup vector mappings before we enable interrupts. 208 */ 209 setup_vector_irq(smp_processor_id()); 210 /* 211 * Get our bogomips. 212 * 213 * Need to enable IRQs because it can take longer and then 214 * the NMI watchdog might kill us. 215 */ 216 local_irq_enable(); 217 calibrate_delay(); 218 local_irq_disable(); 219 pr_debug("Stack at about %p\n", &cpuid); 220 221 /* 222 * Save our processor parameters 223 */ 224 smp_store_cpu_info(cpuid); 225 226 /* 227 * This must be done before setting cpu_online_mask 228 * or calling notify_cpu_starting. 229 */ 230 set_cpu_sibling_map(raw_smp_processor_id()); 231 wmb(); 232 233 notify_cpu_starting(cpuid); 234 235 /* 236 * Allow the master to continue. 237 */ 238 cpumask_set_cpu(cpuid, cpu_callin_mask); 239 } 240 241 /* 242 * Activate a secondary processor. 243 */ 244 notrace static void __cpuinit start_secondary(void *unused) 245 { 246 /* 247 * Don't put *anything* before cpu_init(), SMP booting is too 248 * fragile that we want to limit the things done here to the 249 * most necessary things. 250 */ 251 cpu_init(); 252 preempt_disable(); 253 smp_callin(); 254 255 #ifdef CONFIG_X86_32 256 /* switch away from the initial page table */ 257 load_cr3(swapper_pg_dir); 258 __flush_tlb_all(); 259 #endif 260 261 /* otherwise gcc will move up smp_processor_id before the cpu_init */ 262 barrier(); 263 /* 264 * Check TSC synchronization with the BP: 265 */ 266 check_tsc_sync_target(); 267 268 /* 269 * We need to hold call_lock, so there is no inconsistency 270 * between the time smp_call_function() determines number of 271 * IPI recipients, and the time when the determination is made 272 * for which cpus receive the IPI. Holding this 273 * lock helps us to not include this cpu in a currently in progress 274 * smp_call_function(). 275 * 276 * We need to hold vector_lock so there the set of online cpus 277 * does not change while we are assigning vectors to cpus. Holding 278 * this lock ensures we don't half assign or remove an irq from a cpu. 279 */ 280 ipi_call_lock(); 281 lock_vector_lock(); 282 set_cpu_online(smp_processor_id(), true); 283 unlock_vector_lock(); 284 ipi_call_unlock(); 285 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 286 x86_platform.nmi_init(); 287 288 /* 289 * Wait until the cpu which brought this one up marked it 290 * online before enabling interrupts. If we don't do that then 291 * we can end up waking up the softirq thread before this cpu 292 * reached the active state, which makes the scheduler unhappy 293 * and schedule the softirq thread on the wrong cpu. This is 294 * only observable with forced threaded interrupts, but in 295 * theory it could also happen w/o them. It's just way harder 296 * to achieve. 297 */ 298 while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask)) 299 cpu_relax(); 300 301 /* enable local interrupts */ 302 local_irq_enable(); 303 304 /* to prevent fake stack check failure in clock setup */ 305 boot_init_stack_canary(); 306 307 x86_cpuinit.setup_percpu_clockev(); 308 309 wmb(); 310 cpu_idle(); 311 } 312 313 /* 314 * The bootstrap kernel entry code has set these up. Save them for 315 * a given CPU 316 */ 317 318 void __cpuinit smp_store_cpu_info(int id) 319 { 320 struct cpuinfo_x86 *c = &cpu_data(id); 321 322 *c = boot_cpu_data; 323 c->cpu_index = id; 324 if (id != 0) 325 identify_secondary_cpu(c); 326 } 327 328 static void __cpuinit link_thread_siblings(int cpu1, int cpu2) 329 { 330 cpumask_set_cpu(cpu1, cpu_sibling_mask(cpu2)); 331 cpumask_set_cpu(cpu2, cpu_sibling_mask(cpu1)); 332 cpumask_set_cpu(cpu1, cpu_core_mask(cpu2)); 333 cpumask_set_cpu(cpu2, cpu_core_mask(cpu1)); 334 cpumask_set_cpu(cpu1, cpu_llc_shared_mask(cpu2)); 335 cpumask_set_cpu(cpu2, cpu_llc_shared_mask(cpu1)); 336 } 337 338 339 void __cpuinit set_cpu_sibling_map(int cpu) 340 { 341 int i; 342 struct cpuinfo_x86 *c = &cpu_data(cpu); 343 344 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 345 346 if (smp_num_siblings > 1) { 347 for_each_cpu(i, cpu_sibling_setup_mask) { 348 struct cpuinfo_x86 *o = &cpu_data(i); 349 350 if (cpu_has(c, X86_FEATURE_TOPOEXT)) { 351 if (c->phys_proc_id == o->phys_proc_id && 352 per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i) && 353 c->compute_unit_id == o->compute_unit_id) 354 link_thread_siblings(cpu, i); 355 } else if (c->phys_proc_id == o->phys_proc_id && 356 c->cpu_core_id == o->cpu_core_id) { 357 link_thread_siblings(cpu, i); 358 } 359 } 360 } else { 361 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 362 } 363 364 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 365 366 if (__this_cpu_read(cpu_info.x86_max_cores) == 1) { 367 cpumask_copy(cpu_core_mask(cpu), cpu_sibling_mask(cpu)); 368 c->booted_cores = 1; 369 return; 370 } 371 372 for_each_cpu(i, cpu_sibling_setup_mask) { 373 if (per_cpu(cpu_llc_id, cpu) != BAD_APICID && 374 per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) { 375 cpumask_set_cpu(i, cpu_llc_shared_mask(cpu)); 376 cpumask_set_cpu(cpu, cpu_llc_shared_mask(i)); 377 } 378 if (c->phys_proc_id == cpu_data(i).phys_proc_id) { 379 cpumask_set_cpu(i, cpu_core_mask(cpu)); 380 cpumask_set_cpu(cpu, cpu_core_mask(i)); 381 /* 382 * Does this new cpu bringup a new core? 383 */ 384 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) { 385 /* 386 * for each core in package, increment 387 * the booted_cores for this new cpu 388 */ 389 if (cpumask_first(cpu_sibling_mask(i)) == i) 390 c->booted_cores++; 391 /* 392 * increment the core count for all 393 * the other cpus in this package 394 */ 395 if (i != cpu) 396 cpu_data(i).booted_cores++; 397 } else if (i != cpu && !c->booted_cores) 398 c->booted_cores = cpu_data(i).booted_cores; 399 } 400 } 401 } 402 403 /* maps the cpu to the sched domain representing multi-core */ 404 const struct cpumask *cpu_coregroup_mask(int cpu) 405 { 406 struct cpuinfo_x86 *c = &cpu_data(cpu); 407 /* 408 * For perf, we return last level cache shared map. 409 * And for power savings, we return cpu_core_map 410 */ 411 if ((sched_mc_power_savings || sched_smt_power_savings) && 412 !(cpu_has(c, X86_FEATURE_AMD_DCM))) 413 return cpu_core_mask(cpu); 414 else 415 return cpu_llc_shared_mask(cpu); 416 } 417 418 static void impress_friends(void) 419 { 420 int cpu; 421 unsigned long bogosum = 0; 422 /* 423 * Allow the user to impress friends. 424 */ 425 pr_debug("Before bogomips.\n"); 426 for_each_possible_cpu(cpu) 427 if (cpumask_test_cpu(cpu, cpu_callout_mask)) 428 bogosum += cpu_data(cpu).loops_per_jiffy; 429 printk(KERN_INFO 430 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", 431 num_online_cpus(), 432 bogosum/(500000/HZ), 433 (bogosum/(5000/HZ))%100); 434 435 pr_debug("Before bogocount - setting activated=1.\n"); 436 } 437 438 void __inquire_remote_apic(int apicid) 439 { 440 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; 441 const char * const names[] = { "ID", "VERSION", "SPIV" }; 442 int timeout; 443 u32 status; 444 445 printk(KERN_INFO "Inquiring remote APIC 0x%x...\n", apicid); 446 447 for (i = 0; i < ARRAY_SIZE(regs); i++) { 448 printk(KERN_INFO "... APIC 0x%x %s: ", apicid, names[i]); 449 450 /* 451 * Wait for idle. 452 */ 453 status = safe_apic_wait_icr_idle(); 454 if (status) 455 printk(KERN_CONT 456 "a previous APIC delivery may have failed\n"); 457 458 apic_icr_write(APIC_DM_REMRD | regs[i], apicid); 459 460 timeout = 0; 461 do { 462 udelay(100); 463 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; 464 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); 465 466 switch (status) { 467 case APIC_ICR_RR_VALID: 468 status = apic_read(APIC_RRR); 469 printk(KERN_CONT "%08x\n", status); 470 break; 471 default: 472 printk(KERN_CONT "failed\n"); 473 } 474 } 475 } 476 477 /* 478 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal 479 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this 480 * won't ... remember to clear down the APIC, etc later. 481 */ 482 int __cpuinit 483 wakeup_secondary_cpu_via_nmi(int logical_apicid, unsigned long start_eip) 484 { 485 unsigned long send_status, accept_status = 0; 486 int maxlvt; 487 488 /* Target chip */ 489 /* Boot on the stack */ 490 /* Kick the second */ 491 apic_icr_write(APIC_DM_NMI | apic->dest_logical, logical_apicid); 492 493 pr_debug("Waiting for send to finish...\n"); 494 send_status = safe_apic_wait_icr_idle(); 495 496 /* 497 * Give the other CPU some time to accept the IPI. 498 */ 499 udelay(200); 500 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) { 501 maxlvt = lapic_get_maxlvt(); 502 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 503 apic_write(APIC_ESR, 0); 504 accept_status = (apic_read(APIC_ESR) & 0xEF); 505 } 506 pr_debug("NMI sent.\n"); 507 508 if (send_status) 509 printk(KERN_ERR "APIC never delivered???\n"); 510 if (accept_status) 511 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); 512 513 return (send_status | accept_status); 514 } 515 516 static int __cpuinit 517 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) 518 { 519 unsigned long send_status, accept_status = 0; 520 int maxlvt, num_starts, j; 521 522 maxlvt = lapic_get_maxlvt(); 523 524 /* 525 * Be paranoid about clearing APIC errors. 526 */ 527 if (APIC_INTEGRATED(apic_version[phys_apicid])) { 528 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 529 apic_write(APIC_ESR, 0); 530 apic_read(APIC_ESR); 531 } 532 533 pr_debug("Asserting INIT.\n"); 534 535 /* 536 * Turn INIT on target chip 537 */ 538 /* 539 * Send IPI 540 */ 541 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, 542 phys_apicid); 543 544 pr_debug("Waiting for send to finish...\n"); 545 send_status = safe_apic_wait_icr_idle(); 546 547 mdelay(10); 548 549 pr_debug("Deasserting INIT.\n"); 550 551 /* Target chip */ 552 /* Send IPI */ 553 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 554 555 pr_debug("Waiting for send to finish...\n"); 556 send_status = safe_apic_wait_icr_idle(); 557 558 mb(); 559 atomic_set(&init_deasserted, 1); 560 561 /* 562 * Should we send STARTUP IPIs ? 563 * 564 * Determine this based on the APIC version. 565 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 566 */ 567 if (APIC_INTEGRATED(apic_version[phys_apicid])) 568 num_starts = 2; 569 else 570 num_starts = 0; 571 572 /* 573 * Paravirt / VMI wants a startup IPI hook here to set up the 574 * target processor state. 575 */ 576 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary, 577 stack_start); 578 579 /* 580 * Run STARTUP IPI loop. 581 */ 582 pr_debug("#startup loops: %d.\n", num_starts); 583 584 for (j = 1; j <= num_starts; j++) { 585 pr_debug("Sending STARTUP #%d.\n", j); 586 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 587 apic_write(APIC_ESR, 0); 588 apic_read(APIC_ESR); 589 pr_debug("After apic_write.\n"); 590 591 /* 592 * STARTUP IPI 593 */ 594 595 /* Target chip */ 596 /* Boot on the stack */ 597 /* Kick the second */ 598 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 599 phys_apicid); 600 601 /* 602 * Give the other CPU some time to accept the IPI. 603 */ 604 udelay(300); 605 606 pr_debug("Startup point 1.\n"); 607 608 pr_debug("Waiting for send to finish...\n"); 609 send_status = safe_apic_wait_icr_idle(); 610 611 /* 612 * Give the other CPU some time to accept the IPI. 613 */ 614 udelay(200); 615 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 616 apic_write(APIC_ESR, 0); 617 accept_status = (apic_read(APIC_ESR) & 0xEF); 618 if (send_status || accept_status) 619 break; 620 } 621 pr_debug("After Startup.\n"); 622 623 if (send_status) 624 printk(KERN_ERR "APIC never delivered???\n"); 625 if (accept_status) 626 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); 627 628 return (send_status | accept_status); 629 } 630 631 struct create_idle { 632 struct work_struct work; 633 struct task_struct *idle; 634 struct completion done; 635 int cpu; 636 }; 637 638 static void __cpuinit do_fork_idle(struct work_struct *work) 639 { 640 struct create_idle *c_idle = 641 container_of(work, struct create_idle, work); 642 643 c_idle->idle = fork_idle(c_idle->cpu); 644 complete(&c_idle->done); 645 } 646 647 /* reduce the number of lines printed when booting a large cpu count system */ 648 static void __cpuinit announce_cpu(int cpu, int apicid) 649 { 650 static int current_node = -1; 651 int node = early_cpu_to_node(cpu); 652 653 if (system_state == SYSTEM_BOOTING) { 654 if (node != current_node) { 655 if (current_node > (-1)) 656 pr_cont(" Ok.\n"); 657 current_node = node; 658 pr_info("Booting Node %3d, Processors ", node); 659 } 660 pr_cont(" #%d%s", cpu, cpu == (nr_cpu_ids - 1) ? " Ok.\n" : ""); 661 return; 662 } else 663 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 664 node, cpu, apicid); 665 } 666 667 /* 668 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 669 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 670 * Returns zero if CPU booted OK, else error code from 671 * ->wakeup_secondary_cpu. 672 */ 673 static int __cpuinit do_boot_cpu(int apicid, int cpu) 674 { 675 unsigned long boot_error = 0; 676 unsigned long start_ip; 677 int timeout; 678 struct create_idle c_idle = { 679 .cpu = cpu, 680 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done), 681 }; 682 683 INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle); 684 685 alternatives_smp_switch(1); 686 687 c_idle.idle = get_idle_for_cpu(cpu); 688 689 /* 690 * We can't use kernel_thread since we must avoid to 691 * reschedule the child. 692 */ 693 if (c_idle.idle) { 694 c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *) 695 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1); 696 init_idle(c_idle.idle, cpu); 697 goto do_rest; 698 } 699 700 schedule_work(&c_idle.work); 701 wait_for_completion(&c_idle.done); 702 703 if (IS_ERR(c_idle.idle)) { 704 printk("failed fork for CPU %d\n", cpu); 705 destroy_work_on_stack(&c_idle.work); 706 return PTR_ERR(c_idle.idle); 707 } 708 709 set_idle_for_cpu(cpu, c_idle.idle); 710 do_rest: 711 per_cpu(current_task, cpu) = c_idle.idle; 712 #ifdef CONFIG_X86_32 713 /* Stack for startup_32 can be just as for start_secondary onwards */ 714 irq_ctx_init(cpu); 715 #else 716 clear_tsk_thread_flag(c_idle.idle, TIF_FORK); 717 initial_gs = per_cpu_offset(cpu); 718 per_cpu(kernel_stack, cpu) = 719 (unsigned long)task_stack_page(c_idle.idle) - 720 KERNEL_STACK_OFFSET + THREAD_SIZE; 721 #endif 722 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); 723 initial_code = (unsigned long)start_secondary; 724 stack_start = c_idle.idle->thread.sp; 725 726 /* start_ip had better be page-aligned! */ 727 start_ip = trampoline_address(); 728 729 /* So we see what's up */ 730 announce_cpu(cpu, apicid); 731 732 /* 733 * This grunge runs the startup process for 734 * the targeted processor. 735 */ 736 737 printk(KERN_DEBUG "smpboot cpu %d: start_ip = %lx\n", cpu, start_ip); 738 739 atomic_set(&init_deasserted, 0); 740 741 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { 742 743 pr_debug("Setting warm reset code and vector.\n"); 744 745 smpboot_setup_warm_reset_vector(start_ip); 746 /* 747 * Be paranoid about clearing APIC errors. 748 */ 749 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) { 750 apic_write(APIC_ESR, 0); 751 apic_read(APIC_ESR); 752 } 753 } 754 755 /* 756 * Kick the secondary CPU. Use the method in the APIC driver 757 * if it's defined - or use an INIT boot APIC message otherwise: 758 */ 759 if (apic->wakeup_secondary_cpu) 760 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); 761 else 762 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); 763 764 if (!boot_error) { 765 /* 766 * allow APs to start initializing. 767 */ 768 pr_debug("Before Callout %d.\n", cpu); 769 cpumask_set_cpu(cpu, cpu_callout_mask); 770 pr_debug("After Callout %d.\n", cpu); 771 772 /* 773 * Wait 5s total for a response 774 */ 775 for (timeout = 0; timeout < 50000; timeout++) { 776 if (cpumask_test_cpu(cpu, cpu_callin_mask)) 777 break; /* It has booted */ 778 udelay(100); 779 /* 780 * Allow other tasks to run while we wait for the 781 * AP to come online. This also gives a chance 782 * for the MTRR work(triggered by the AP coming online) 783 * to be completed in the stop machine context. 784 */ 785 schedule(); 786 } 787 788 if (cpumask_test_cpu(cpu, cpu_callin_mask)) 789 pr_debug("CPU%d: has booted.\n", cpu); 790 else { 791 boot_error = 1; 792 if (*(volatile u32 *)TRAMPOLINE_SYM(trampoline_status) 793 == 0xA5A5A5A5) 794 /* trampoline started but...? */ 795 pr_err("CPU%d: Stuck ??\n", cpu); 796 else 797 /* trampoline code not run */ 798 pr_err("CPU%d: Not responding.\n", cpu); 799 if (apic->inquire_remote_apic) 800 apic->inquire_remote_apic(apicid); 801 } 802 } 803 804 if (boot_error) { 805 /* Try to put things back the way they were before ... */ 806 numa_remove_cpu(cpu); /* was set by numa_add_cpu */ 807 808 /* was set by do_boot_cpu() */ 809 cpumask_clear_cpu(cpu, cpu_callout_mask); 810 811 /* was set by cpu_init() */ 812 cpumask_clear_cpu(cpu, cpu_initialized_mask); 813 814 set_cpu_present(cpu, false); 815 per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID; 816 } 817 818 /* mark "stuck" area as not stuck */ 819 *(volatile u32 *)TRAMPOLINE_SYM(trampoline_status) = 0; 820 821 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { 822 /* 823 * Cleanup possible dangling ends... 824 */ 825 smpboot_restore_warm_reset_vector(); 826 } 827 828 destroy_work_on_stack(&c_idle.work); 829 return boot_error; 830 } 831 832 int __cpuinit native_cpu_up(unsigned int cpu) 833 { 834 int apicid = apic->cpu_present_to_apicid(cpu); 835 unsigned long flags; 836 int err; 837 838 WARN_ON(irqs_disabled()); 839 840 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 841 842 if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid || 843 !physid_isset(apicid, phys_cpu_present_map) || 844 (!x2apic_mode && apicid >= 255)) { 845 printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu); 846 return -EINVAL; 847 } 848 849 /* 850 * Already booted CPU? 851 */ 852 if (cpumask_test_cpu(cpu, cpu_callin_mask)) { 853 pr_debug("do_boot_cpu %d Already started\n", cpu); 854 return -ENOSYS; 855 } 856 857 /* 858 * Save current MTRR state in case it was changed since early boot 859 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 860 */ 861 mtrr_save_state(); 862 863 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 864 865 err = do_boot_cpu(apicid, cpu); 866 if (err) { 867 pr_debug("do_boot_cpu failed %d\n", err); 868 return -EIO; 869 } 870 871 /* 872 * Check TSC synchronization with the AP (keep irqs disabled 873 * while doing so): 874 */ 875 local_irq_save(flags); 876 check_tsc_sync_source(cpu); 877 local_irq_restore(flags); 878 879 while (!cpu_online(cpu)) { 880 cpu_relax(); 881 touch_nmi_watchdog(); 882 } 883 884 return 0; 885 } 886 887 /** 888 * arch_disable_smp_support() - disables SMP support for x86 at runtime 889 */ 890 void arch_disable_smp_support(void) 891 { 892 disable_ioapic_support(); 893 } 894 895 /* 896 * Fall back to non SMP mode after errors. 897 * 898 * RED-PEN audit/test this more. I bet there is more state messed up here. 899 */ 900 static __init void disable_smp(void) 901 { 902 init_cpu_present(cpumask_of(0)); 903 init_cpu_possible(cpumask_of(0)); 904 smpboot_clear_io_apic_irqs(); 905 906 if (smp_found_config) 907 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 908 else 909 physid_set_mask_of_physid(0, &phys_cpu_present_map); 910 cpumask_set_cpu(0, cpu_sibling_mask(0)); 911 cpumask_set_cpu(0, cpu_core_mask(0)); 912 } 913 914 /* 915 * Various sanity checks. 916 */ 917 static int __init smp_sanity_check(unsigned max_cpus) 918 { 919 preempt_disable(); 920 921 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) 922 if (def_to_bigsmp && nr_cpu_ids > 8) { 923 unsigned int cpu; 924 unsigned nr; 925 926 printk(KERN_WARNING 927 "More than 8 CPUs detected - skipping them.\n" 928 "Use CONFIG_X86_BIGSMP.\n"); 929 930 nr = 0; 931 for_each_present_cpu(cpu) { 932 if (nr >= 8) 933 set_cpu_present(cpu, false); 934 nr++; 935 } 936 937 nr = 0; 938 for_each_possible_cpu(cpu) { 939 if (nr >= 8) 940 set_cpu_possible(cpu, false); 941 nr++; 942 } 943 944 nr_cpu_ids = 8; 945 } 946 #endif 947 948 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { 949 printk(KERN_WARNING 950 "weird, boot CPU (#%d) not listed by the BIOS.\n", 951 hard_smp_processor_id()); 952 953 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 954 } 955 956 /* 957 * If we couldn't find an SMP configuration at boot time, 958 * get out of here now! 959 */ 960 if (!smp_found_config && !acpi_lapic) { 961 preempt_enable(); 962 printk(KERN_NOTICE "SMP motherboard not detected.\n"); 963 disable_smp(); 964 if (APIC_init_uniprocessor()) 965 printk(KERN_NOTICE "Local APIC not detected." 966 " Using dummy APIC emulation.\n"); 967 return -1; 968 } 969 970 /* 971 * Should not be necessary because the MP table should list the boot 972 * CPU too, but we do it for the sake of robustness anyway. 973 */ 974 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { 975 printk(KERN_NOTICE 976 "weird, boot CPU (#%d) not listed by the BIOS.\n", 977 boot_cpu_physical_apicid); 978 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 979 } 980 preempt_enable(); 981 982 /* 983 * If we couldn't find a local APIC, then get out of here now! 984 */ 985 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && 986 !cpu_has_apic) { 987 if (!disable_apic) { 988 pr_err("BIOS bug, local APIC #%d not detected!...\n", 989 boot_cpu_physical_apicid); 990 pr_err("... forcing use of dummy APIC emulation." 991 "(tell your hw vendor)\n"); 992 } 993 smpboot_clear_io_apic(); 994 disable_ioapic_support(); 995 return -1; 996 } 997 998 verify_local_APIC(); 999 1000 /* 1001 * If SMP should be disabled, then really disable it! 1002 */ 1003 if (!max_cpus) { 1004 printk(KERN_INFO "SMP mode deactivated.\n"); 1005 smpboot_clear_io_apic(); 1006 1007 connect_bsp_APIC(); 1008 setup_local_APIC(); 1009 bsp_end_local_APIC_setup(); 1010 return -1; 1011 } 1012 1013 return 0; 1014 } 1015 1016 static void __init smp_cpu_index_default(void) 1017 { 1018 int i; 1019 struct cpuinfo_x86 *c; 1020 1021 for_each_possible_cpu(i) { 1022 c = &cpu_data(i); 1023 /* mark all to hotplug */ 1024 c->cpu_index = nr_cpu_ids; 1025 } 1026 } 1027 1028 /* 1029 * Prepare for SMP bootup. The MP table or ACPI has been read 1030 * earlier. Just do some sanity checking here and enable APIC mode. 1031 */ 1032 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1033 { 1034 unsigned int i; 1035 1036 preempt_disable(); 1037 smp_cpu_index_default(); 1038 1039 /* 1040 * Setup boot CPU information 1041 */ 1042 smp_store_cpu_info(0); /* Final full version of the data */ 1043 cpumask_copy(cpu_callin_mask, cpumask_of(0)); 1044 mb(); 1045 1046 current_thread_info()->cpu = 0; /* needed? */ 1047 for_each_possible_cpu(i) { 1048 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 1049 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 1050 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 1051 } 1052 set_cpu_sibling_map(0); 1053 1054 1055 if (smp_sanity_check(max_cpus) < 0) { 1056 printk(KERN_INFO "SMP disabled\n"); 1057 disable_smp(); 1058 goto out; 1059 } 1060 1061 default_setup_apic_routing(); 1062 1063 preempt_disable(); 1064 if (read_apic_id() != boot_cpu_physical_apicid) { 1065 panic("Boot APIC ID in local APIC unexpected (%d vs %d)", 1066 read_apic_id(), boot_cpu_physical_apicid); 1067 /* Or can we switch back to PIC here? */ 1068 } 1069 preempt_enable(); 1070 1071 connect_bsp_APIC(); 1072 1073 /* 1074 * Switch from PIC to APIC mode. 1075 */ 1076 setup_local_APIC(); 1077 1078 /* 1079 * Enable IO APIC before setting up error vector 1080 */ 1081 if (!skip_ioapic_setup && nr_ioapics) 1082 enable_IO_APIC(); 1083 1084 bsp_end_local_APIC_setup(); 1085 1086 if (apic->setup_portio_remap) 1087 apic->setup_portio_remap(); 1088 1089 smpboot_setup_io_apic(); 1090 /* 1091 * Set up local APIC timer on boot CPU. 1092 */ 1093 1094 printk(KERN_INFO "CPU%d: ", 0); 1095 print_cpu_info(&cpu_data(0)); 1096 x86_init.timers.setup_percpu_clockev(); 1097 1098 if (is_uv_system()) 1099 uv_system_init(); 1100 1101 set_mtrr_aps_delayed_init(); 1102 out: 1103 preempt_enable(); 1104 } 1105 1106 void arch_disable_nonboot_cpus_begin(void) 1107 { 1108 /* 1109 * Avoid the smp alternatives switch during the disable_nonboot_cpus(). 1110 * In the suspend path, we will be back in the SMP mode shortly anyways. 1111 */ 1112 skip_smp_alternatives = true; 1113 } 1114 1115 void arch_disable_nonboot_cpus_end(void) 1116 { 1117 skip_smp_alternatives = false; 1118 } 1119 1120 void arch_enable_nonboot_cpus_begin(void) 1121 { 1122 set_mtrr_aps_delayed_init(); 1123 } 1124 1125 void arch_enable_nonboot_cpus_end(void) 1126 { 1127 mtrr_aps_init(); 1128 } 1129 1130 /* 1131 * Early setup to make printk work. 1132 */ 1133 void __init native_smp_prepare_boot_cpu(void) 1134 { 1135 int me = smp_processor_id(); 1136 switch_to_new_gdt(me); 1137 /* already set me in cpu_online_mask in boot_cpu_init() */ 1138 cpumask_set_cpu(me, cpu_callout_mask); 1139 per_cpu(cpu_state, me) = CPU_ONLINE; 1140 } 1141 1142 void __init native_smp_cpus_done(unsigned int max_cpus) 1143 { 1144 pr_debug("Boot done.\n"); 1145 1146 impress_friends(); 1147 #ifdef CONFIG_X86_IO_APIC 1148 setup_ioapic_dest(); 1149 #endif 1150 mtrr_aps_init(); 1151 } 1152 1153 static int __initdata setup_possible_cpus = -1; 1154 static int __init _setup_possible_cpus(char *str) 1155 { 1156 get_option(&str, &setup_possible_cpus); 1157 return 0; 1158 } 1159 early_param("possible_cpus", _setup_possible_cpus); 1160 1161 1162 /* 1163 * cpu_possible_mask should be static, it cannot change as cpu's 1164 * are onlined, or offlined. The reason is per-cpu data-structures 1165 * are allocated by some modules at init time, and dont expect to 1166 * do this dynamically on cpu arrival/departure. 1167 * cpu_present_mask on the other hand can change dynamically. 1168 * In case when cpu_hotplug is not compiled, then we resort to current 1169 * behaviour, which is cpu_possible == cpu_present. 1170 * - Ashok Raj 1171 * 1172 * Three ways to find out the number of additional hotplug CPUs: 1173 * - If the BIOS specified disabled CPUs in ACPI/mptables use that. 1174 * - The user can overwrite it with possible_cpus=NUM 1175 * - Otherwise don't reserve additional CPUs. 1176 * We do this because additional CPUs waste a lot of memory. 1177 * -AK 1178 */ 1179 __init void prefill_possible_map(void) 1180 { 1181 int i, possible; 1182 1183 /* no processor from mptable or madt */ 1184 if (!num_processors) 1185 num_processors = 1; 1186 1187 i = setup_max_cpus ?: 1; 1188 if (setup_possible_cpus == -1) { 1189 possible = num_processors; 1190 #ifdef CONFIG_HOTPLUG_CPU 1191 if (setup_max_cpus) 1192 possible += disabled_cpus; 1193 #else 1194 if (possible > i) 1195 possible = i; 1196 #endif 1197 } else 1198 possible = setup_possible_cpus; 1199 1200 total_cpus = max_t(int, possible, num_processors + disabled_cpus); 1201 1202 /* nr_cpu_ids could be reduced via nr_cpus= */ 1203 if (possible > nr_cpu_ids) { 1204 printk(KERN_WARNING 1205 "%d Processors exceeds NR_CPUS limit of %d\n", 1206 possible, nr_cpu_ids); 1207 possible = nr_cpu_ids; 1208 } 1209 1210 #ifdef CONFIG_HOTPLUG_CPU 1211 if (!setup_max_cpus) 1212 #endif 1213 if (possible > i) { 1214 printk(KERN_WARNING 1215 "%d Processors exceeds max_cpus limit of %u\n", 1216 possible, setup_max_cpus); 1217 possible = i; 1218 } 1219 1220 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n", 1221 possible, max_t(int, possible - num_processors, 0)); 1222 1223 for (i = 0; i < possible; i++) 1224 set_cpu_possible(i, true); 1225 for (; i < NR_CPUS; i++) 1226 set_cpu_possible(i, false); 1227 1228 nr_cpu_ids = possible; 1229 } 1230 1231 #ifdef CONFIG_HOTPLUG_CPU 1232 1233 static void remove_siblinginfo(int cpu) 1234 { 1235 int sibling; 1236 struct cpuinfo_x86 *c = &cpu_data(cpu); 1237 1238 for_each_cpu(sibling, cpu_core_mask(cpu)) { 1239 cpumask_clear_cpu(cpu, cpu_core_mask(sibling)); 1240 /*/ 1241 * last thread sibling in this cpu core going down 1242 */ 1243 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) 1244 cpu_data(sibling).booted_cores--; 1245 } 1246 1247 for_each_cpu(sibling, cpu_sibling_mask(cpu)) 1248 cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling)); 1249 cpumask_clear(cpu_sibling_mask(cpu)); 1250 cpumask_clear(cpu_core_mask(cpu)); 1251 c->phys_proc_id = 0; 1252 c->cpu_core_id = 0; 1253 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1254 } 1255 1256 static void __ref remove_cpu_from_maps(int cpu) 1257 { 1258 set_cpu_online(cpu, false); 1259 cpumask_clear_cpu(cpu, cpu_callout_mask); 1260 cpumask_clear_cpu(cpu, cpu_callin_mask); 1261 /* was set by cpu_init() */ 1262 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1263 numa_remove_cpu(cpu); 1264 } 1265 1266 void cpu_disable_common(void) 1267 { 1268 int cpu = smp_processor_id(); 1269 1270 remove_siblinginfo(cpu); 1271 1272 /* It's now safe to remove this processor from the online map */ 1273 lock_vector_lock(); 1274 remove_cpu_from_maps(cpu); 1275 unlock_vector_lock(); 1276 fixup_irqs(); 1277 } 1278 1279 int native_cpu_disable(void) 1280 { 1281 int cpu = smp_processor_id(); 1282 1283 /* 1284 * Perhaps use cpufreq to drop frequency, but that could go 1285 * into generic code. 1286 * 1287 * We won't take down the boot processor on i386 due to some 1288 * interrupts only being able to be serviced by the BSP. 1289 * Especially so if we're not using an IOAPIC -zwane 1290 */ 1291 if (cpu == 0) 1292 return -EBUSY; 1293 1294 clear_local_APIC(); 1295 1296 cpu_disable_common(); 1297 return 0; 1298 } 1299 1300 void native_cpu_die(unsigned int cpu) 1301 { 1302 /* We don't do anything here: idle task is faking death itself. */ 1303 unsigned int i; 1304 1305 for (i = 0; i < 10; i++) { 1306 /* They ack this in play_dead by setting CPU_DEAD */ 1307 if (per_cpu(cpu_state, cpu) == CPU_DEAD) { 1308 if (system_state == SYSTEM_RUNNING) 1309 pr_info("CPU %u is now offline\n", cpu); 1310 1311 if (1 == num_online_cpus()) 1312 alternatives_smp_switch(0); 1313 return; 1314 } 1315 msleep(100); 1316 } 1317 pr_err("CPU %u didn't die...\n", cpu); 1318 } 1319 1320 void play_dead_common(void) 1321 { 1322 idle_task_exit(); 1323 reset_lazy_tlbstate(); 1324 amd_e400_remove_cpu(raw_smp_processor_id()); 1325 1326 mb(); 1327 /* Ack it */ 1328 __this_cpu_write(cpu_state, CPU_DEAD); 1329 1330 /* 1331 * With physical CPU hotplug, we should halt the cpu 1332 */ 1333 local_irq_disable(); 1334 } 1335 1336 /* 1337 * We need to flush the caches before going to sleep, lest we have 1338 * dirty data in our caches when we come back up. 1339 */ 1340 static inline void mwait_play_dead(void) 1341 { 1342 unsigned int eax, ebx, ecx, edx; 1343 unsigned int highest_cstate = 0; 1344 unsigned int highest_subcstate = 0; 1345 int i; 1346 void *mwait_ptr; 1347 struct cpuinfo_x86 *c = __this_cpu_ptr(&cpu_info); 1348 1349 if (!(this_cpu_has(X86_FEATURE_MWAIT) && mwait_usable(c))) 1350 return; 1351 if (!this_cpu_has(X86_FEATURE_CLFLSH)) 1352 return; 1353 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) 1354 return; 1355 1356 eax = CPUID_MWAIT_LEAF; 1357 ecx = 0; 1358 native_cpuid(&eax, &ebx, &ecx, &edx); 1359 1360 /* 1361 * eax will be 0 if EDX enumeration is not valid. 1362 * Initialized below to cstate, sub_cstate value when EDX is valid. 1363 */ 1364 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1365 eax = 0; 1366 } else { 1367 edx >>= MWAIT_SUBSTATE_SIZE; 1368 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1369 if (edx & MWAIT_SUBSTATE_MASK) { 1370 highest_cstate = i; 1371 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1372 } 1373 } 1374 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1375 (highest_subcstate - 1); 1376 } 1377 1378 /* 1379 * This should be a memory location in a cache line which is 1380 * unlikely to be touched by other processors. The actual 1381 * content is immaterial as it is not actually modified in any way. 1382 */ 1383 mwait_ptr = ¤t_thread_info()->flags; 1384 1385 wbinvd(); 1386 1387 while (1) { 1388 /* 1389 * The CLFLUSH is a workaround for erratum AAI65 for 1390 * the Xeon 7400 series. It's not clear it is actually 1391 * needed, but it should be harmless in either case. 1392 * The WBINVD is insufficient due to the spurious-wakeup 1393 * case where we return around the loop. 1394 */ 1395 clflush(mwait_ptr); 1396 __monitor(mwait_ptr, 0, 0); 1397 mb(); 1398 __mwait(eax, 0); 1399 } 1400 } 1401 1402 static inline void hlt_play_dead(void) 1403 { 1404 if (__this_cpu_read(cpu_info.x86) >= 4) 1405 wbinvd(); 1406 1407 while (1) { 1408 native_halt(); 1409 } 1410 } 1411 1412 void native_play_dead(void) 1413 { 1414 play_dead_common(); 1415 tboot_shutdown(TB_SHUTDOWN_WFS); 1416 1417 mwait_play_dead(); /* Only returns on failure */ 1418 hlt_play_dead(); 1419 } 1420 1421 #else /* ... !CONFIG_HOTPLUG_CPU */ 1422 int native_cpu_disable(void) 1423 { 1424 return -ENOSYS; 1425 } 1426 1427 void native_cpu_die(unsigned int cpu) 1428 { 1429 /* We said "no" in __cpu_disable */ 1430 BUG(); 1431 } 1432 1433 void native_play_dead(void) 1434 { 1435 BUG(); 1436 } 1437 1438 #endif 1439