1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * x86 SMP booting functions 4 * 5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 7 * Copyright 2001 Andi Kleen, SuSE Labs. 8 * 9 * Much of the core SMP work is based on previous work by Thomas Radke, to 10 * whom a great many thanks are extended. 11 * 12 * Thanks to Intel for making available several different Pentium, 13 * Pentium Pro and Pentium-II/Xeon MP machines. 14 * Original development of Linux SMP code supported by Caldera. 15 * 16 * Fixes 17 * Felix Koop : NR_CPUS used properly 18 * Jose Renau : Handle single CPU case. 19 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 20 * Greg Wright : Fix for kernel stacks panic. 21 * Erich Boleyn : MP v1.4 and additional changes. 22 * Matthias Sattler : Changes for 2.1 kernel map. 23 * Michel Lespinasse : Changes for 2.1 kernel map. 24 * Michael Chastain : Change trampoline.S to gnu as. 25 * Alan Cox : Dumb bug: 'B' step PPro's are fine 26 * Ingo Molnar : Added APIC timers, based on code 27 * from Jose Renau 28 * Ingo Molnar : various cleanups and rewrites 29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 31 * Andi Kleen : Changed for SMP boot into long mode. 32 * Martin J. Bligh : Added support for multi-quad systems 33 * Dave Jones : Report invalid combinations of Athlon CPUs. 34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 35 * Andi Kleen : Converted to new state machine. 36 * Ashok Raj : CPU hotplug support 37 * Glauber Costa : i386 and x86_64 integration 38 */ 39 40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 41 42 #include <linux/init.h> 43 #include <linux/smp.h> 44 #include <linux/export.h> 45 #include <linux/sched.h> 46 #include <linux/sched/topology.h> 47 #include <linux/sched/hotplug.h> 48 #include <linux/sched/task_stack.h> 49 #include <linux/percpu.h> 50 #include <linux/memblock.h> 51 #include <linux/err.h> 52 #include <linux/nmi.h> 53 #include <linux/tboot.h> 54 #include <linux/gfp.h> 55 #include <linux/cpuidle.h> 56 #include <linux/kexec.h> 57 #include <linux/numa.h> 58 #include <linux/pgtable.h> 59 #include <linux/overflow.h> 60 #include <linux/stackprotector.h> 61 #include <linux/cpuhotplug.h> 62 #include <linux/mc146818rtc.h> 63 #include <linux/acpi.h> 64 65 #include <asm/acpi.h> 66 #include <asm/cacheinfo.h> 67 #include <asm/cpuid.h> 68 #include <asm/desc.h> 69 #include <asm/nmi.h> 70 #include <asm/irq.h> 71 #include <asm/realmode.h> 72 #include <asm/cpu.h> 73 #include <asm/numa.h> 74 #include <asm/tlbflush.h> 75 #include <asm/mtrr.h> 76 #include <asm/mwait.h> 77 #include <asm/apic.h> 78 #include <asm/io_apic.h> 79 #include <asm/fpu/api.h> 80 #include <asm/setup.h> 81 #include <asm/uv/uv.h> 82 #include <asm/microcode.h> 83 #include <asm/i8259.h> 84 #include <asm/misc.h> 85 #include <asm/qspinlock.h> 86 #include <asm/intel-family.h> 87 #include <asm/cpu_device_id.h> 88 #include <asm/spec-ctrl.h> 89 #include <asm/hw_irq.h> 90 #include <asm/stackprotector.h> 91 #include <asm/sev.h> 92 #include <asm/spec-ctrl.h> 93 94 /* representing HT siblings of each logical CPU */ 95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); 96 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 97 98 /* representing HT and core siblings of each logical CPU */ 99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); 100 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 101 102 /* representing HT, core, and die siblings of each logical CPU */ 103 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); 104 EXPORT_PER_CPU_SYMBOL(cpu_die_map); 105 106 /* CPUs which are the primary SMT threads */ 107 struct cpumask __cpu_primary_thread_mask __read_mostly; 108 109 /* Representing CPUs for which sibling maps can be computed */ 110 static cpumask_var_t cpu_sibling_setup_mask; 111 112 struct mwait_cpu_dead { 113 unsigned int control; 114 unsigned int status; 115 }; 116 117 #define CPUDEAD_MWAIT_WAIT 0xDEADBEEF 118 #define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD 119 120 /* 121 * Cache line aligned data for mwait_play_dead(). Separate on purpose so 122 * that it's unlikely to be touched by other CPUs. 123 */ 124 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead); 125 126 /* Maximum number of SMT threads on any online core */ 127 int __read_mostly __max_smt_threads = 1; 128 129 /* Flag to indicate if a complete sched domain rebuild is required */ 130 bool x86_topology_update; 131 132 int arch_update_cpu_topology(void) 133 { 134 int retval = x86_topology_update; 135 136 x86_topology_update = false; 137 return retval; 138 } 139 140 static unsigned int smpboot_warm_reset_vector_count; 141 142 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) 143 { 144 unsigned long flags; 145 146 spin_lock_irqsave(&rtc_lock, flags); 147 if (!smpboot_warm_reset_vector_count++) { 148 CMOS_WRITE(0xa, 0xf); 149 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4; 150 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf; 151 } 152 spin_unlock_irqrestore(&rtc_lock, flags); 153 } 154 155 static inline void smpboot_restore_warm_reset_vector(void) 156 { 157 unsigned long flags; 158 159 /* 160 * Paranoid: Set warm reset code and vector here back 161 * to default values. 162 */ 163 spin_lock_irqsave(&rtc_lock, flags); 164 if (!--smpboot_warm_reset_vector_count) { 165 CMOS_WRITE(0, 0xf); 166 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; 167 } 168 spin_unlock_irqrestore(&rtc_lock, flags); 169 170 } 171 172 /* Run the next set of setup steps for the upcoming CPU */ 173 static void ap_starting(void) 174 { 175 int cpuid = smp_processor_id(); 176 177 /* Mop up eventual mwait_play_dead() wreckage */ 178 this_cpu_write(mwait_cpu_dead.status, 0); 179 this_cpu_write(mwait_cpu_dead.control, 0); 180 181 /* 182 * If woken up by an INIT in an 82489DX configuration the alive 183 * synchronization guarantees that the CPU does not reach this 184 * point before an INIT_deassert IPI reaches the local APIC, so it 185 * is now safe to touch the local APIC. 186 * 187 * Set up this CPU, first the APIC, which is probably redundant on 188 * most boards. 189 */ 190 apic_ap_setup(); 191 192 /* Save the processor parameters. */ 193 smp_store_cpu_info(cpuid); 194 195 /* 196 * The topology information must be up to date before 197 * notify_cpu_starting(). 198 */ 199 set_cpu_sibling_map(cpuid); 200 201 ap_init_aperfmperf(); 202 203 pr_debug("Stack at about %p\n", &cpuid); 204 205 wmb(); 206 207 /* 208 * This runs the AP through all the cpuhp states to its target 209 * state CPUHP_ONLINE. 210 */ 211 notify_cpu_starting(cpuid); 212 } 213 214 static void ap_calibrate_delay(void) 215 { 216 /* 217 * Calibrate the delay loop and update loops_per_jiffy in cpu_data. 218 * smp_store_cpu_info() stored a value that is close but not as 219 * accurate as the value just calculated. 220 * 221 * As this is invoked after the TSC synchronization check, 222 * calibrate_delay_is_known() will skip the calibration routine 223 * when TSC is synchronized across sockets. 224 */ 225 calibrate_delay(); 226 cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy; 227 } 228 229 /* 230 * Activate a secondary processor. 231 */ 232 static void notrace start_secondary(void *unused) 233 { 234 /* 235 * Don't put *anything* except direct CPU state initialization 236 * before cpu_init(), SMP booting is too fragile that we want to 237 * limit the things done here to the most necessary things. 238 */ 239 cr4_init(); 240 241 /* 242 * 32-bit specific. 64-bit reaches this code with the correct page 243 * table established. Yet another historical divergence. 244 */ 245 if (IS_ENABLED(CONFIG_X86_32)) { 246 /* switch away from the initial page table */ 247 load_cr3(swapper_pg_dir); 248 __flush_tlb_all(); 249 } 250 251 cpu_init_exception_handling(false); 252 253 /* 254 * Load the microcode before reaching the AP alive synchronization 255 * point below so it is not part of the full per CPU serialized 256 * bringup part when "parallel" bringup is enabled. 257 * 258 * That's even safe when hyperthreading is enabled in the CPU as 259 * the core code starts the primary threads first and leaves the 260 * secondary threads waiting for SIPI. Loading microcode on 261 * physical cores concurrently is a safe operation. 262 * 263 * This covers both the Intel specific issue that concurrent 264 * microcode loading on SMT siblings must be prohibited and the 265 * vendor independent issue`that microcode loading which changes 266 * CPUID, MSRs etc. must be strictly serialized to maintain 267 * software state correctness. 268 */ 269 load_ucode_ap(); 270 271 /* 272 * Synchronization point with the hotplug core. Sets this CPUs 273 * synchronization state to ALIVE and spin-waits for the control CPU to 274 * release this CPU for further bringup. 275 */ 276 cpuhp_ap_sync_alive(); 277 278 cpu_init(); 279 fpu__init_cpu(); 280 rcutree_report_cpu_starting(raw_smp_processor_id()); 281 x86_cpuinit.early_percpu_clock_init(); 282 283 ap_starting(); 284 285 /* Check TSC synchronization with the control CPU. */ 286 check_tsc_sync_target(); 287 288 /* 289 * Calibrate the delay loop after the TSC synchronization check. 290 * This allows to skip the calibration when TSC is synchronized 291 * across sockets. 292 */ 293 ap_calibrate_delay(); 294 295 speculative_store_bypass_ht_init(); 296 297 /* 298 * Lock vector_lock, set CPU online and bring the vector 299 * allocator online. Online must be set with vector_lock held 300 * to prevent a concurrent irq setup/teardown from seeing a 301 * half valid vector space. 302 */ 303 lock_vector_lock(); 304 set_cpu_online(smp_processor_id(), true); 305 lapic_online(); 306 unlock_vector_lock(); 307 x86_platform.nmi_init(); 308 309 /* enable local interrupts */ 310 local_irq_enable(); 311 312 x86_cpuinit.setup_percpu_clockev(); 313 314 wmb(); 315 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 316 } 317 318 /* 319 * The bootstrap kernel entry code has set these up. Save them for 320 * a given CPU 321 */ 322 void smp_store_cpu_info(int id) 323 { 324 struct cpuinfo_x86 *c = &cpu_data(id); 325 326 /* Copy boot_cpu_data only on the first bringup */ 327 if (!c->initialized) 328 *c = boot_cpu_data; 329 c->cpu_index = id; 330 /* 331 * During boot time, CPU0 has this setup already. Save the info when 332 * bringing up an AP. 333 */ 334 identify_secondary_cpu(c); 335 c->initialized = true; 336 } 337 338 static bool 339 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 340 { 341 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 342 343 return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); 344 } 345 346 static bool 347 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) 348 { 349 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 350 351 return !WARN_ONCE(!topology_same_node(c, o), 352 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " 353 "[node: %d != %d]. Ignoring dependency.\n", 354 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); 355 } 356 357 #define link_mask(mfunc, c1, c2) \ 358 do { \ 359 cpumask_set_cpu((c1), mfunc(c2)); \ 360 cpumask_set_cpu((c2), mfunc(c1)); \ 361 } while (0) 362 363 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 364 { 365 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 366 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 367 368 if (c->topo.pkg_id == o->topo.pkg_id && 369 c->topo.die_id == o->topo.die_id && 370 c->topo.amd_node_id == o->topo.amd_node_id && 371 per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) { 372 if (c->topo.core_id == o->topo.core_id) 373 return topology_sane(c, o, "smt"); 374 375 if ((c->topo.cu_id != 0xff) && 376 (o->topo.cu_id != 0xff) && 377 (c->topo.cu_id == o->topo.cu_id)) 378 return topology_sane(c, o, "smt"); 379 } 380 381 } else if (c->topo.pkg_id == o->topo.pkg_id && 382 c->topo.die_id == o->topo.die_id && 383 c->topo.core_id == o->topo.core_id) { 384 return topology_sane(c, o, "smt"); 385 } 386 387 return false; 388 } 389 390 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 391 { 392 if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id) 393 return false; 394 395 if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1) 396 return c->topo.amd_node_id == o->topo.amd_node_id; 397 398 return true; 399 } 400 401 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 402 { 403 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 404 405 /* If the arch didn't set up l2c_id, fall back to SMT */ 406 if (per_cpu_l2c_id(cpu1) == BAD_APICID) 407 return match_smt(c, o); 408 409 /* Do not match if L2 cache id does not match: */ 410 if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2)) 411 return false; 412 413 return topology_sane(c, o, "l2c"); 414 } 415 416 /* 417 * Unlike the other levels, we do not enforce keeping a 418 * multicore group inside a NUMA node. If this happens, we will 419 * discard the MC level of the topology later. 420 */ 421 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 422 { 423 if (c->topo.pkg_id == o->topo.pkg_id) 424 return true; 425 return false; 426 } 427 428 /* 429 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs. 430 * 431 * Any Intel CPU that has multiple nodes per package and does not 432 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology. 433 * 434 * When in SNC mode, these CPUs enumerate an LLC that is shared 435 * by multiple NUMA nodes. The LLC is shared for off-package data 436 * access but private to the NUMA node (half of the package) for 437 * on-package access. CPUID (the source of the information about 438 * the LLC) can only enumerate the cache as shared or unshared, 439 * but not this particular configuration. 440 */ 441 442 static const struct x86_cpu_id intel_cod_cpu[] = { 443 X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */ 444 X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */ 445 X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */ 446 {} 447 }; 448 449 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 450 { 451 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu); 452 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 453 bool intel_snc = id && id->driver_data; 454 455 /* Do not match if we do not have a valid APICID for cpu: */ 456 if (per_cpu_llc_id(cpu1) == BAD_APICID) 457 return false; 458 459 /* Do not match if LLC id does not match: */ 460 if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2)) 461 return false; 462 463 /* 464 * Allow the SNC topology without warning. Return of false 465 * means 'c' does not share the LLC of 'o'. This will be 466 * reflected to userspace. 467 */ 468 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc) 469 return false; 470 471 return topology_sane(c, o, "llc"); 472 } 473 474 475 static inline int x86_sched_itmt_flags(void) 476 { 477 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; 478 } 479 480 #ifdef CONFIG_SCHED_MC 481 static int x86_core_flags(void) 482 { 483 return cpu_core_flags() | x86_sched_itmt_flags(); 484 } 485 #endif 486 #ifdef CONFIG_SCHED_SMT 487 static int x86_smt_flags(void) 488 { 489 return cpu_smt_flags(); 490 } 491 #endif 492 #ifdef CONFIG_SCHED_CLUSTER 493 static int x86_cluster_flags(void) 494 { 495 return cpu_cluster_flags() | x86_sched_itmt_flags(); 496 } 497 #endif 498 499 static int x86_die_flags(void) 500 { 501 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU) || 502 cpu_feature_enabled(X86_FEATURE_AMD_HETEROGENEOUS_CORES)) 503 return x86_sched_itmt_flags(); 504 505 return 0; 506 } 507 508 /* 509 * Set if a package/die has multiple NUMA nodes inside. 510 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel 511 * Sub-NUMA Clustering have this. 512 */ 513 static bool x86_has_numa_in_package; 514 515 static struct sched_domain_topology_level x86_topology[6]; 516 517 static void __init build_sched_topology(void) 518 { 519 int i = 0; 520 521 #ifdef CONFIG_SCHED_SMT 522 x86_topology[i++] = (struct sched_domain_topology_level){ 523 cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) 524 }; 525 #endif 526 #ifdef CONFIG_SCHED_CLUSTER 527 x86_topology[i++] = (struct sched_domain_topology_level){ 528 cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) 529 }; 530 #endif 531 #ifdef CONFIG_SCHED_MC 532 x86_topology[i++] = (struct sched_domain_topology_level){ 533 cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) 534 }; 535 #endif 536 /* 537 * When there is NUMA topology inside the package skip the PKG domain 538 * since the NUMA domains will auto-magically create the right spanning 539 * domains based on the SLIT. 540 */ 541 if (!x86_has_numa_in_package) { 542 x86_topology[i++] = (struct sched_domain_topology_level){ 543 cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG) 544 }; 545 } 546 547 /* 548 * There must be one trailing NULL entry left. 549 */ 550 BUG_ON(i >= ARRAY_SIZE(x86_topology)-1); 551 552 set_sched_topology(x86_topology); 553 } 554 555 void set_cpu_sibling_map(int cpu) 556 { 557 bool has_smt = __max_threads_per_core > 1; 558 bool has_mp = has_smt || topology_num_cores_per_package() > 1; 559 struct cpuinfo_x86 *c = &cpu_data(cpu); 560 struct cpuinfo_x86 *o; 561 int i, threads; 562 563 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 564 565 if (!has_mp) { 566 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); 567 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 568 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu)); 569 cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); 570 cpumask_set_cpu(cpu, topology_die_cpumask(cpu)); 571 c->booted_cores = 1; 572 return; 573 } 574 575 for_each_cpu(i, cpu_sibling_setup_mask) { 576 o = &cpu_data(i); 577 578 if (match_pkg(c, o) && !topology_same_node(c, o)) 579 x86_has_numa_in_package = true; 580 581 if ((i == cpu) || (has_smt && match_smt(c, o))) 582 link_mask(topology_sibling_cpumask, cpu, i); 583 584 if ((i == cpu) || (has_mp && match_llc(c, o))) 585 link_mask(cpu_llc_shared_mask, cpu, i); 586 587 if ((i == cpu) || (has_mp && match_l2c(c, o))) 588 link_mask(cpu_l2c_shared_mask, cpu, i); 589 590 if ((i == cpu) || (has_mp && match_die(c, o))) 591 link_mask(topology_die_cpumask, cpu, i); 592 } 593 594 threads = cpumask_weight(topology_sibling_cpumask(cpu)); 595 if (threads > __max_smt_threads) 596 __max_smt_threads = threads; 597 598 for_each_cpu(i, topology_sibling_cpumask(cpu)) 599 cpu_data(i).smt_active = threads > 1; 600 601 /* 602 * This needs a separate iteration over the cpus because we rely on all 603 * topology_sibling_cpumask links to be set-up. 604 */ 605 for_each_cpu(i, cpu_sibling_setup_mask) { 606 o = &cpu_data(i); 607 608 if ((i == cpu) || (has_mp && match_pkg(c, o))) { 609 link_mask(topology_core_cpumask, cpu, i); 610 611 /* 612 * Does this new cpu bringup a new core? 613 */ 614 if (threads == 1) { 615 /* 616 * for each core in package, increment 617 * the booted_cores for this new cpu 618 */ 619 if (cpumask_first( 620 topology_sibling_cpumask(i)) == i) 621 c->booted_cores++; 622 /* 623 * increment the core count for all 624 * the other cpus in this package 625 */ 626 if (i != cpu) 627 cpu_data(i).booted_cores++; 628 } else if (i != cpu && !c->booted_cores) 629 c->booted_cores = cpu_data(i).booted_cores; 630 } 631 } 632 } 633 634 /* maps the cpu to the sched domain representing multi-core */ 635 const struct cpumask *cpu_coregroup_mask(int cpu) 636 { 637 return cpu_llc_shared_mask(cpu); 638 } 639 640 const struct cpumask *cpu_clustergroup_mask(int cpu) 641 { 642 return cpu_l2c_shared_mask(cpu); 643 } 644 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask); 645 646 static void impress_friends(void) 647 { 648 int cpu; 649 unsigned long bogosum = 0; 650 /* 651 * Allow the user to impress friends. 652 */ 653 pr_debug("Before bogomips\n"); 654 for_each_online_cpu(cpu) 655 bogosum += cpu_data(cpu).loops_per_jiffy; 656 657 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", 658 num_online_cpus(), 659 bogosum/(500000/HZ), 660 (bogosum/(5000/HZ))%100); 661 662 pr_debug("Before bogocount - setting activated=1\n"); 663 } 664 665 /* 666 * The Multiprocessor Specification 1.4 (1997) example code suggests 667 * that there should be a 10ms delay between the BSP asserting INIT 668 * and de-asserting INIT, when starting a remote processor. 669 * But that slows boot and resume on modern processors, which include 670 * many cores and don't require that delay. 671 * 672 * Cmdline "init_cpu_udelay=" is available to over-ride this delay. 673 * Modern processor families are quirked to remove the delay entirely. 674 */ 675 #define UDELAY_10MS_DEFAULT 10000 676 677 static unsigned int init_udelay = UINT_MAX; 678 679 static int __init cpu_init_udelay(char *str) 680 { 681 get_option(&str, &init_udelay); 682 683 return 0; 684 } 685 early_param("cpu_init_udelay", cpu_init_udelay); 686 687 static void __init smp_quirk_init_udelay(void) 688 { 689 /* if cmdline changed it from default, leave it alone */ 690 if (init_udelay != UINT_MAX) 691 return; 692 693 /* if modern processor, use no delay */ 694 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || 695 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) || 696 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { 697 init_udelay = 0; 698 return; 699 } 700 /* else, use legacy delay */ 701 init_udelay = UDELAY_10MS_DEFAULT; 702 } 703 704 /* 705 * Wake up AP by INIT, INIT, STARTUP sequence. 706 */ 707 static void send_init_sequence(u32 phys_apicid) 708 { 709 int maxlvt = lapic_get_maxlvt(); 710 711 /* Be paranoid about clearing APIC errors. */ 712 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 713 /* Due to the Pentium erratum 3AP. */ 714 if (maxlvt > 3) 715 apic_write(APIC_ESR, 0); 716 apic_read(APIC_ESR); 717 } 718 719 /* Assert INIT on the target CPU */ 720 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid); 721 safe_apic_wait_icr_idle(); 722 723 udelay(init_udelay); 724 725 /* Deassert INIT on the target CPU */ 726 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 727 safe_apic_wait_icr_idle(); 728 } 729 730 /* 731 * Wake up AP by INIT, INIT, STARTUP sequence. 732 */ 733 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip) 734 { 735 unsigned long send_status = 0, accept_status = 0; 736 int num_starts, j, maxlvt; 737 738 preempt_disable(); 739 maxlvt = lapic_get_maxlvt(); 740 send_init_sequence(phys_apicid); 741 742 mb(); 743 744 /* 745 * Should we send STARTUP IPIs ? 746 * 747 * Determine this based on the APIC version. 748 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 749 */ 750 if (APIC_INTEGRATED(boot_cpu_apic_version)) 751 num_starts = 2; 752 else 753 num_starts = 0; 754 755 /* 756 * Run STARTUP IPI loop. 757 */ 758 pr_debug("#startup loops: %d\n", num_starts); 759 760 for (j = 1; j <= num_starts; j++) { 761 pr_debug("Sending STARTUP #%d\n", j); 762 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 763 apic_write(APIC_ESR, 0); 764 apic_read(APIC_ESR); 765 pr_debug("After apic_write\n"); 766 767 /* 768 * STARTUP IPI 769 */ 770 771 /* Target chip */ 772 /* Boot on the stack */ 773 /* Kick the second */ 774 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 775 phys_apicid); 776 777 /* 778 * Give the other CPU some time to accept the IPI. 779 */ 780 if (init_udelay == 0) 781 udelay(10); 782 else 783 udelay(300); 784 785 pr_debug("Startup point 1\n"); 786 787 pr_debug("Waiting for send to finish...\n"); 788 send_status = safe_apic_wait_icr_idle(); 789 790 /* 791 * Give the other CPU some time to accept the IPI. 792 */ 793 if (init_udelay == 0) 794 udelay(10); 795 else 796 udelay(200); 797 798 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 799 apic_write(APIC_ESR, 0); 800 accept_status = (apic_read(APIC_ESR) & 0xEF); 801 if (send_status || accept_status) 802 break; 803 } 804 pr_debug("After Startup\n"); 805 806 if (send_status) 807 pr_err("APIC never delivered???\n"); 808 if (accept_status) 809 pr_err("APIC delivery error (%lx)\n", accept_status); 810 811 preempt_enable(); 812 return (send_status | accept_status); 813 } 814 815 /* reduce the number of lines printed when booting a large cpu count system */ 816 static void announce_cpu(int cpu, int apicid) 817 { 818 static int width, node_width, first = 1; 819 static int current_node = NUMA_NO_NODE; 820 int node = early_cpu_to_node(cpu); 821 822 if (!width) 823 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ 824 825 if (!node_width) 826 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ 827 828 if (system_state < SYSTEM_RUNNING) { 829 if (first) 830 pr_info("x86: Booting SMP configuration:\n"); 831 832 if (node != current_node) { 833 if (current_node > (-1)) 834 pr_cont("\n"); 835 current_node = node; 836 837 printk(KERN_INFO ".... node %*s#%d, CPUs: ", 838 node_width - num_digits(node), " ", node); 839 } 840 841 /* Add padding for the BSP */ 842 if (first) 843 pr_cont("%*s", width + 1, " "); 844 first = 0; 845 846 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); 847 } else 848 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 849 node, cpu, apicid); 850 } 851 852 int common_cpu_up(unsigned int cpu, struct task_struct *idle) 853 { 854 int ret; 855 856 /* Just in case we booted with a single CPU. */ 857 alternatives_enable_smp(); 858 859 per_cpu(pcpu_hot.current_task, cpu) = idle; 860 cpu_init_stack_canary(cpu, idle); 861 862 /* Initialize the interrupt stack(s) */ 863 ret = irq_init_percpu_irqstack(cpu); 864 if (ret) 865 return ret; 866 867 #ifdef CONFIG_X86_32 868 /* Stack for startup_32 can be just as for start_secondary onwards */ 869 per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle); 870 #endif 871 return 0; 872 } 873 874 /* 875 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 876 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 877 * Returns zero if startup was successfully sent, else error code from 878 * ->wakeup_secondary_cpu. 879 */ 880 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle) 881 { 882 unsigned long start_ip = real_mode_header->trampoline_start; 883 int ret; 884 885 #ifdef CONFIG_X86_64 886 /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */ 887 if (apic->wakeup_secondary_cpu_64) 888 start_ip = real_mode_header->trampoline_start64; 889 #endif 890 idle->thread.sp = (unsigned long)task_pt_regs(idle); 891 initial_code = (unsigned long)start_secondary; 892 893 if (IS_ENABLED(CONFIG_X86_32)) { 894 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu); 895 initial_stack = idle->thread.sp; 896 } else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) { 897 smpboot_control = cpu; 898 } 899 900 /* Enable the espfix hack for this CPU */ 901 init_espfix_ap(cpu); 902 903 /* So we see what's up */ 904 announce_cpu(cpu, apicid); 905 906 /* 907 * This grunge runs the startup process for 908 * the targeted processor. 909 */ 910 if (x86_platform.legacy.warm_reset) { 911 912 pr_debug("Setting warm reset code and vector.\n"); 913 914 smpboot_setup_warm_reset_vector(start_ip); 915 /* 916 * Be paranoid about clearing APIC errors. 917 */ 918 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 919 apic_write(APIC_ESR, 0); 920 apic_read(APIC_ESR); 921 } 922 } 923 924 smp_mb(); 925 926 /* 927 * Wake up a CPU in difference cases: 928 * - Use a method from the APIC driver if one defined, with wakeup 929 * straight to 64-bit mode preferred over wakeup to RM. 930 * Otherwise, 931 * - Use an INIT boot APIC message 932 */ 933 if (apic->wakeup_secondary_cpu_64) 934 ret = apic->wakeup_secondary_cpu_64(apicid, start_ip); 935 else if (apic->wakeup_secondary_cpu) 936 ret = apic->wakeup_secondary_cpu(apicid, start_ip); 937 else 938 ret = wakeup_secondary_cpu_via_init(apicid, start_ip); 939 940 /* If the wakeup mechanism failed, cleanup the warm reset vector */ 941 if (ret) 942 arch_cpuhp_cleanup_kick_cpu(cpu); 943 return ret; 944 } 945 946 int native_kick_ap(unsigned int cpu, struct task_struct *tidle) 947 { 948 u32 apicid = apic->cpu_present_to_apicid(cpu); 949 int err; 950 951 lockdep_assert_irqs_enabled(); 952 953 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 954 955 if (apicid == BAD_APICID || !apic_id_valid(apicid)) { 956 pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid); 957 return -EINVAL; 958 } 959 960 if (!test_bit(apicid, phys_cpu_present_map)) { 961 pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid); 962 return -EINVAL; 963 } 964 965 /* 966 * Save current MTRR state in case it was changed since early boot 967 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 968 */ 969 mtrr_save_state(); 970 971 /* the FPU context is blank, nobody can own it */ 972 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; 973 974 err = common_cpu_up(cpu, tidle); 975 if (err) 976 return err; 977 978 err = do_boot_cpu(apicid, cpu, tidle); 979 if (err) 980 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); 981 982 return err; 983 } 984 985 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle) 986 { 987 return smp_ops.kick_ap_alive(cpu, tidle); 988 } 989 990 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) 991 { 992 /* Cleanup possible dangling ends... */ 993 if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset) 994 smpboot_restore_warm_reset_vector(); 995 } 996 997 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 998 { 999 if (smp_ops.cleanup_dead_cpu) 1000 smp_ops.cleanup_dead_cpu(cpu); 1001 1002 if (system_state == SYSTEM_RUNNING) 1003 pr_info("CPU %u is now offline\n", cpu); 1004 } 1005 1006 void arch_cpuhp_sync_state_poll(void) 1007 { 1008 if (smp_ops.poll_sync_state) 1009 smp_ops.poll_sync_state(); 1010 } 1011 1012 /** 1013 * arch_disable_smp_support() - Disables SMP support for x86 at boottime 1014 */ 1015 void __init arch_disable_smp_support(void) 1016 { 1017 disable_ioapic_support(); 1018 } 1019 1020 /* 1021 * Fall back to non SMP mode after errors. 1022 * 1023 * RED-PEN audit/test this more. I bet there is more state messed up here. 1024 */ 1025 static __init void disable_smp(void) 1026 { 1027 pr_info("SMP disabled\n"); 1028 1029 disable_ioapic_support(); 1030 topology_reset_possible_cpus_up(); 1031 1032 cpumask_set_cpu(0, topology_sibling_cpumask(0)); 1033 cpumask_set_cpu(0, topology_core_cpumask(0)); 1034 cpumask_set_cpu(0, topology_die_cpumask(0)); 1035 } 1036 1037 void __init smp_prepare_cpus_common(void) 1038 { 1039 unsigned int cpu, node; 1040 1041 /* Mark all except the boot CPU as hotpluggable */ 1042 for_each_possible_cpu(cpu) { 1043 if (cpu) 1044 per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids; 1045 } 1046 1047 for_each_possible_cpu(cpu) { 1048 node = cpu_to_node(cpu); 1049 1050 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), GFP_KERNEL, node); 1051 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), GFP_KERNEL, node); 1052 zalloc_cpumask_var_node(&per_cpu(cpu_die_map, cpu), GFP_KERNEL, node); 1053 zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node); 1054 zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node); 1055 } 1056 1057 set_cpu_sibling_map(0); 1058 } 1059 1060 void __init smp_prepare_boot_cpu(void) 1061 { 1062 smp_ops.smp_prepare_boot_cpu(); 1063 } 1064 1065 #ifdef CONFIG_X86_64 1066 /* Establish whether parallel bringup can be supported. */ 1067 bool __init arch_cpuhp_init_parallel_bringup(void) 1068 { 1069 if (!x86_cpuinit.parallel_bringup) { 1070 pr_info("Parallel CPU startup disabled by the platform\n"); 1071 return false; 1072 } 1073 1074 smpboot_control = STARTUP_READ_APICID; 1075 pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control); 1076 return true; 1077 } 1078 #endif 1079 1080 /* 1081 * Prepare for SMP bootup. 1082 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter 1083 * for common interface support. 1084 */ 1085 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1086 { 1087 smp_prepare_cpus_common(); 1088 1089 switch (apic_intr_mode) { 1090 case APIC_PIC: 1091 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1092 disable_smp(); 1093 return; 1094 case APIC_SYMMETRIC_IO_NO_ROUTING: 1095 disable_smp(); 1096 /* Setup local timer */ 1097 x86_init.timers.setup_percpu_clockev(); 1098 return; 1099 case APIC_VIRTUAL_WIRE: 1100 case APIC_SYMMETRIC_IO: 1101 break; 1102 } 1103 1104 /* Setup local timer */ 1105 x86_init.timers.setup_percpu_clockev(); 1106 1107 pr_info("CPU0: "); 1108 print_cpu_info(&cpu_data(0)); 1109 1110 uv_system_init(); 1111 1112 smp_quirk_init_udelay(); 1113 1114 speculative_store_bypass_ht_init(); 1115 1116 snp_set_wakeup_secondary_cpu(); 1117 } 1118 1119 void arch_thaw_secondary_cpus_begin(void) 1120 { 1121 set_cache_aps_delayed_init(true); 1122 } 1123 1124 void arch_thaw_secondary_cpus_end(void) 1125 { 1126 cache_aps_init(); 1127 } 1128 1129 /* 1130 * Early setup to make printk work. 1131 */ 1132 void __init native_smp_prepare_boot_cpu(void) 1133 { 1134 int me = smp_processor_id(); 1135 1136 /* SMP handles this from setup_per_cpu_areas() */ 1137 if (!IS_ENABLED(CONFIG_SMP)) 1138 switch_gdt_and_percpu_base(me); 1139 1140 native_pv_lock_init(); 1141 } 1142 1143 void __init native_smp_cpus_done(unsigned int max_cpus) 1144 { 1145 pr_debug("Boot done\n"); 1146 1147 build_sched_topology(); 1148 nmi_selftest(); 1149 impress_friends(); 1150 cache_aps_init(); 1151 } 1152 1153 /* correctly size the local cpu masks */ 1154 void __init setup_cpu_local_masks(void) 1155 { 1156 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 1157 } 1158 1159 #ifdef CONFIG_HOTPLUG_CPU 1160 1161 /* Recompute SMT state for all CPUs on offline */ 1162 static void recompute_smt_state(void) 1163 { 1164 int max_threads, cpu; 1165 1166 max_threads = 0; 1167 for_each_online_cpu (cpu) { 1168 int threads = cpumask_weight(topology_sibling_cpumask(cpu)); 1169 1170 if (threads > max_threads) 1171 max_threads = threads; 1172 } 1173 __max_smt_threads = max_threads; 1174 } 1175 1176 static void remove_siblinginfo(int cpu) 1177 { 1178 int sibling; 1179 struct cpuinfo_x86 *c = &cpu_data(cpu); 1180 1181 for_each_cpu(sibling, topology_core_cpumask(cpu)) { 1182 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 1183 /*/ 1184 * last thread sibling in this cpu core going down 1185 */ 1186 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) 1187 cpu_data(sibling).booted_cores--; 1188 } 1189 1190 for_each_cpu(sibling, topology_die_cpumask(cpu)) 1191 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling)); 1192 1193 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) { 1194 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 1195 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1) 1196 cpu_data(sibling).smt_active = false; 1197 } 1198 1199 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) 1200 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); 1201 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu)) 1202 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling)); 1203 cpumask_clear(cpu_llc_shared_mask(cpu)); 1204 cpumask_clear(cpu_l2c_shared_mask(cpu)); 1205 cpumask_clear(topology_sibling_cpumask(cpu)); 1206 cpumask_clear(topology_core_cpumask(cpu)); 1207 cpumask_clear(topology_die_cpumask(cpu)); 1208 c->topo.core_id = 0; 1209 c->booted_cores = 0; 1210 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1211 recompute_smt_state(); 1212 } 1213 1214 static void remove_cpu_from_maps(int cpu) 1215 { 1216 set_cpu_online(cpu, false); 1217 numa_remove_cpu(cpu); 1218 } 1219 1220 void cpu_disable_common(void) 1221 { 1222 int cpu = smp_processor_id(); 1223 1224 remove_siblinginfo(cpu); 1225 1226 /* It's now safe to remove this processor from the online map */ 1227 lock_vector_lock(); 1228 remove_cpu_from_maps(cpu); 1229 unlock_vector_lock(); 1230 fixup_irqs(); 1231 lapic_offline(); 1232 } 1233 1234 int native_cpu_disable(void) 1235 { 1236 int ret; 1237 1238 ret = lapic_can_unplug_cpu(); 1239 if (ret) 1240 return ret; 1241 1242 cpu_disable_common(); 1243 1244 /* 1245 * Disable the local APIC. Otherwise IPI broadcasts will reach 1246 * it. It still responds normally to INIT, NMI, SMI, and SIPI 1247 * messages. 1248 * 1249 * Disabling the APIC must happen after cpu_disable_common() 1250 * which invokes fixup_irqs(). 1251 * 1252 * Disabling the APIC preserves already set bits in IRR, but 1253 * an interrupt arriving after disabling the local APIC does not 1254 * set the corresponding IRR bit. 1255 * 1256 * fixup_irqs() scans IRR for set bits so it can raise a not 1257 * yet handled interrupt on the new destination CPU via an IPI 1258 * but obviously it can't do so for IRR bits which are not set. 1259 * IOW, interrupts arriving after disabling the local APIC will 1260 * be lost. 1261 */ 1262 apic_soft_disable(); 1263 1264 return 0; 1265 } 1266 1267 void play_dead_common(void) 1268 { 1269 idle_task_exit(); 1270 1271 cpuhp_ap_report_dead(); 1272 1273 local_irq_disable(); 1274 } 1275 1276 /* 1277 * We need to flush the caches before going to sleep, lest we have 1278 * dirty data in our caches when we come back up. 1279 */ 1280 static inline void mwait_play_dead(void) 1281 { 1282 struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead); 1283 unsigned int eax, ebx, ecx, edx; 1284 unsigned int highest_cstate = 0; 1285 unsigned int highest_subcstate = 0; 1286 int i; 1287 1288 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1289 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 1290 return; 1291 if (!this_cpu_has(X86_FEATURE_MWAIT)) 1292 return; 1293 if (!this_cpu_has(X86_FEATURE_CLFLUSH)) 1294 return; 1295 1296 eax = CPUID_LEAF_MWAIT; 1297 ecx = 0; 1298 native_cpuid(&eax, &ebx, &ecx, &edx); 1299 1300 /* 1301 * eax will be 0 if EDX enumeration is not valid. 1302 * Initialized below to cstate, sub_cstate value when EDX is valid. 1303 */ 1304 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1305 eax = 0; 1306 } else { 1307 edx >>= MWAIT_SUBSTATE_SIZE; 1308 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1309 if (edx & MWAIT_SUBSTATE_MASK) { 1310 highest_cstate = i; 1311 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1312 } 1313 } 1314 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1315 (highest_subcstate - 1); 1316 } 1317 1318 /* Set up state for the kexec() hack below */ 1319 md->status = CPUDEAD_MWAIT_WAIT; 1320 md->control = CPUDEAD_MWAIT_WAIT; 1321 1322 wbinvd(); 1323 1324 while (1) { 1325 /* 1326 * The CLFLUSH is a workaround for erratum AAI65 for 1327 * the Xeon 7400 series. It's not clear it is actually 1328 * needed, but it should be harmless in either case. 1329 * The WBINVD is insufficient due to the spurious-wakeup 1330 * case where we return around the loop. 1331 */ 1332 mb(); 1333 clflush(md); 1334 mb(); 1335 __monitor(md, 0, 0); 1336 mb(); 1337 __mwait(eax, 0); 1338 1339 if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) { 1340 /* 1341 * Kexec is about to happen. Don't go back into mwait() as 1342 * the kexec kernel might overwrite text and data including 1343 * page tables and stack. So mwait() would resume when the 1344 * monitor cache line is written to and then the CPU goes 1345 * south due to overwritten text, page tables and stack. 1346 * 1347 * Note: This does _NOT_ protect against a stray MCE, NMI, 1348 * SMI. They will resume execution at the instruction 1349 * following the HLT instruction and run into the problem 1350 * which this is trying to prevent. 1351 */ 1352 WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT); 1353 while(1) 1354 native_halt(); 1355 } 1356 } 1357 } 1358 1359 /* 1360 * Kick all "offline" CPUs out of mwait on kexec(). See comment in 1361 * mwait_play_dead(). 1362 */ 1363 void smp_kick_mwait_play_dead(void) 1364 { 1365 u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT; 1366 struct mwait_cpu_dead *md; 1367 unsigned int cpu, i; 1368 1369 for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) { 1370 md = per_cpu_ptr(&mwait_cpu_dead, cpu); 1371 1372 /* Does it sit in mwait_play_dead() ? */ 1373 if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT) 1374 continue; 1375 1376 /* Wait up to 5ms */ 1377 for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) { 1378 /* Bring it out of mwait */ 1379 WRITE_ONCE(md->control, newstate); 1380 udelay(5); 1381 } 1382 1383 if (READ_ONCE(md->status) != newstate) 1384 pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu); 1385 } 1386 } 1387 1388 void __noreturn hlt_play_dead(void) 1389 { 1390 if (__this_cpu_read(cpu_info.x86) >= 4) 1391 wbinvd(); 1392 1393 while (1) 1394 native_halt(); 1395 } 1396 1397 /* 1398 * native_play_dead() is essentially a __noreturn function, but it can't 1399 * be marked as such as the compiler may complain about it. 1400 */ 1401 void native_play_dead(void) 1402 { 1403 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) 1404 __update_spec_ctrl(0); 1405 1406 play_dead_common(); 1407 tboot_shutdown(TB_SHUTDOWN_WFS); 1408 1409 mwait_play_dead(); 1410 if (cpuidle_play_dead()) 1411 hlt_play_dead(); 1412 } 1413 1414 #else /* ... !CONFIG_HOTPLUG_CPU */ 1415 int native_cpu_disable(void) 1416 { 1417 return -ENOSYS; 1418 } 1419 1420 void native_play_dead(void) 1421 { 1422 BUG(); 1423 } 1424 1425 #endif 1426