xref: /linux/arch/x86/kernel/smpboot.c (revision 8838a1a2d219a86ab05e679c73f68dd75a25aca5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 #include <linux/acpi.h>
64 
65 #include <asm/acpi.h>
66 #include <asm/cacheinfo.h>
67 #include <asm/cpuid.h>
68 #include <asm/desc.h>
69 #include <asm/nmi.h>
70 #include <asm/irq.h>
71 #include <asm/realmode.h>
72 #include <asm/cpu.h>
73 #include <asm/numa.h>
74 #include <asm/tlbflush.h>
75 #include <asm/mtrr.h>
76 #include <asm/mwait.h>
77 #include <asm/apic.h>
78 #include <asm/io_apic.h>
79 #include <asm/fpu/api.h>
80 #include <asm/setup.h>
81 #include <asm/uv/uv.h>
82 #include <asm/microcode.h>
83 #include <asm/i8259.h>
84 #include <asm/misc.h>
85 #include <asm/qspinlock.h>
86 #include <asm/intel-family.h>
87 #include <asm/cpu_device_id.h>
88 #include <asm/spec-ctrl.h>
89 #include <asm/hw_irq.h>
90 #include <asm/stackprotector.h>
91 #include <asm/sev.h>
92 #include <asm/spec-ctrl.h>
93 
94 /* representing HT siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
97 
98 /* representing HT and core siblings of each logical CPU */
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
100 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
101 
102 /* representing HT, core, and die siblings of each logical CPU */
103 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
104 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
105 
106 /* CPUs which are the primary SMT threads */
107 struct cpumask __cpu_primary_thread_mask __read_mostly;
108 
109 /* Representing CPUs for which sibling maps can be computed */
110 static cpumask_var_t cpu_sibling_setup_mask;
111 
112 struct mwait_cpu_dead {
113 	unsigned int	control;
114 	unsigned int	status;
115 };
116 
117 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
118 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
119 
120 /*
121  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
122  * that it's unlikely to be touched by other CPUs.
123  */
124 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
125 
126 /* Maximum number of SMT threads on any online core */
127 int __read_mostly __max_smt_threads = 1;
128 
129 /* Flag to indicate if a complete sched domain rebuild is required */
130 bool x86_topology_update;
131 
132 int arch_update_cpu_topology(void)
133 {
134 	int retval = x86_topology_update;
135 
136 	x86_topology_update = false;
137 	return retval;
138 }
139 
140 static unsigned int smpboot_warm_reset_vector_count;
141 
142 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
143 {
144 	unsigned long flags;
145 
146 	spin_lock_irqsave(&rtc_lock, flags);
147 	if (!smpboot_warm_reset_vector_count++) {
148 		CMOS_WRITE(0xa, 0xf);
149 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
150 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
151 	}
152 	spin_unlock_irqrestore(&rtc_lock, flags);
153 }
154 
155 static inline void smpboot_restore_warm_reset_vector(void)
156 {
157 	unsigned long flags;
158 
159 	/*
160 	 * Paranoid:  Set warm reset code and vector here back
161 	 * to default values.
162 	 */
163 	spin_lock_irqsave(&rtc_lock, flags);
164 	if (!--smpboot_warm_reset_vector_count) {
165 		CMOS_WRITE(0, 0xf);
166 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
167 	}
168 	spin_unlock_irqrestore(&rtc_lock, flags);
169 
170 }
171 
172 /* Run the next set of setup steps for the upcoming CPU */
173 static void ap_starting(void)
174 {
175 	int cpuid = smp_processor_id();
176 
177 	/* Mop up eventual mwait_play_dead() wreckage */
178 	this_cpu_write(mwait_cpu_dead.status, 0);
179 	this_cpu_write(mwait_cpu_dead.control, 0);
180 
181 	/*
182 	 * If woken up by an INIT in an 82489DX configuration the alive
183 	 * synchronization guarantees that the CPU does not reach this
184 	 * point before an INIT_deassert IPI reaches the local APIC, so it
185 	 * is now safe to touch the local APIC.
186 	 *
187 	 * Set up this CPU, first the APIC, which is probably redundant on
188 	 * most boards.
189 	 */
190 	apic_ap_setup();
191 
192 	/* Save the processor parameters. */
193 	smp_store_cpu_info(cpuid);
194 
195 	/*
196 	 * The topology information must be up to date before
197 	 * notify_cpu_starting().
198 	 */
199 	set_cpu_sibling_map(cpuid);
200 
201 	ap_init_aperfmperf();
202 
203 	pr_debug("Stack at about %p\n", &cpuid);
204 
205 	wmb();
206 
207 	/*
208 	 * This runs the AP through all the cpuhp states to its target
209 	 * state CPUHP_ONLINE.
210 	 */
211 	notify_cpu_starting(cpuid);
212 }
213 
214 static void ap_calibrate_delay(void)
215 {
216 	/*
217 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
218 	 * smp_store_cpu_info() stored a value that is close but not as
219 	 * accurate as the value just calculated.
220 	 *
221 	 * As this is invoked after the TSC synchronization check,
222 	 * calibrate_delay_is_known() will skip the calibration routine
223 	 * when TSC is synchronized across sockets.
224 	 */
225 	calibrate_delay();
226 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
227 }
228 
229 /*
230  * Activate a secondary processor.
231  */
232 static void notrace start_secondary(void *unused)
233 {
234 	/*
235 	 * Don't put *anything* except direct CPU state initialization
236 	 * before cpu_init(), SMP booting is too fragile that we want to
237 	 * limit the things done here to the most necessary things.
238 	 */
239 	cr4_init();
240 
241 	/*
242 	 * 32-bit specific. 64-bit reaches this code with the correct page
243 	 * table established. Yet another historical divergence.
244 	 */
245 	if (IS_ENABLED(CONFIG_X86_32)) {
246 		/* switch away from the initial page table */
247 		load_cr3(swapper_pg_dir);
248 		__flush_tlb_all();
249 	}
250 
251 	cpu_init_exception_handling(false);
252 
253 	/*
254 	 * Load the microcode before reaching the AP alive synchronization
255 	 * point below so it is not part of the full per CPU serialized
256 	 * bringup part when "parallel" bringup is enabled.
257 	 *
258 	 * That's even safe when hyperthreading is enabled in the CPU as
259 	 * the core code starts the primary threads first and leaves the
260 	 * secondary threads waiting for SIPI. Loading microcode on
261 	 * physical cores concurrently is a safe operation.
262 	 *
263 	 * This covers both the Intel specific issue that concurrent
264 	 * microcode loading on SMT siblings must be prohibited and the
265 	 * vendor independent issue`that microcode loading which changes
266 	 * CPUID, MSRs etc. must be strictly serialized to maintain
267 	 * software state correctness.
268 	 */
269 	load_ucode_ap();
270 
271 	/*
272 	 * Synchronization point with the hotplug core. Sets this CPUs
273 	 * synchronization state to ALIVE and spin-waits for the control CPU to
274 	 * release this CPU for further bringup.
275 	 */
276 	cpuhp_ap_sync_alive();
277 
278 	cpu_init();
279 	fpu__init_cpu();
280 	rcutree_report_cpu_starting(raw_smp_processor_id());
281 	x86_cpuinit.early_percpu_clock_init();
282 
283 	ap_starting();
284 
285 	/* Check TSC synchronization with the control CPU. */
286 	check_tsc_sync_target();
287 
288 	/*
289 	 * Calibrate the delay loop after the TSC synchronization check.
290 	 * This allows to skip the calibration when TSC is synchronized
291 	 * across sockets.
292 	 */
293 	ap_calibrate_delay();
294 
295 	speculative_store_bypass_ht_init();
296 
297 	/*
298 	 * Lock vector_lock, set CPU online and bring the vector
299 	 * allocator online. Online must be set with vector_lock held
300 	 * to prevent a concurrent irq setup/teardown from seeing a
301 	 * half valid vector space.
302 	 */
303 	lock_vector_lock();
304 	set_cpu_online(smp_processor_id(), true);
305 	lapic_online();
306 	unlock_vector_lock();
307 	x86_platform.nmi_init();
308 
309 	/* enable local interrupts */
310 	local_irq_enable();
311 
312 	x86_cpuinit.setup_percpu_clockev();
313 
314 	wmb();
315 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
316 }
317 
318 /*
319  * The bootstrap kernel entry code has set these up. Save them for
320  * a given CPU
321  */
322 void smp_store_cpu_info(int id)
323 {
324 	struct cpuinfo_x86 *c = &cpu_data(id);
325 
326 	/* Copy boot_cpu_data only on the first bringup */
327 	if (!c->initialized)
328 		*c = boot_cpu_data;
329 	c->cpu_index = id;
330 	/*
331 	 * During boot time, CPU0 has this setup already. Save the info when
332 	 * bringing up an AP.
333 	 */
334 	identify_secondary_cpu(c);
335 	c->initialized = true;
336 }
337 
338 static bool
339 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
340 {
341 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
342 
343 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
344 }
345 
346 static bool
347 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
348 {
349 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
350 
351 	return !WARN_ONCE(!topology_same_node(c, o),
352 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
353 		"[node: %d != %d]. Ignoring dependency.\n",
354 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
355 }
356 
357 #define link_mask(mfunc, c1, c2)					\
358 do {									\
359 	cpumask_set_cpu((c1), mfunc(c2));				\
360 	cpumask_set_cpu((c2), mfunc(c1));				\
361 } while (0)
362 
363 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
364 {
365 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
366 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
367 
368 		if (c->topo.pkg_id == o->topo.pkg_id &&
369 		    c->topo.die_id == o->topo.die_id &&
370 		    c->topo.amd_node_id == o->topo.amd_node_id &&
371 		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
372 			if (c->topo.core_id == o->topo.core_id)
373 				return topology_sane(c, o, "smt");
374 
375 			if ((c->topo.cu_id != 0xff) &&
376 			    (o->topo.cu_id != 0xff) &&
377 			    (c->topo.cu_id == o->topo.cu_id))
378 				return topology_sane(c, o, "smt");
379 		}
380 
381 	} else if (c->topo.pkg_id == o->topo.pkg_id &&
382 		   c->topo.die_id == o->topo.die_id &&
383 		   c->topo.core_id == o->topo.core_id) {
384 		return topology_sane(c, o, "smt");
385 	}
386 
387 	return false;
388 }
389 
390 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
391 {
392 	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
393 		return false;
394 
395 	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
396 		return c->topo.amd_node_id == o->topo.amd_node_id;
397 
398 	return true;
399 }
400 
401 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
402 {
403 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
404 
405 	/* If the arch didn't set up l2c_id, fall back to SMT */
406 	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
407 		return match_smt(c, o);
408 
409 	/* Do not match if L2 cache id does not match: */
410 	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
411 		return false;
412 
413 	return topology_sane(c, o, "l2c");
414 }
415 
416 /*
417  * Unlike the other levels, we do not enforce keeping a
418  * multicore group inside a NUMA node.  If this happens, we will
419  * discard the MC level of the topology later.
420  */
421 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
422 {
423 	if (c->topo.pkg_id == o->topo.pkg_id)
424 		return true;
425 	return false;
426 }
427 
428 /*
429  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
430  *
431  * Any Intel CPU that has multiple nodes per package and does not
432  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
433  *
434  * When in SNC mode, these CPUs enumerate an LLC that is shared
435  * by multiple NUMA nodes. The LLC is shared for off-package data
436  * access but private to the NUMA node (half of the package) for
437  * on-package access. CPUID (the source of the information about
438  * the LLC) can only enumerate the cache as shared or unshared,
439  * but not this particular configuration.
440  */
441 
442 static const struct x86_cpu_id intel_cod_cpu[] = {
443 	X86_MATCH_VFM(INTEL_HASWELL_X,	 0),	/* COD */
444 	X86_MATCH_VFM(INTEL_BROADWELL_X, 0),	/* COD */
445 	X86_MATCH_VFM(INTEL_ANY,	 1),	/* SNC */
446 	{}
447 };
448 
449 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
450 {
451 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
452 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
453 	bool intel_snc = id && id->driver_data;
454 
455 	/* Do not match if we do not have a valid APICID for cpu: */
456 	if (per_cpu_llc_id(cpu1) == BAD_APICID)
457 		return false;
458 
459 	/* Do not match if LLC id does not match: */
460 	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
461 		return false;
462 
463 	/*
464 	 * Allow the SNC topology without warning. Return of false
465 	 * means 'c' does not share the LLC of 'o'. This will be
466 	 * reflected to userspace.
467 	 */
468 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
469 		return false;
470 
471 	return topology_sane(c, o, "llc");
472 }
473 
474 
475 static inline int x86_sched_itmt_flags(void)
476 {
477 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
478 }
479 
480 #ifdef CONFIG_SCHED_MC
481 static int x86_core_flags(void)
482 {
483 	return cpu_core_flags() | x86_sched_itmt_flags();
484 }
485 #endif
486 #ifdef CONFIG_SCHED_SMT
487 static int x86_smt_flags(void)
488 {
489 	return cpu_smt_flags();
490 }
491 #endif
492 #ifdef CONFIG_SCHED_CLUSTER
493 static int x86_cluster_flags(void)
494 {
495 	return cpu_cluster_flags() | x86_sched_itmt_flags();
496 }
497 #endif
498 
499 static int x86_die_flags(void)
500 {
501 	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU) ||
502 	    cpu_feature_enabled(X86_FEATURE_AMD_HETEROGENEOUS_CORES))
503 		return x86_sched_itmt_flags();
504 
505 	return 0;
506 }
507 
508 /*
509  * Set if a package/die has multiple NUMA nodes inside.
510  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
511  * Sub-NUMA Clustering have this.
512  */
513 static bool x86_has_numa_in_package;
514 
515 static struct sched_domain_topology_level x86_topology[6];
516 
517 static void __init build_sched_topology(void)
518 {
519 	int i = 0;
520 
521 #ifdef CONFIG_SCHED_SMT
522 	x86_topology[i++] = (struct sched_domain_topology_level){
523 		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
524 	};
525 #endif
526 #ifdef CONFIG_SCHED_CLUSTER
527 	x86_topology[i++] = (struct sched_domain_topology_level){
528 		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
529 	};
530 #endif
531 #ifdef CONFIG_SCHED_MC
532 	x86_topology[i++] = (struct sched_domain_topology_level){
533 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
534 	};
535 #endif
536 	/*
537 	 * When there is NUMA topology inside the package skip the PKG domain
538 	 * since the NUMA domains will auto-magically create the right spanning
539 	 * domains based on the SLIT.
540 	 */
541 	if (!x86_has_numa_in_package) {
542 		x86_topology[i++] = (struct sched_domain_topology_level){
543 			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
544 		};
545 	}
546 
547 	/*
548 	 * There must be one trailing NULL entry left.
549 	 */
550 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
551 
552 	set_sched_topology(x86_topology);
553 }
554 
555 void set_cpu_sibling_map(int cpu)
556 {
557 	bool has_smt = __max_threads_per_core > 1;
558 	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
559 	struct cpuinfo_x86 *c = &cpu_data(cpu);
560 	struct cpuinfo_x86 *o;
561 	int i, threads;
562 
563 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
564 
565 	if (!has_mp) {
566 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
567 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
568 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
569 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
570 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
571 		c->booted_cores = 1;
572 		return;
573 	}
574 
575 	for_each_cpu(i, cpu_sibling_setup_mask) {
576 		o = &cpu_data(i);
577 
578 		if (match_pkg(c, o) && !topology_same_node(c, o))
579 			x86_has_numa_in_package = true;
580 
581 		if ((i == cpu) || (has_smt && match_smt(c, o)))
582 			link_mask(topology_sibling_cpumask, cpu, i);
583 
584 		if ((i == cpu) || (has_mp && match_llc(c, o)))
585 			link_mask(cpu_llc_shared_mask, cpu, i);
586 
587 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
588 			link_mask(cpu_l2c_shared_mask, cpu, i);
589 
590 		if ((i == cpu) || (has_mp && match_die(c, o)))
591 			link_mask(topology_die_cpumask, cpu, i);
592 	}
593 
594 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
595 	if (threads > __max_smt_threads)
596 		__max_smt_threads = threads;
597 
598 	for_each_cpu(i, topology_sibling_cpumask(cpu))
599 		cpu_data(i).smt_active = threads > 1;
600 
601 	/*
602 	 * This needs a separate iteration over the cpus because we rely on all
603 	 * topology_sibling_cpumask links to be set-up.
604 	 */
605 	for_each_cpu(i, cpu_sibling_setup_mask) {
606 		o = &cpu_data(i);
607 
608 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
609 			link_mask(topology_core_cpumask, cpu, i);
610 
611 			/*
612 			 *  Does this new cpu bringup a new core?
613 			 */
614 			if (threads == 1) {
615 				/*
616 				 * for each core in package, increment
617 				 * the booted_cores for this new cpu
618 				 */
619 				if (cpumask_first(
620 				    topology_sibling_cpumask(i)) == i)
621 					c->booted_cores++;
622 				/*
623 				 * increment the core count for all
624 				 * the other cpus in this package
625 				 */
626 				if (i != cpu)
627 					cpu_data(i).booted_cores++;
628 			} else if (i != cpu && !c->booted_cores)
629 				c->booted_cores = cpu_data(i).booted_cores;
630 		}
631 	}
632 }
633 
634 /* maps the cpu to the sched domain representing multi-core */
635 const struct cpumask *cpu_coregroup_mask(int cpu)
636 {
637 	return cpu_llc_shared_mask(cpu);
638 }
639 
640 const struct cpumask *cpu_clustergroup_mask(int cpu)
641 {
642 	return cpu_l2c_shared_mask(cpu);
643 }
644 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
645 
646 static void impress_friends(void)
647 {
648 	int cpu;
649 	unsigned long bogosum = 0;
650 	/*
651 	 * Allow the user to impress friends.
652 	 */
653 	pr_debug("Before bogomips\n");
654 	for_each_online_cpu(cpu)
655 		bogosum += cpu_data(cpu).loops_per_jiffy;
656 
657 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
658 		num_online_cpus(),
659 		bogosum/(500000/HZ),
660 		(bogosum/(5000/HZ))%100);
661 
662 	pr_debug("Before bogocount - setting activated=1\n");
663 }
664 
665 /*
666  * The Multiprocessor Specification 1.4 (1997) example code suggests
667  * that there should be a 10ms delay between the BSP asserting INIT
668  * and de-asserting INIT, when starting a remote processor.
669  * But that slows boot and resume on modern processors, which include
670  * many cores and don't require that delay.
671  *
672  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
673  * Modern processor families are quirked to remove the delay entirely.
674  */
675 #define UDELAY_10MS_DEFAULT 10000
676 
677 static unsigned int init_udelay = UINT_MAX;
678 
679 static int __init cpu_init_udelay(char *str)
680 {
681 	get_option(&str, &init_udelay);
682 
683 	return 0;
684 }
685 early_param("cpu_init_udelay", cpu_init_udelay);
686 
687 static void __init smp_quirk_init_udelay(void)
688 {
689 	/* if cmdline changed it from default, leave it alone */
690 	if (init_udelay != UINT_MAX)
691 		return;
692 
693 	/* if modern processor, use no delay */
694 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
695 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
696 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
697 		init_udelay = 0;
698 		return;
699 	}
700 	/* else, use legacy delay */
701 	init_udelay = UDELAY_10MS_DEFAULT;
702 }
703 
704 /*
705  * Wake up AP by INIT, INIT, STARTUP sequence.
706  */
707 static void send_init_sequence(u32 phys_apicid)
708 {
709 	int maxlvt = lapic_get_maxlvt();
710 
711 	/* Be paranoid about clearing APIC errors. */
712 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
713 		/* Due to the Pentium erratum 3AP.  */
714 		if (maxlvt > 3)
715 			apic_write(APIC_ESR, 0);
716 		apic_read(APIC_ESR);
717 	}
718 
719 	/* Assert INIT on the target CPU */
720 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
721 	safe_apic_wait_icr_idle();
722 
723 	udelay(init_udelay);
724 
725 	/* Deassert INIT on the target CPU */
726 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
727 	safe_apic_wait_icr_idle();
728 }
729 
730 /*
731  * Wake up AP by INIT, INIT, STARTUP sequence.
732  */
733 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
734 {
735 	unsigned long send_status = 0, accept_status = 0;
736 	int num_starts, j, maxlvt;
737 
738 	preempt_disable();
739 	maxlvt = lapic_get_maxlvt();
740 	send_init_sequence(phys_apicid);
741 
742 	mb();
743 
744 	/*
745 	 * Should we send STARTUP IPIs ?
746 	 *
747 	 * Determine this based on the APIC version.
748 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
749 	 */
750 	if (APIC_INTEGRATED(boot_cpu_apic_version))
751 		num_starts = 2;
752 	else
753 		num_starts = 0;
754 
755 	/*
756 	 * Run STARTUP IPI loop.
757 	 */
758 	pr_debug("#startup loops: %d\n", num_starts);
759 
760 	for (j = 1; j <= num_starts; j++) {
761 		pr_debug("Sending STARTUP #%d\n", j);
762 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
763 			apic_write(APIC_ESR, 0);
764 		apic_read(APIC_ESR);
765 		pr_debug("After apic_write\n");
766 
767 		/*
768 		 * STARTUP IPI
769 		 */
770 
771 		/* Target chip */
772 		/* Boot on the stack */
773 		/* Kick the second */
774 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
775 			       phys_apicid);
776 
777 		/*
778 		 * Give the other CPU some time to accept the IPI.
779 		 */
780 		if (init_udelay == 0)
781 			udelay(10);
782 		else
783 			udelay(300);
784 
785 		pr_debug("Startup point 1\n");
786 
787 		pr_debug("Waiting for send to finish...\n");
788 		send_status = safe_apic_wait_icr_idle();
789 
790 		/*
791 		 * Give the other CPU some time to accept the IPI.
792 		 */
793 		if (init_udelay == 0)
794 			udelay(10);
795 		else
796 			udelay(200);
797 
798 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
799 			apic_write(APIC_ESR, 0);
800 		accept_status = (apic_read(APIC_ESR) & 0xEF);
801 		if (send_status || accept_status)
802 			break;
803 	}
804 	pr_debug("After Startup\n");
805 
806 	if (send_status)
807 		pr_err("APIC never delivered???\n");
808 	if (accept_status)
809 		pr_err("APIC delivery error (%lx)\n", accept_status);
810 
811 	preempt_enable();
812 	return (send_status | accept_status);
813 }
814 
815 /* reduce the number of lines printed when booting a large cpu count system */
816 static void announce_cpu(int cpu, int apicid)
817 {
818 	static int width, node_width, first = 1;
819 	static int current_node = NUMA_NO_NODE;
820 	int node = early_cpu_to_node(cpu);
821 
822 	if (!width)
823 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
824 
825 	if (!node_width)
826 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
827 
828 	if (system_state < SYSTEM_RUNNING) {
829 		if (first)
830 			pr_info("x86: Booting SMP configuration:\n");
831 
832 		if (node != current_node) {
833 			if (current_node > (-1))
834 				pr_cont("\n");
835 			current_node = node;
836 
837 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
838 			       node_width - num_digits(node), " ", node);
839 		}
840 
841 		/* Add padding for the BSP */
842 		if (first)
843 			pr_cont("%*s", width + 1, " ");
844 		first = 0;
845 
846 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
847 	} else
848 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
849 			node, cpu, apicid);
850 }
851 
852 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
853 {
854 	int ret;
855 
856 	/* Just in case we booted with a single CPU. */
857 	alternatives_enable_smp();
858 
859 	per_cpu(pcpu_hot.current_task, cpu) = idle;
860 	cpu_init_stack_canary(cpu, idle);
861 
862 	/* Initialize the interrupt stack(s) */
863 	ret = irq_init_percpu_irqstack(cpu);
864 	if (ret)
865 		return ret;
866 
867 #ifdef CONFIG_X86_32
868 	/* Stack for startup_32 can be just as for start_secondary onwards */
869 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
870 #endif
871 	return 0;
872 }
873 
874 /*
875  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
876  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
877  * Returns zero if startup was successfully sent, else error code from
878  * ->wakeup_secondary_cpu.
879  */
880 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
881 {
882 	unsigned long start_ip = real_mode_header->trampoline_start;
883 	int ret;
884 
885 #ifdef CONFIG_X86_64
886 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
887 	if (apic->wakeup_secondary_cpu_64)
888 		start_ip = real_mode_header->trampoline_start64;
889 #endif
890 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
891 	initial_code = (unsigned long)start_secondary;
892 
893 	if (IS_ENABLED(CONFIG_X86_32)) {
894 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
895 		initial_stack  = idle->thread.sp;
896 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
897 		smpboot_control = cpu;
898 	}
899 
900 	/* Enable the espfix hack for this CPU */
901 	init_espfix_ap(cpu);
902 
903 	/* So we see what's up */
904 	announce_cpu(cpu, apicid);
905 
906 	/*
907 	 * This grunge runs the startup process for
908 	 * the targeted processor.
909 	 */
910 	if (x86_platform.legacy.warm_reset) {
911 
912 		pr_debug("Setting warm reset code and vector.\n");
913 
914 		smpboot_setup_warm_reset_vector(start_ip);
915 		/*
916 		 * Be paranoid about clearing APIC errors.
917 		*/
918 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
919 			apic_write(APIC_ESR, 0);
920 			apic_read(APIC_ESR);
921 		}
922 	}
923 
924 	smp_mb();
925 
926 	/*
927 	 * Wake up a CPU in difference cases:
928 	 * - Use a method from the APIC driver if one defined, with wakeup
929 	 *   straight to 64-bit mode preferred over wakeup to RM.
930 	 * Otherwise,
931 	 * - Use an INIT boot APIC message
932 	 */
933 	if (apic->wakeup_secondary_cpu_64)
934 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
935 	else if (apic->wakeup_secondary_cpu)
936 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
937 	else
938 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
939 
940 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
941 	if (ret)
942 		arch_cpuhp_cleanup_kick_cpu(cpu);
943 	return ret;
944 }
945 
946 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
947 {
948 	u32 apicid = apic->cpu_present_to_apicid(cpu);
949 	int err;
950 
951 	lockdep_assert_irqs_enabled();
952 
953 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
954 
955 	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
956 		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
957 		return -EINVAL;
958 	}
959 
960 	if (!test_bit(apicid, phys_cpu_present_map)) {
961 		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
962 		return -EINVAL;
963 	}
964 
965 	/*
966 	 * Save current MTRR state in case it was changed since early boot
967 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
968 	 */
969 	mtrr_save_state();
970 
971 	/* the FPU context is blank, nobody can own it */
972 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
973 
974 	err = common_cpu_up(cpu, tidle);
975 	if (err)
976 		return err;
977 
978 	err = do_boot_cpu(apicid, cpu, tidle);
979 	if (err)
980 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
981 
982 	return err;
983 }
984 
985 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
986 {
987 	return smp_ops.kick_ap_alive(cpu, tidle);
988 }
989 
990 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
991 {
992 	/* Cleanup possible dangling ends... */
993 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
994 		smpboot_restore_warm_reset_vector();
995 }
996 
997 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
998 {
999 	if (smp_ops.cleanup_dead_cpu)
1000 		smp_ops.cleanup_dead_cpu(cpu);
1001 
1002 	if (system_state == SYSTEM_RUNNING)
1003 		pr_info("CPU %u is now offline\n", cpu);
1004 }
1005 
1006 void arch_cpuhp_sync_state_poll(void)
1007 {
1008 	if (smp_ops.poll_sync_state)
1009 		smp_ops.poll_sync_state();
1010 }
1011 
1012 /**
1013  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1014  */
1015 void __init arch_disable_smp_support(void)
1016 {
1017 	disable_ioapic_support();
1018 }
1019 
1020 /*
1021  * Fall back to non SMP mode after errors.
1022  *
1023  * RED-PEN audit/test this more. I bet there is more state messed up here.
1024  */
1025 static __init void disable_smp(void)
1026 {
1027 	pr_info("SMP disabled\n");
1028 
1029 	disable_ioapic_support();
1030 	topology_reset_possible_cpus_up();
1031 
1032 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1033 	cpumask_set_cpu(0, topology_core_cpumask(0));
1034 	cpumask_set_cpu(0, topology_die_cpumask(0));
1035 }
1036 
1037 void __init smp_prepare_cpus_common(void)
1038 {
1039 	unsigned int cpu, node;
1040 
1041 	/* Mark all except the boot CPU as hotpluggable */
1042 	for_each_possible_cpu(cpu) {
1043 		if (cpu)
1044 			per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
1045 	}
1046 
1047 	for_each_possible_cpu(cpu) {
1048 		node = cpu_to_node(cpu);
1049 
1050 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map,    cpu), GFP_KERNEL, node);
1051 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map,       cpu), GFP_KERNEL, node);
1052 		zalloc_cpumask_var_node(&per_cpu(cpu_die_map,        cpu), GFP_KERNEL, node);
1053 		zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
1054 		zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
1055 	}
1056 
1057 	set_cpu_sibling_map(0);
1058 }
1059 
1060 void __init smp_prepare_boot_cpu(void)
1061 {
1062 	smp_ops.smp_prepare_boot_cpu();
1063 }
1064 
1065 #ifdef CONFIG_X86_64
1066 /* Establish whether parallel bringup can be supported. */
1067 bool __init arch_cpuhp_init_parallel_bringup(void)
1068 {
1069 	if (!x86_cpuinit.parallel_bringup) {
1070 		pr_info("Parallel CPU startup disabled by the platform\n");
1071 		return false;
1072 	}
1073 
1074 	smpboot_control = STARTUP_READ_APICID;
1075 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1076 	return true;
1077 }
1078 #endif
1079 
1080 /*
1081  * Prepare for SMP bootup.
1082  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1083  *            for common interface support.
1084  */
1085 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1086 {
1087 	smp_prepare_cpus_common();
1088 
1089 	switch (apic_intr_mode) {
1090 	case APIC_PIC:
1091 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1092 		disable_smp();
1093 		return;
1094 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1095 		disable_smp();
1096 		/* Setup local timer */
1097 		x86_init.timers.setup_percpu_clockev();
1098 		return;
1099 	case APIC_VIRTUAL_WIRE:
1100 	case APIC_SYMMETRIC_IO:
1101 		break;
1102 	}
1103 
1104 	/* Setup local timer */
1105 	x86_init.timers.setup_percpu_clockev();
1106 
1107 	pr_info("CPU0: ");
1108 	print_cpu_info(&cpu_data(0));
1109 
1110 	uv_system_init();
1111 
1112 	smp_quirk_init_udelay();
1113 
1114 	speculative_store_bypass_ht_init();
1115 
1116 	snp_set_wakeup_secondary_cpu();
1117 }
1118 
1119 void arch_thaw_secondary_cpus_begin(void)
1120 {
1121 	set_cache_aps_delayed_init(true);
1122 }
1123 
1124 void arch_thaw_secondary_cpus_end(void)
1125 {
1126 	cache_aps_init();
1127 }
1128 
1129 /*
1130  * Early setup to make printk work.
1131  */
1132 void __init native_smp_prepare_boot_cpu(void)
1133 {
1134 	int me = smp_processor_id();
1135 
1136 	/* SMP handles this from setup_per_cpu_areas() */
1137 	if (!IS_ENABLED(CONFIG_SMP))
1138 		switch_gdt_and_percpu_base(me);
1139 
1140 	native_pv_lock_init();
1141 }
1142 
1143 void __init native_smp_cpus_done(unsigned int max_cpus)
1144 {
1145 	pr_debug("Boot done\n");
1146 
1147 	build_sched_topology();
1148 	nmi_selftest();
1149 	impress_friends();
1150 	cache_aps_init();
1151 }
1152 
1153 /* correctly size the local cpu masks */
1154 void __init setup_cpu_local_masks(void)
1155 {
1156 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1157 }
1158 
1159 #ifdef CONFIG_HOTPLUG_CPU
1160 
1161 /* Recompute SMT state for all CPUs on offline */
1162 static void recompute_smt_state(void)
1163 {
1164 	int max_threads, cpu;
1165 
1166 	max_threads = 0;
1167 	for_each_online_cpu (cpu) {
1168 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1169 
1170 		if (threads > max_threads)
1171 			max_threads = threads;
1172 	}
1173 	__max_smt_threads = max_threads;
1174 }
1175 
1176 static void remove_siblinginfo(int cpu)
1177 {
1178 	int sibling;
1179 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1180 
1181 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1182 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1183 		/*/
1184 		 * last thread sibling in this cpu core going down
1185 		 */
1186 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1187 			cpu_data(sibling).booted_cores--;
1188 	}
1189 
1190 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1191 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1192 
1193 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1194 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1195 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1196 			cpu_data(sibling).smt_active = false;
1197 	}
1198 
1199 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1200 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1201 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1202 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1203 	cpumask_clear(cpu_llc_shared_mask(cpu));
1204 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1205 	cpumask_clear(topology_sibling_cpumask(cpu));
1206 	cpumask_clear(topology_core_cpumask(cpu));
1207 	cpumask_clear(topology_die_cpumask(cpu));
1208 	c->topo.core_id = 0;
1209 	c->booted_cores = 0;
1210 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1211 	recompute_smt_state();
1212 }
1213 
1214 static void remove_cpu_from_maps(int cpu)
1215 {
1216 	set_cpu_online(cpu, false);
1217 	numa_remove_cpu(cpu);
1218 }
1219 
1220 void cpu_disable_common(void)
1221 {
1222 	int cpu = smp_processor_id();
1223 
1224 	remove_siblinginfo(cpu);
1225 
1226 	/* It's now safe to remove this processor from the online map */
1227 	lock_vector_lock();
1228 	remove_cpu_from_maps(cpu);
1229 	unlock_vector_lock();
1230 	fixup_irqs();
1231 	lapic_offline();
1232 }
1233 
1234 int native_cpu_disable(void)
1235 {
1236 	int ret;
1237 
1238 	ret = lapic_can_unplug_cpu();
1239 	if (ret)
1240 		return ret;
1241 
1242 	cpu_disable_common();
1243 
1244         /*
1245          * Disable the local APIC. Otherwise IPI broadcasts will reach
1246          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1247          * messages.
1248          *
1249          * Disabling the APIC must happen after cpu_disable_common()
1250          * which invokes fixup_irqs().
1251          *
1252          * Disabling the APIC preserves already set bits in IRR, but
1253          * an interrupt arriving after disabling the local APIC does not
1254          * set the corresponding IRR bit.
1255          *
1256          * fixup_irqs() scans IRR for set bits so it can raise a not
1257          * yet handled interrupt on the new destination CPU via an IPI
1258          * but obviously it can't do so for IRR bits which are not set.
1259          * IOW, interrupts arriving after disabling the local APIC will
1260          * be lost.
1261          */
1262 	apic_soft_disable();
1263 
1264 	return 0;
1265 }
1266 
1267 void play_dead_common(void)
1268 {
1269 	idle_task_exit();
1270 
1271 	cpuhp_ap_report_dead();
1272 
1273 	local_irq_disable();
1274 }
1275 
1276 /*
1277  * We need to flush the caches before going to sleep, lest we have
1278  * dirty data in our caches when we come back up.
1279  */
1280 static inline void mwait_play_dead(void)
1281 {
1282 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1283 	unsigned int eax, ebx, ecx, edx;
1284 	unsigned int highest_cstate = 0;
1285 	unsigned int highest_subcstate = 0;
1286 	int i;
1287 
1288 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1289 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1290 		return;
1291 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1292 		return;
1293 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1294 		return;
1295 
1296 	eax = CPUID_LEAF_MWAIT;
1297 	ecx = 0;
1298 	native_cpuid(&eax, &ebx, &ecx, &edx);
1299 
1300 	/*
1301 	 * eax will be 0 if EDX enumeration is not valid.
1302 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1303 	 */
1304 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1305 		eax = 0;
1306 	} else {
1307 		edx >>= MWAIT_SUBSTATE_SIZE;
1308 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1309 			if (edx & MWAIT_SUBSTATE_MASK) {
1310 				highest_cstate = i;
1311 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1312 			}
1313 		}
1314 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1315 			(highest_subcstate - 1);
1316 	}
1317 
1318 	/* Set up state for the kexec() hack below */
1319 	md->status = CPUDEAD_MWAIT_WAIT;
1320 	md->control = CPUDEAD_MWAIT_WAIT;
1321 
1322 	wbinvd();
1323 
1324 	while (1) {
1325 		/*
1326 		 * The CLFLUSH is a workaround for erratum AAI65 for
1327 		 * the Xeon 7400 series.  It's not clear it is actually
1328 		 * needed, but it should be harmless in either case.
1329 		 * The WBINVD is insufficient due to the spurious-wakeup
1330 		 * case where we return around the loop.
1331 		 */
1332 		mb();
1333 		clflush(md);
1334 		mb();
1335 		__monitor(md, 0, 0);
1336 		mb();
1337 		__mwait(eax, 0);
1338 
1339 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1340 			/*
1341 			 * Kexec is about to happen. Don't go back into mwait() as
1342 			 * the kexec kernel might overwrite text and data including
1343 			 * page tables and stack. So mwait() would resume when the
1344 			 * monitor cache line is written to and then the CPU goes
1345 			 * south due to overwritten text, page tables and stack.
1346 			 *
1347 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1348 			 * SMI. They will resume execution at the instruction
1349 			 * following the HLT instruction and run into the problem
1350 			 * which this is trying to prevent.
1351 			 */
1352 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1353 			while(1)
1354 				native_halt();
1355 		}
1356 	}
1357 }
1358 
1359 /*
1360  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1361  * mwait_play_dead().
1362  */
1363 void smp_kick_mwait_play_dead(void)
1364 {
1365 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1366 	struct mwait_cpu_dead *md;
1367 	unsigned int cpu, i;
1368 
1369 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1370 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1371 
1372 		/* Does it sit in mwait_play_dead() ? */
1373 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1374 			continue;
1375 
1376 		/* Wait up to 5ms */
1377 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1378 			/* Bring it out of mwait */
1379 			WRITE_ONCE(md->control, newstate);
1380 			udelay(5);
1381 		}
1382 
1383 		if (READ_ONCE(md->status) != newstate)
1384 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1385 	}
1386 }
1387 
1388 void __noreturn hlt_play_dead(void)
1389 {
1390 	if (__this_cpu_read(cpu_info.x86) >= 4)
1391 		wbinvd();
1392 
1393 	while (1)
1394 		native_halt();
1395 }
1396 
1397 /*
1398  * native_play_dead() is essentially a __noreturn function, but it can't
1399  * be marked as such as the compiler may complain about it.
1400  */
1401 void native_play_dead(void)
1402 {
1403 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1404 		__update_spec_ctrl(0);
1405 
1406 	play_dead_common();
1407 	tboot_shutdown(TB_SHUTDOWN_WFS);
1408 
1409 	mwait_play_dead();
1410 	if (cpuidle_play_dead())
1411 		hlt_play_dead();
1412 }
1413 
1414 #else /* ... !CONFIG_HOTPLUG_CPU */
1415 int native_cpu_disable(void)
1416 {
1417 	return -ENOSYS;
1418 }
1419 
1420 void native_play_dead(void)
1421 {
1422 	BUG();
1423 }
1424 
1425 #endif
1426