xref: /linux/arch/x86/kernel/smpboot.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5  *	(c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/module.h>
45 #include <linux/sched.h>
46 #include <linux/percpu.h>
47 #include <linux/bootmem.h>
48 #include <linux/err.h>
49 #include <linux/nmi.h>
50 
51 #include <asm/acpi.h>
52 #include <asm/desc.h>
53 #include <asm/nmi.h>
54 #include <asm/irq.h>
55 #include <asm/idle.h>
56 #include <asm/smp.h>
57 #include <asm/trampoline.h>
58 #include <asm/cpu.h>
59 #include <asm/numa.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/mtrr.h>
63 #include <asm/vmi.h>
64 #include <asm/genapic.h>
65 #include <asm/setup.h>
66 #include <linux/mc146818rtc.h>
67 
68 #include <mach_apic.h>
69 #include <mach_wakecpu.h>
70 #include <smpboot_hooks.h>
71 
72 #ifdef CONFIG_X86_32
73 u8 apicid_2_node[MAX_APICID];
74 static int low_mappings;
75 #endif
76 
77 /* State of each CPU */
78 DEFINE_PER_CPU(int, cpu_state) = { 0 };
79 
80 /* Store all idle threads, this can be reused instead of creating
81 * a new thread. Also avoids complicated thread destroy functionality
82 * for idle threads.
83 */
84 #ifdef CONFIG_HOTPLUG_CPU
85 /*
86  * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
87  * removed after init for !CONFIG_HOTPLUG_CPU.
88  */
89 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
90 #define get_idle_for_cpu(x)      (per_cpu(idle_thread_array, x))
91 #define set_idle_for_cpu(x, p)   (per_cpu(idle_thread_array, x) = (p))
92 #else
93 static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
94 #define get_idle_for_cpu(x)      (idle_thread_array[(x)])
95 #define set_idle_for_cpu(x, p)   (idle_thread_array[(x)] = (p))
96 #endif
97 
98 /* Number of siblings per CPU package */
99 int smp_num_siblings = 1;
100 EXPORT_SYMBOL(smp_num_siblings);
101 
102 /* Last level cache ID of each logical CPU */
103 DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
104 
105 cpumask_t cpu_callin_map;
106 cpumask_t cpu_callout_map;
107 
108 /* representing HT siblings of each logical CPU */
109 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map);
110 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
111 
112 /* representing HT and core siblings of each logical CPU */
113 DEFINE_PER_CPU(cpumask_t, cpu_core_map);
114 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
115 
116 /* Per CPU bogomips and other parameters */
117 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
118 EXPORT_PER_CPU_SYMBOL(cpu_info);
119 
120 static atomic_t init_deasserted;
121 
122 
123 /* representing cpus for which sibling maps can be computed */
124 static cpumask_t cpu_sibling_setup_map;
125 
126 /* Set if we find a B stepping CPU */
127 static int __cpuinitdata smp_b_stepping;
128 
129 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_32)
130 
131 /* which logical CPUs are on which nodes */
132 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly =
133 				{ [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
134 EXPORT_SYMBOL(node_to_cpumask_map);
135 /* which node each logical CPU is on */
136 int cpu_to_node_map[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
137 EXPORT_SYMBOL(cpu_to_node_map);
138 
139 /* set up a mapping between cpu and node. */
140 static void map_cpu_to_node(int cpu, int node)
141 {
142 	printk(KERN_INFO "Mapping cpu %d to node %d\n", cpu, node);
143 	cpu_set(cpu, node_to_cpumask_map[node]);
144 	cpu_to_node_map[cpu] = node;
145 }
146 
147 /* undo a mapping between cpu and node. */
148 static void unmap_cpu_to_node(int cpu)
149 {
150 	int node;
151 
152 	printk(KERN_INFO "Unmapping cpu %d from all nodes\n", cpu);
153 	for (node = 0; node < MAX_NUMNODES; node++)
154 		cpu_clear(cpu, node_to_cpumask_map[node]);
155 	cpu_to_node_map[cpu] = 0;
156 }
157 #else /* !(CONFIG_NUMA && CONFIG_X86_32) */
158 #define map_cpu_to_node(cpu, node)	({})
159 #define unmap_cpu_to_node(cpu)	({})
160 #endif
161 
162 #ifdef CONFIG_X86_32
163 static int boot_cpu_logical_apicid;
164 
165 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly =
166 					{ [0 ... NR_CPUS-1] = BAD_APICID };
167 
168 static void map_cpu_to_logical_apicid(void)
169 {
170 	int cpu = smp_processor_id();
171 	int apicid = logical_smp_processor_id();
172 	int node = apicid_to_node(apicid);
173 
174 	if (!node_online(node))
175 		node = first_online_node;
176 
177 	cpu_2_logical_apicid[cpu] = apicid;
178 	map_cpu_to_node(cpu, node);
179 }
180 
181 void numa_remove_cpu(int cpu)
182 {
183 	cpu_2_logical_apicid[cpu] = BAD_APICID;
184 	unmap_cpu_to_node(cpu);
185 }
186 #else
187 #define map_cpu_to_logical_apicid()  do {} while (0)
188 #endif
189 
190 /*
191  * Report back to the Boot Processor.
192  * Running on AP.
193  */
194 static void __cpuinit smp_callin(void)
195 {
196 	int cpuid, phys_id;
197 	unsigned long timeout;
198 
199 	/*
200 	 * If waken up by an INIT in an 82489DX configuration
201 	 * we may get here before an INIT-deassert IPI reaches
202 	 * our local APIC.  We have to wait for the IPI or we'll
203 	 * lock up on an APIC access.
204 	 */
205 	wait_for_init_deassert(&init_deasserted);
206 
207 	/*
208 	 * (This works even if the APIC is not enabled.)
209 	 */
210 	phys_id = read_apic_id();
211 	cpuid = smp_processor_id();
212 	if (cpu_isset(cpuid, cpu_callin_map)) {
213 		panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
214 					phys_id, cpuid);
215 	}
216 	pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
217 
218 	/*
219 	 * STARTUP IPIs are fragile beasts as they might sometimes
220 	 * trigger some glue motherboard logic. Complete APIC bus
221 	 * silence for 1 second, this overestimates the time the
222 	 * boot CPU is spending to send the up to 2 STARTUP IPIs
223 	 * by a factor of two. This should be enough.
224 	 */
225 
226 	/*
227 	 * Waiting 2s total for startup (udelay is not yet working)
228 	 */
229 	timeout = jiffies + 2*HZ;
230 	while (time_before(jiffies, timeout)) {
231 		/*
232 		 * Has the boot CPU finished it's STARTUP sequence?
233 		 */
234 		if (cpu_isset(cpuid, cpu_callout_map))
235 			break;
236 		cpu_relax();
237 	}
238 
239 	if (!time_before(jiffies, timeout)) {
240 		panic("%s: CPU%d started up but did not get a callout!\n",
241 		      __func__, cpuid);
242 	}
243 
244 	/*
245 	 * the boot CPU has finished the init stage and is spinning
246 	 * on callin_map until we finish. We are free to set up this
247 	 * CPU, first the APIC. (this is probably redundant on most
248 	 * boards)
249 	 */
250 
251 	pr_debug("CALLIN, before setup_local_APIC().\n");
252 	smp_callin_clear_local_apic();
253 	setup_local_APIC();
254 	end_local_APIC_setup();
255 	map_cpu_to_logical_apicid();
256 
257 	notify_cpu_starting(cpuid);
258 	/*
259 	 * Get our bogomips.
260 	 *
261 	 * Need to enable IRQs because it can take longer and then
262 	 * the NMI watchdog might kill us.
263 	 */
264 	local_irq_enable();
265 	calibrate_delay();
266 	local_irq_disable();
267 	pr_debug("Stack at about %p\n", &cpuid);
268 
269 	/*
270 	 * Save our processor parameters
271 	 */
272 	smp_store_cpu_info(cpuid);
273 
274 	/*
275 	 * Allow the master to continue.
276 	 */
277 	cpu_set(cpuid, cpu_callin_map);
278 }
279 
280 static int __cpuinitdata unsafe_smp;
281 
282 /*
283  * Activate a secondary processor.
284  */
285 notrace static void __cpuinit start_secondary(void *unused)
286 {
287 	/*
288 	 * Don't put *anything* before cpu_init(), SMP booting is too
289 	 * fragile that we want to limit the things done here to the
290 	 * most necessary things.
291 	 */
292 	vmi_bringup();
293 	cpu_init();
294 	preempt_disable();
295 	smp_callin();
296 
297 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
298 	barrier();
299 	/*
300 	 * Check TSC synchronization with the BP:
301 	 */
302 	check_tsc_sync_target();
303 
304 	if (nmi_watchdog == NMI_IO_APIC) {
305 		disable_8259A_irq(0);
306 		enable_NMI_through_LVT0();
307 		enable_8259A_irq(0);
308 	}
309 
310 #ifdef CONFIG_X86_32
311 	while (low_mappings)
312 		cpu_relax();
313 	__flush_tlb_all();
314 #endif
315 
316 	/* This must be done before setting cpu_online_map */
317 	set_cpu_sibling_map(raw_smp_processor_id());
318 	wmb();
319 
320 	/*
321 	 * We need to hold call_lock, so there is no inconsistency
322 	 * between the time smp_call_function() determines number of
323 	 * IPI recipients, and the time when the determination is made
324 	 * for which cpus receive the IPI. Holding this
325 	 * lock helps us to not include this cpu in a currently in progress
326 	 * smp_call_function().
327 	 *
328 	 * We need to hold vector_lock so there the set of online cpus
329 	 * does not change while we are assigning vectors to cpus.  Holding
330 	 * this lock ensures we don't half assign or remove an irq from a cpu.
331 	 */
332 	ipi_call_lock();
333 	lock_vector_lock();
334 	__setup_vector_irq(smp_processor_id());
335 	cpu_set(smp_processor_id(), cpu_online_map);
336 	unlock_vector_lock();
337 	ipi_call_unlock();
338 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
339 
340 	/* enable local interrupts */
341 	local_irq_enable();
342 
343 	setup_secondary_clock();
344 
345 	wmb();
346 	cpu_idle();
347 }
348 
349 static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c)
350 {
351 	/*
352 	 * Mask B, Pentium, but not Pentium MMX
353 	 */
354 	if (c->x86_vendor == X86_VENDOR_INTEL &&
355 	    c->x86 == 5 &&
356 	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
357 	    c->x86_model <= 3)
358 		/*
359 		 * Remember we have B step Pentia with bugs
360 		 */
361 		smp_b_stepping = 1;
362 
363 	/*
364 	 * Certain Athlons might work (for various values of 'work') in SMP
365 	 * but they are not certified as MP capable.
366 	 */
367 	if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
368 
369 		if (num_possible_cpus() == 1)
370 			goto valid_k7;
371 
372 		/* Athlon 660/661 is valid. */
373 		if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
374 		    (c->x86_mask == 1)))
375 			goto valid_k7;
376 
377 		/* Duron 670 is valid */
378 		if ((c->x86_model == 7) && (c->x86_mask == 0))
379 			goto valid_k7;
380 
381 		/*
382 		 * Athlon 662, Duron 671, and Athlon >model 7 have capability
383 		 * bit. It's worth noting that the A5 stepping (662) of some
384 		 * Athlon XP's have the MP bit set.
385 		 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
386 		 * more.
387 		 */
388 		if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
389 		    ((c->x86_model == 7) && (c->x86_mask >= 1)) ||
390 		     (c->x86_model > 7))
391 			if (cpu_has_mp)
392 				goto valid_k7;
393 
394 		/* If we get here, not a certified SMP capable AMD system. */
395 		unsafe_smp = 1;
396 	}
397 
398 valid_k7:
399 	;
400 }
401 
402 static void __cpuinit smp_checks(void)
403 {
404 	if (smp_b_stepping)
405 		printk(KERN_WARNING "WARNING: SMP operation may be unreliable"
406 				    "with B stepping processors.\n");
407 
408 	/*
409 	 * Don't taint if we are running SMP kernel on a single non-MP
410 	 * approved Athlon
411 	 */
412 	if (unsafe_smp && num_online_cpus() > 1) {
413 		printk(KERN_INFO "WARNING: This combination of AMD"
414 			"processors is not suitable for SMP.\n");
415 		add_taint(TAINT_UNSAFE_SMP);
416 	}
417 }
418 
419 /*
420  * The bootstrap kernel entry code has set these up. Save them for
421  * a given CPU
422  */
423 
424 void __cpuinit smp_store_cpu_info(int id)
425 {
426 	struct cpuinfo_x86 *c = &cpu_data(id);
427 
428 	*c = boot_cpu_data;
429 	c->cpu_index = id;
430 	if (id != 0)
431 		identify_secondary_cpu(c);
432 	smp_apply_quirks(c);
433 }
434 
435 
436 void __cpuinit set_cpu_sibling_map(int cpu)
437 {
438 	int i;
439 	struct cpuinfo_x86 *c = &cpu_data(cpu);
440 
441 	cpu_set(cpu, cpu_sibling_setup_map);
442 
443 	if (smp_num_siblings > 1) {
444 		for_each_cpu_mask_nr(i, cpu_sibling_setup_map) {
445 			if (c->phys_proc_id == cpu_data(i).phys_proc_id &&
446 			    c->cpu_core_id == cpu_data(i).cpu_core_id) {
447 				cpu_set(i, per_cpu(cpu_sibling_map, cpu));
448 				cpu_set(cpu, per_cpu(cpu_sibling_map, i));
449 				cpu_set(i, per_cpu(cpu_core_map, cpu));
450 				cpu_set(cpu, per_cpu(cpu_core_map, i));
451 				cpu_set(i, c->llc_shared_map);
452 				cpu_set(cpu, cpu_data(i).llc_shared_map);
453 			}
454 		}
455 	} else {
456 		cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
457 	}
458 
459 	cpu_set(cpu, c->llc_shared_map);
460 
461 	if (current_cpu_data.x86_max_cores == 1) {
462 		per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu);
463 		c->booted_cores = 1;
464 		return;
465 	}
466 
467 	for_each_cpu_mask_nr(i, cpu_sibling_setup_map) {
468 		if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&
469 		    per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {
470 			cpu_set(i, c->llc_shared_map);
471 			cpu_set(cpu, cpu_data(i).llc_shared_map);
472 		}
473 		if (c->phys_proc_id == cpu_data(i).phys_proc_id) {
474 			cpu_set(i, per_cpu(cpu_core_map, cpu));
475 			cpu_set(cpu, per_cpu(cpu_core_map, i));
476 			/*
477 			 *  Does this new cpu bringup a new core?
478 			 */
479 			if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) {
480 				/*
481 				 * for each core in package, increment
482 				 * the booted_cores for this new cpu
483 				 */
484 				if (first_cpu(per_cpu(cpu_sibling_map, i)) == i)
485 					c->booted_cores++;
486 				/*
487 				 * increment the core count for all
488 				 * the other cpus in this package
489 				 */
490 				if (i != cpu)
491 					cpu_data(i).booted_cores++;
492 			} else if (i != cpu && !c->booted_cores)
493 				c->booted_cores = cpu_data(i).booted_cores;
494 		}
495 	}
496 }
497 
498 /* maps the cpu to the sched domain representing multi-core */
499 const struct cpumask *cpu_coregroup_mask(int cpu)
500 {
501 	struct cpuinfo_x86 *c = &cpu_data(cpu);
502 	/*
503 	 * For perf, we return last level cache shared map.
504 	 * And for power savings, we return cpu_core_map
505 	 */
506 	if (sched_mc_power_savings || sched_smt_power_savings)
507 		return &per_cpu(cpu_core_map, cpu);
508 	else
509 		return &c->llc_shared_map;
510 }
511 
512 cpumask_t cpu_coregroup_map(int cpu)
513 {
514 	return *cpu_coregroup_mask(cpu);
515 }
516 
517 static void impress_friends(void)
518 {
519 	int cpu;
520 	unsigned long bogosum = 0;
521 	/*
522 	 * Allow the user to impress friends.
523 	 */
524 	pr_debug("Before bogomips.\n");
525 	for_each_possible_cpu(cpu)
526 		if (cpu_isset(cpu, cpu_callout_map))
527 			bogosum += cpu_data(cpu).loops_per_jiffy;
528 	printk(KERN_INFO
529 		"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
530 		num_online_cpus(),
531 		bogosum/(500000/HZ),
532 		(bogosum/(5000/HZ))%100);
533 
534 	pr_debug("Before bogocount - setting activated=1.\n");
535 }
536 
537 void __inquire_remote_apic(int apicid)
538 {
539 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
540 	char *names[] = { "ID", "VERSION", "SPIV" };
541 	int timeout;
542 	u32 status;
543 
544 	printk(KERN_INFO "Inquiring remote APIC 0x%x...\n", apicid);
545 
546 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
547 		printk(KERN_INFO "... APIC 0x%x %s: ", apicid, names[i]);
548 
549 		/*
550 		 * Wait for idle.
551 		 */
552 		status = safe_apic_wait_icr_idle();
553 		if (status)
554 			printk(KERN_CONT
555 			       "a previous APIC delivery may have failed\n");
556 
557 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
558 
559 		timeout = 0;
560 		do {
561 			udelay(100);
562 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
563 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
564 
565 		switch (status) {
566 		case APIC_ICR_RR_VALID:
567 			status = apic_read(APIC_RRR);
568 			printk(KERN_CONT "%08x\n", status);
569 			break;
570 		default:
571 			printk(KERN_CONT "failed\n");
572 		}
573 	}
574 }
575 
576 /*
577  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
578  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
579  * won't ... remember to clear down the APIC, etc later.
580  */
581 int __devinit
582 wakeup_secondary_cpu_via_nmi(int logical_apicid, unsigned long start_eip)
583 {
584 	unsigned long send_status, accept_status = 0;
585 	int maxlvt;
586 
587 	/* Target chip */
588 	/* Boot on the stack */
589 	/* Kick the second */
590 	apic_icr_write(APIC_DM_NMI | APIC_DEST_LOGICAL, logical_apicid);
591 
592 	pr_debug("Waiting for send to finish...\n");
593 	send_status = safe_apic_wait_icr_idle();
594 
595 	/*
596 	 * Give the other CPU some time to accept the IPI.
597 	 */
598 	udelay(200);
599 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
600 		maxlvt = lapic_get_maxlvt();
601 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
602 			apic_write(APIC_ESR, 0);
603 		accept_status = (apic_read(APIC_ESR) & 0xEF);
604 	}
605 	pr_debug("NMI sent.\n");
606 
607 	if (send_status)
608 		printk(KERN_ERR "APIC never delivered???\n");
609 	if (accept_status)
610 		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
611 
612 	return (send_status | accept_status);
613 }
614 
615 int __devinit
616 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
617 {
618 	unsigned long send_status, accept_status = 0;
619 	int maxlvt, num_starts, j;
620 
621 	if (get_uv_system_type() == UV_NON_UNIQUE_APIC) {
622 		send_status = uv_wakeup_secondary(phys_apicid, start_eip);
623 		atomic_set(&init_deasserted, 1);
624 		return send_status;
625 	}
626 
627 	maxlvt = lapic_get_maxlvt();
628 
629 	/*
630 	 * Be paranoid about clearing APIC errors.
631 	 */
632 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
633 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
634 			apic_write(APIC_ESR, 0);
635 		apic_read(APIC_ESR);
636 	}
637 
638 	pr_debug("Asserting INIT.\n");
639 
640 	/*
641 	 * Turn INIT on target chip
642 	 */
643 	/*
644 	 * Send IPI
645 	 */
646 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
647 		       phys_apicid);
648 
649 	pr_debug("Waiting for send to finish...\n");
650 	send_status = safe_apic_wait_icr_idle();
651 
652 	mdelay(10);
653 
654 	pr_debug("Deasserting INIT.\n");
655 
656 	/* Target chip */
657 	/* Send IPI */
658 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
659 
660 	pr_debug("Waiting for send to finish...\n");
661 	send_status = safe_apic_wait_icr_idle();
662 
663 	mb();
664 	atomic_set(&init_deasserted, 1);
665 
666 	/*
667 	 * Should we send STARTUP IPIs ?
668 	 *
669 	 * Determine this based on the APIC version.
670 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
671 	 */
672 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
673 		num_starts = 2;
674 	else
675 		num_starts = 0;
676 
677 	/*
678 	 * Paravirt / VMI wants a startup IPI hook here to set up the
679 	 * target processor state.
680 	 */
681 	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
682 			 (unsigned long)stack_start.sp);
683 
684 	/*
685 	 * Run STARTUP IPI loop.
686 	 */
687 	pr_debug("#startup loops: %d.\n", num_starts);
688 
689 	for (j = 1; j <= num_starts; j++) {
690 		pr_debug("Sending STARTUP #%d.\n", j);
691 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
692 			apic_write(APIC_ESR, 0);
693 		apic_read(APIC_ESR);
694 		pr_debug("After apic_write.\n");
695 
696 		/*
697 		 * STARTUP IPI
698 		 */
699 
700 		/* Target chip */
701 		/* Boot on the stack */
702 		/* Kick the second */
703 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
704 			       phys_apicid);
705 
706 		/*
707 		 * Give the other CPU some time to accept the IPI.
708 		 */
709 		udelay(300);
710 
711 		pr_debug("Startup point 1.\n");
712 
713 		pr_debug("Waiting for send to finish...\n");
714 		send_status = safe_apic_wait_icr_idle();
715 
716 		/*
717 		 * Give the other CPU some time to accept the IPI.
718 		 */
719 		udelay(200);
720 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
721 			apic_write(APIC_ESR, 0);
722 		accept_status = (apic_read(APIC_ESR) & 0xEF);
723 		if (send_status || accept_status)
724 			break;
725 	}
726 	pr_debug("After Startup.\n");
727 
728 	if (send_status)
729 		printk(KERN_ERR "APIC never delivered???\n");
730 	if (accept_status)
731 		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
732 
733 	return (send_status | accept_status);
734 }
735 
736 struct create_idle {
737 	struct work_struct work;
738 	struct task_struct *idle;
739 	struct completion done;
740 	int cpu;
741 };
742 
743 static void __cpuinit do_fork_idle(struct work_struct *work)
744 {
745 	struct create_idle *c_idle =
746 		container_of(work, struct create_idle, work);
747 
748 	c_idle->idle = fork_idle(c_idle->cpu);
749 	complete(&c_idle->done);
750 }
751 
752 #ifdef CONFIG_X86_64
753 
754 /* __ref because it's safe to call free_bootmem when after_bootmem == 0. */
755 static void __ref free_bootmem_pda(struct x8664_pda *oldpda)
756 {
757 	if (!after_bootmem)
758 		free_bootmem((unsigned long)oldpda, sizeof(*oldpda));
759 }
760 
761 /*
762  * Allocate node local memory for the AP pda.
763  *
764  * Must be called after the _cpu_pda pointer table is initialized.
765  */
766 int __cpuinit get_local_pda(int cpu)
767 {
768 	struct x8664_pda *oldpda, *newpda;
769 	unsigned long size = sizeof(struct x8664_pda);
770 	int node = cpu_to_node(cpu);
771 
772 	if (cpu_pda(cpu) && !cpu_pda(cpu)->in_bootmem)
773 		return 0;
774 
775 	oldpda = cpu_pda(cpu);
776 	newpda = kmalloc_node(size, GFP_ATOMIC, node);
777 	if (!newpda) {
778 		printk(KERN_ERR "Could not allocate node local PDA "
779 			"for CPU %d on node %d\n", cpu, node);
780 
781 		if (oldpda)
782 			return 0;	/* have a usable pda */
783 		else
784 			return -1;
785 	}
786 
787 	if (oldpda) {
788 		memcpy(newpda, oldpda, size);
789 		free_bootmem_pda(oldpda);
790 	}
791 
792 	newpda->in_bootmem = 0;
793 	cpu_pda(cpu) = newpda;
794 	return 0;
795 }
796 #endif /* CONFIG_X86_64 */
797 
798 static int __cpuinit do_boot_cpu(int apicid, int cpu)
799 /*
800  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
801  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
802  * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
803  */
804 {
805 	unsigned long boot_error = 0;
806 	int timeout;
807 	unsigned long start_ip;
808 	unsigned short nmi_high = 0, nmi_low = 0;
809 	struct create_idle c_idle = {
810 		.cpu = cpu,
811 		.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
812 	};
813 	INIT_WORK(&c_idle.work, do_fork_idle);
814 
815 #ifdef CONFIG_X86_64
816 	/* Allocate node local memory for AP pdas */
817 	if (cpu > 0) {
818 		boot_error = get_local_pda(cpu);
819 		if (boot_error)
820 			goto restore_state;
821 			/* if can't get pda memory, can't start cpu */
822 	}
823 #endif
824 
825 	alternatives_smp_switch(1);
826 
827 	c_idle.idle = get_idle_for_cpu(cpu);
828 
829 	/*
830 	 * We can't use kernel_thread since we must avoid to
831 	 * reschedule the child.
832 	 */
833 	if (c_idle.idle) {
834 		c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *)
835 			(THREAD_SIZE +  task_stack_page(c_idle.idle))) - 1);
836 		init_idle(c_idle.idle, cpu);
837 		goto do_rest;
838 	}
839 
840 	if (!keventd_up() || current_is_keventd())
841 		c_idle.work.func(&c_idle.work);
842 	else {
843 		schedule_work(&c_idle.work);
844 		wait_for_completion(&c_idle.done);
845 	}
846 
847 	if (IS_ERR(c_idle.idle)) {
848 		printk("failed fork for CPU %d\n", cpu);
849 		return PTR_ERR(c_idle.idle);
850 	}
851 
852 	set_idle_for_cpu(cpu, c_idle.idle);
853 do_rest:
854 #ifdef CONFIG_X86_32
855 	per_cpu(current_task, cpu) = c_idle.idle;
856 	init_gdt(cpu);
857 	/* Stack for startup_32 can be just as for start_secondary onwards */
858 	irq_ctx_init(cpu);
859 #else
860 	cpu_pda(cpu)->pcurrent = c_idle.idle;
861 	clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
862 #endif
863 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
864 	initial_code = (unsigned long)start_secondary;
865 	stack_start.sp = (void *) c_idle.idle->thread.sp;
866 
867 	/* start_ip had better be page-aligned! */
868 	start_ip = setup_trampoline();
869 
870 	/* So we see what's up   */
871 	printk(KERN_INFO "Booting processor %d APIC 0x%x ip 0x%lx\n",
872 			  cpu, apicid, start_ip);
873 
874 	/*
875 	 * This grunge runs the startup process for
876 	 * the targeted processor.
877 	 */
878 
879 	atomic_set(&init_deasserted, 0);
880 
881 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
882 
883 		pr_debug("Setting warm reset code and vector.\n");
884 
885 		store_NMI_vector(&nmi_high, &nmi_low);
886 
887 		smpboot_setup_warm_reset_vector(start_ip);
888 		/*
889 		 * Be paranoid about clearing APIC errors.
890 		*/
891 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
892 			apic_write(APIC_ESR, 0);
893 			apic_read(APIC_ESR);
894 		}
895 	}
896 
897 	/*
898 	 * Starting actual IPI sequence...
899 	 */
900 	boot_error = wakeup_secondary_cpu(apicid, start_ip);
901 
902 	if (!boot_error) {
903 		/*
904 		 * allow APs to start initializing.
905 		 */
906 		pr_debug("Before Callout %d.\n", cpu);
907 		cpu_set(cpu, cpu_callout_map);
908 		pr_debug("After Callout %d.\n", cpu);
909 
910 		/*
911 		 * Wait 5s total for a response
912 		 */
913 		for (timeout = 0; timeout < 50000; timeout++) {
914 			if (cpu_isset(cpu, cpu_callin_map))
915 				break;	/* It has booted */
916 			udelay(100);
917 		}
918 
919 		if (cpu_isset(cpu, cpu_callin_map)) {
920 			/* number CPUs logically, starting from 1 (BSP is 0) */
921 			pr_debug("OK.\n");
922 			printk(KERN_INFO "CPU%d: ", cpu);
923 			print_cpu_info(&cpu_data(cpu));
924 			pr_debug("CPU has booted.\n");
925 		} else {
926 			boot_error = 1;
927 			if (*((volatile unsigned char *)trampoline_base)
928 					== 0xA5)
929 				/* trampoline started but...? */
930 				printk(KERN_ERR "Stuck ??\n");
931 			else
932 				/* trampoline code not run */
933 				printk(KERN_ERR "Not responding.\n");
934 			if (get_uv_system_type() != UV_NON_UNIQUE_APIC)
935 				inquire_remote_apic(apicid);
936 		}
937 	}
938 #ifdef CONFIG_X86_64
939 restore_state:
940 #endif
941 	if (boot_error) {
942 		/* Try to put things back the way they were before ... */
943 		numa_remove_cpu(cpu); /* was set by numa_add_cpu */
944 		cpu_clear(cpu, cpu_callout_map); /* was set by do_boot_cpu() */
945 		cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
946 		cpu_clear(cpu, cpu_present_map);
947 		per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
948 	}
949 
950 	/* mark "stuck" area as not stuck */
951 	*((volatile unsigned long *)trampoline_base) = 0;
952 
953 	/*
954 	 * Cleanup possible dangling ends...
955 	 */
956 	smpboot_restore_warm_reset_vector();
957 
958 	return boot_error;
959 }
960 
961 int __cpuinit native_cpu_up(unsigned int cpu)
962 {
963 	int apicid = cpu_present_to_apicid(cpu);
964 	unsigned long flags;
965 	int err;
966 
967 	WARN_ON(irqs_disabled());
968 
969 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
970 
971 	if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid ||
972 	    !physid_isset(apicid, phys_cpu_present_map)) {
973 		printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu);
974 		return -EINVAL;
975 	}
976 
977 	/*
978 	 * Already booted CPU?
979 	 */
980 	if (cpu_isset(cpu, cpu_callin_map)) {
981 		pr_debug("do_boot_cpu %d Already started\n", cpu);
982 		return -ENOSYS;
983 	}
984 
985 	/*
986 	 * Save current MTRR state in case it was changed since early boot
987 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
988 	 */
989 	mtrr_save_state();
990 
991 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
992 
993 #ifdef CONFIG_X86_32
994 	/* init low mem mapping */
995 	clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
996 		min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
997 	flush_tlb_all();
998 	low_mappings = 1;
999 
1000 	err = do_boot_cpu(apicid, cpu);
1001 
1002 	zap_low_mappings();
1003 	low_mappings = 0;
1004 #else
1005 	err = do_boot_cpu(apicid, cpu);
1006 #endif
1007 	if (err) {
1008 		pr_debug("do_boot_cpu failed %d\n", err);
1009 		return -EIO;
1010 	}
1011 
1012 	/*
1013 	 * Check TSC synchronization with the AP (keep irqs disabled
1014 	 * while doing so):
1015 	 */
1016 	local_irq_save(flags);
1017 	check_tsc_sync_source(cpu);
1018 	local_irq_restore(flags);
1019 
1020 	while (!cpu_online(cpu)) {
1021 		cpu_relax();
1022 		touch_nmi_watchdog();
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 /*
1029  * Fall back to non SMP mode after errors.
1030  *
1031  * RED-PEN audit/test this more. I bet there is more state messed up here.
1032  */
1033 static __init void disable_smp(void)
1034 {
1035 	cpu_present_map = cpumask_of_cpu(0);
1036 	cpu_possible_map = cpumask_of_cpu(0);
1037 	smpboot_clear_io_apic_irqs();
1038 
1039 	if (smp_found_config)
1040 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1041 	else
1042 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1043 	map_cpu_to_logical_apicid();
1044 	cpu_set(0, per_cpu(cpu_sibling_map, 0));
1045 	cpu_set(0, per_cpu(cpu_core_map, 0));
1046 }
1047 
1048 /*
1049  * Various sanity checks.
1050  */
1051 static int __init smp_sanity_check(unsigned max_cpus)
1052 {
1053 	preempt_disable();
1054 
1055 #if defined(CONFIG_X86_PC) && defined(CONFIG_X86_32)
1056 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1057 		unsigned int cpu;
1058 		unsigned nr;
1059 
1060 		printk(KERN_WARNING
1061 		       "More than 8 CPUs detected - skipping them.\n"
1062 		       "Use CONFIG_X86_GENERICARCH and CONFIG_X86_BIGSMP.\n");
1063 
1064 		nr = 0;
1065 		for_each_present_cpu(cpu) {
1066 			if (nr >= 8)
1067 				cpu_clear(cpu, cpu_present_map);
1068 			nr++;
1069 		}
1070 
1071 		nr = 0;
1072 		for_each_possible_cpu(cpu) {
1073 			if (nr >= 8)
1074 				cpu_clear(cpu, cpu_possible_map);
1075 			nr++;
1076 		}
1077 
1078 		nr_cpu_ids = 8;
1079 	}
1080 #endif
1081 
1082 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1083 		printk(KERN_WARNING
1084 			"weird, boot CPU (#%d) not listed by the BIOS.\n",
1085 			hard_smp_processor_id());
1086 
1087 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1088 	}
1089 
1090 	/*
1091 	 * If we couldn't find an SMP configuration at boot time,
1092 	 * get out of here now!
1093 	 */
1094 	if (!smp_found_config && !acpi_lapic) {
1095 		preempt_enable();
1096 		printk(KERN_NOTICE "SMP motherboard not detected.\n");
1097 		disable_smp();
1098 		if (APIC_init_uniprocessor())
1099 			printk(KERN_NOTICE "Local APIC not detected."
1100 					   " Using dummy APIC emulation.\n");
1101 		return -1;
1102 	}
1103 
1104 	/*
1105 	 * Should not be necessary because the MP table should list the boot
1106 	 * CPU too, but we do it for the sake of robustness anyway.
1107 	 */
1108 	if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1109 		printk(KERN_NOTICE
1110 			"weird, boot CPU (#%d) not listed by the BIOS.\n",
1111 			boot_cpu_physical_apicid);
1112 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1113 	}
1114 	preempt_enable();
1115 
1116 	/*
1117 	 * If we couldn't find a local APIC, then get out of here now!
1118 	 */
1119 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1120 	    !cpu_has_apic) {
1121 		printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1122 			boot_cpu_physical_apicid);
1123 		printk(KERN_ERR "... forcing use of dummy APIC emulation."
1124 				"(tell your hw vendor)\n");
1125 		smpboot_clear_io_apic();
1126 		return -1;
1127 	}
1128 
1129 	verify_local_APIC();
1130 
1131 	/*
1132 	 * If SMP should be disabled, then really disable it!
1133 	 */
1134 	if (!max_cpus) {
1135 		printk(KERN_INFO "SMP mode deactivated.\n");
1136 		smpboot_clear_io_apic();
1137 
1138 		localise_nmi_watchdog();
1139 
1140 		connect_bsp_APIC();
1141 		setup_local_APIC();
1142 		end_local_APIC_setup();
1143 		return -1;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 static void __init smp_cpu_index_default(void)
1150 {
1151 	int i;
1152 	struct cpuinfo_x86 *c;
1153 
1154 	for_each_possible_cpu(i) {
1155 		c = &cpu_data(i);
1156 		/* mark all to hotplug */
1157 		c->cpu_index = nr_cpu_ids;
1158 	}
1159 }
1160 
1161 /*
1162  * Prepare for SMP bootup.  The MP table or ACPI has been read
1163  * earlier.  Just do some sanity checking here and enable APIC mode.
1164  */
1165 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1166 {
1167 	preempt_disable();
1168 	smp_cpu_index_default();
1169 	current_cpu_data = boot_cpu_data;
1170 	cpu_callin_map = cpumask_of_cpu(0);
1171 	mb();
1172 	/*
1173 	 * Setup boot CPU information
1174 	 */
1175 	smp_store_cpu_info(0); /* Final full version of the data */
1176 #ifdef CONFIG_X86_32
1177 	boot_cpu_logical_apicid = logical_smp_processor_id();
1178 #endif
1179 	current_thread_info()->cpu = 0;  /* needed? */
1180 	set_cpu_sibling_map(0);
1181 
1182 #ifdef CONFIG_X86_64
1183 	enable_IR_x2apic();
1184 	setup_apic_routing();
1185 #endif
1186 
1187 	if (smp_sanity_check(max_cpus) < 0) {
1188 		printk(KERN_INFO "SMP disabled\n");
1189 		disable_smp();
1190 		goto out;
1191 	}
1192 
1193 	preempt_disable();
1194 	if (read_apic_id() != boot_cpu_physical_apicid) {
1195 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1196 		     read_apic_id(), boot_cpu_physical_apicid);
1197 		/* Or can we switch back to PIC here? */
1198 	}
1199 	preempt_enable();
1200 
1201 	connect_bsp_APIC();
1202 
1203 	/*
1204 	 * Switch from PIC to APIC mode.
1205 	 */
1206 	setup_local_APIC();
1207 
1208 #ifdef CONFIG_X86_64
1209 	/*
1210 	 * Enable IO APIC before setting up error vector
1211 	 */
1212 	if (!skip_ioapic_setup && nr_ioapics)
1213 		enable_IO_APIC();
1214 #endif
1215 	end_local_APIC_setup();
1216 
1217 	map_cpu_to_logical_apicid();
1218 
1219 	setup_portio_remap();
1220 
1221 	smpboot_setup_io_apic();
1222 	/*
1223 	 * Set up local APIC timer on boot CPU.
1224 	 */
1225 
1226 	printk(KERN_INFO "CPU%d: ", 0);
1227 	print_cpu_info(&cpu_data(0));
1228 	setup_boot_clock();
1229 
1230 	if (is_uv_system())
1231 		uv_system_init();
1232 out:
1233 	preempt_enable();
1234 }
1235 /*
1236  * Early setup to make printk work.
1237  */
1238 void __init native_smp_prepare_boot_cpu(void)
1239 {
1240 	int me = smp_processor_id();
1241 #ifdef CONFIG_X86_32
1242 	init_gdt(me);
1243 #endif
1244 	switch_to_new_gdt();
1245 	/* already set me in cpu_online_map in boot_cpu_init() */
1246 	cpu_set(me, cpu_callout_map);
1247 	per_cpu(cpu_state, me) = CPU_ONLINE;
1248 }
1249 
1250 void __init native_smp_cpus_done(unsigned int max_cpus)
1251 {
1252 	pr_debug("Boot done.\n");
1253 
1254 	impress_friends();
1255 	smp_checks();
1256 #ifdef CONFIG_X86_IO_APIC
1257 	setup_ioapic_dest();
1258 #endif
1259 	check_nmi_watchdog();
1260 }
1261 
1262 static int __initdata setup_possible_cpus = -1;
1263 static int __init _setup_possible_cpus(char *str)
1264 {
1265 	get_option(&str, &setup_possible_cpus);
1266 	return 0;
1267 }
1268 early_param("possible_cpus", _setup_possible_cpus);
1269 
1270 
1271 /*
1272  * cpu_possible_map should be static, it cannot change as cpu's
1273  * are onlined, or offlined. The reason is per-cpu data-structures
1274  * are allocated by some modules at init time, and dont expect to
1275  * do this dynamically on cpu arrival/departure.
1276  * cpu_present_map on the other hand can change dynamically.
1277  * In case when cpu_hotplug is not compiled, then we resort to current
1278  * behaviour, which is cpu_possible == cpu_present.
1279  * - Ashok Raj
1280  *
1281  * Three ways to find out the number of additional hotplug CPUs:
1282  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1283  * - The user can overwrite it with possible_cpus=NUM
1284  * - Otherwise don't reserve additional CPUs.
1285  * We do this because additional CPUs waste a lot of memory.
1286  * -AK
1287  */
1288 __init void prefill_possible_map(void)
1289 {
1290 	int i, possible;
1291 
1292 	/* no processor from mptable or madt */
1293 	if (!num_processors)
1294 		num_processors = 1;
1295 
1296 	if (setup_possible_cpus == -1)
1297 		possible = num_processors + disabled_cpus;
1298 	else
1299 		possible = setup_possible_cpus;
1300 
1301 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1302 
1303 	if (possible > CONFIG_NR_CPUS) {
1304 		printk(KERN_WARNING
1305 			"%d Processors exceeds NR_CPUS limit of %d\n",
1306 			possible, CONFIG_NR_CPUS);
1307 		possible = CONFIG_NR_CPUS;
1308 	}
1309 
1310 	printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1311 		possible, max_t(int, possible - num_processors, 0));
1312 
1313 	for (i = 0; i < possible; i++)
1314 		cpu_set(i, cpu_possible_map);
1315 
1316 	nr_cpu_ids = possible;
1317 }
1318 
1319 #ifdef CONFIG_HOTPLUG_CPU
1320 
1321 static void remove_siblinginfo(int cpu)
1322 {
1323 	int sibling;
1324 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1325 
1326 	for_each_cpu_mask_nr(sibling, per_cpu(cpu_core_map, cpu)) {
1327 		cpu_clear(cpu, per_cpu(cpu_core_map, sibling));
1328 		/*/
1329 		 * last thread sibling in this cpu core going down
1330 		 */
1331 		if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1)
1332 			cpu_data(sibling).booted_cores--;
1333 	}
1334 
1335 	for_each_cpu_mask_nr(sibling, per_cpu(cpu_sibling_map, cpu))
1336 		cpu_clear(cpu, per_cpu(cpu_sibling_map, sibling));
1337 	cpus_clear(per_cpu(cpu_sibling_map, cpu));
1338 	cpus_clear(per_cpu(cpu_core_map, cpu));
1339 	c->phys_proc_id = 0;
1340 	c->cpu_core_id = 0;
1341 	cpu_clear(cpu, cpu_sibling_setup_map);
1342 }
1343 
1344 static void __ref remove_cpu_from_maps(int cpu)
1345 {
1346 	cpu_clear(cpu, cpu_online_map);
1347 	cpu_clear(cpu, cpu_callout_map);
1348 	cpu_clear(cpu, cpu_callin_map);
1349 	/* was set by cpu_init() */
1350 	cpu_clear(cpu, cpu_initialized);
1351 	numa_remove_cpu(cpu);
1352 }
1353 
1354 void cpu_disable_common(void)
1355 {
1356 	int cpu = smp_processor_id();
1357 	/*
1358 	 * HACK:
1359 	 * Allow any queued timer interrupts to get serviced
1360 	 * This is only a temporary solution until we cleanup
1361 	 * fixup_irqs as we do for IA64.
1362 	 */
1363 	local_irq_enable();
1364 	mdelay(1);
1365 
1366 	local_irq_disable();
1367 	remove_siblinginfo(cpu);
1368 
1369 	/* It's now safe to remove this processor from the online map */
1370 	lock_vector_lock();
1371 	remove_cpu_from_maps(cpu);
1372 	unlock_vector_lock();
1373 	fixup_irqs();
1374 }
1375 
1376 int native_cpu_disable(void)
1377 {
1378 	int cpu = smp_processor_id();
1379 
1380 	/*
1381 	 * Perhaps use cpufreq to drop frequency, but that could go
1382 	 * into generic code.
1383 	 *
1384 	 * We won't take down the boot processor on i386 due to some
1385 	 * interrupts only being able to be serviced by the BSP.
1386 	 * Especially so if we're not using an IOAPIC	-zwane
1387 	 */
1388 	if (cpu == 0)
1389 		return -EBUSY;
1390 
1391 	if (nmi_watchdog == NMI_LOCAL_APIC)
1392 		stop_apic_nmi_watchdog(NULL);
1393 	clear_local_APIC();
1394 
1395 	cpu_disable_common();
1396 	return 0;
1397 }
1398 
1399 void native_cpu_die(unsigned int cpu)
1400 {
1401 	/* We don't do anything here: idle task is faking death itself. */
1402 	unsigned int i;
1403 
1404 	for (i = 0; i < 10; i++) {
1405 		/* They ack this in play_dead by setting CPU_DEAD */
1406 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1407 			printk(KERN_INFO "CPU %d is now offline\n", cpu);
1408 			if (1 == num_online_cpus())
1409 				alternatives_smp_switch(0);
1410 			return;
1411 		}
1412 		msleep(100);
1413 	}
1414 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1415 }
1416 
1417 void play_dead_common(void)
1418 {
1419 	idle_task_exit();
1420 	reset_lazy_tlbstate();
1421 	irq_ctx_exit(raw_smp_processor_id());
1422 	c1e_remove_cpu(raw_smp_processor_id());
1423 
1424 	mb();
1425 	/* Ack it */
1426 	__get_cpu_var(cpu_state) = CPU_DEAD;
1427 
1428 	/*
1429 	 * With physical CPU hotplug, we should halt the cpu
1430 	 */
1431 	local_irq_disable();
1432 }
1433 
1434 void native_play_dead(void)
1435 {
1436 	play_dead_common();
1437 	wbinvd_halt();
1438 }
1439 
1440 #else /* ... !CONFIG_HOTPLUG_CPU */
1441 int native_cpu_disable(void)
1442 {
1443 	return -ENOSYS;
1444 }
1445 
1446 void native_cpu_die(unsigned int cpu)
1447 {
1448 	/* We said "no" in __cpu_disable */
1449 	BUG();
1450 }
1451 
1452 void native_play_dead(void)
1453 {
1454 	BUG();
1455 }
1456 
1457 #endif
1458