1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * x86 SMP booting functions 4 * 5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 7 * Copyright 2001 Andi Kleen, SuSE Labs. 8 * 9 * Much of the core SMP work is based on previous work by Thomas Radke, to 10 * whom a great many thanks are extended. 11 * 12 * Thanks to Intel for making available several different Pentium, 13 * Pentium Pro and Pentium-II/Xeon MP machines. 14 * Original development of Linux SMP code supported by Caldera. 15 * 16 * Fixes 17 * Felix Koop : NR_CPUS used properly 18 * Jose Renau : Handle single CPU case. 19 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 20 * Greg Wright : Fix for kernel stacks panic. 21 * Erich Boleyn : MP v1.4 and additional changes. 22 * Matthias Sattler : Changes for 2.1 kernel map. 23 * Michel Lespinasse : Changes for 2.1 kernel map. 24 * Michael Chastain : Change trampoline.S to gnu as. 25 * Alan Cox : Dumb bug: 'B' step PPro's are fine 26 * Ingo Molnar : Added APIC timers, based on code 27 * from Jose Renau 28 * Ingo Molnar : various cleanups and rewrites 29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 31 * Andi Kleen : Changed for SMP boot into long mode. 32 * Martin J. Bligh : Added support for multi-quad systems 33 * Dave Jones : Report invalid combinations of Athlon CPUs. 34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 35 * Andi Kleen : Converted to new state machine. 36 * Ashok Raj : CPU hotplug support 37 * Glauber Costa : i386 and x86_64 integration 38 */ 39 40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 41 42 #include <linux/init.h> 43 #include <linux/smp.h> 44 #include <linux/export.h> 45 #include <linux/sched.h> 46 #include <linux/sched/topology.h> 47 #include <linux/sched/hotplug.h> 48 #include <linux/sched/task_stack.h> 49 #include <linux/percpu.h> 50 #include <linux/memblock.h> 51 #include <linux/err.h> 52 #include <linux/nmi.h> 53 #include <linux/tboot.h> 54 #include <linux/gfp.h> 55 #include <linux/cpuidle.h> 56 #include <linux/kexec.h> 57 #include <linux/numa.h> 58 #include <linux/pgtable.h> 59 #include <linux/overflow.h> 60 #include <linux/stackprotector.h> 61 #include <linux/cpuhotplug.h> 62 #include <linux/mc146818rtc.h> 63 64 #include <asm/acpi.h> 65 #include <asm/cacheinfo.h> 66 #include <asm/desc.h> 67 #include <asm/nmi.h> 68 #include <asm/irq.h> 69 #include <asm/realmode.h> 70 #include <asm/cpu.h> 71 #include <asm/numa.h> 72 #include <asm/tlbflush.h> 73 #include <asm/mtrr.h> 74 #include <asm/mwait.h> 75 #include <asm/apic.h> 76 #include <asm/io_apic.h> 77 #include <asm/fpu/api.h> 78 #include <asm/setup.h> 79 #include <asm/uv/uv.h> 80 #include <asm/microcode.h> 81 #include <asm/i8259.h> 82 #include <asm/misc.h> 83 #include <asm/qspinlock.h> 84 #include <asm/intel-family.h> 85 #include <asm/cpu_device_id.h> 86 #include <asm/spec-ctrl.h> 87 #include <asm/hw_irq.h> 88 #include <asm/stackprotector.h> 89 #include <asm/sev.h> 90 #include <asm/spec-ctrl.h> 91 92 /* representing HT siblings of each logical CPU */ 93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); 94 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 95 96 /* representing HT and core siblings of each logical CPU */ 97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); 98 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 99 100 /* representing HT, core, and die siblings of each logical CPU */ 101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); 102 EXPORT_PER_CPU_SYMBOL(cpu_die_map); 103 104 /* Per CPU bogomips and other parameters */ 105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 106 EXPORT_PER_CPU_SYMBOL(cpu_info); 107 108 /* CPUs which are the primary SMT threads */ 109 struct cpumask __cpu_primary_thread_mask __read_mostly; 110 111 /* Representing CPUs for which sibling maps can be computed */ 112 static cpumask_var_t cpu_sibling_setup_mask; 113 114 struct mwait_cpu_dead { 115 unsigned int control; 116 unsigned int status; 117 }; 118 119 #define CPUDEAD_MWAIT_WAIT 0xDEADBEEF 120 #define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD 121 122 /* 123 * Cache line aligned data for mwait_play_dead(). Separate on purpose so 124 * that it's unlikely to be touched by other CPUs. 125 */ 126 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead); 127 128 /* Logical package management. */ 129 struct logical_maps { 130 u32 phys_pkg_id; 131 u32 phys_die_id; 132 u32 logical_pkg_id; 133 u32 logical_die_id; 134 }; 135 136 /* Temporary workaround until the full topology mechanics is in place */ 137 static DEFINE_PER_CPU_READ_MOSTLY(struct logical_maps, logical_maps) = { 138 .phys_pkg_id = U32_MAX, 139 .phys_die_id = U32_MAX, 140 }; 141 142 unsigned int __max_logical_packages __read_mostly; 143 EXPORT_SYMBOL(__max_logical_packages); 144 static unsigned int logical_packages __read_mostly; 145 static unsigned int logical_die __read_mostly; 146 147 /* Maximum number of SMT threads on any online core */ 148 int __read_mostly __max_smt_threads = 1; 149 150 /* Flag to indicate if a complete sched domain rebuild is required */ 151 bool x86_topology_update; 152 153 int arch_update_cpu_topology(void) 154 { 155 int retval = x86_topology_update; 156 157 x86_topology_update = false; 158 return retval; 159 } 160 161 static unsigned int smpboot_warm_reset_vector_count; 162 163 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) 164 { 165 unsigned long flags; 166 167 spin_lock_irqsave(&rtc_lock, flags); 168 if (!smpboot_warm_reset_vector_count++) { 169 CMOS_WRITE(0xa, 0xf); 170 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4; 171 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf; 172 } 173 spin_unlock_irqrestore(&rtc_lock, flags); 174 } 175 176 static inline void smpboot_restore_warm_reset_vector(void) 177 { 178 unsigned long flags; 179 180 /* 181 * Paranoid: Set warm reset code and vector here back 182 * to default values. 183 */ 184 spin_lock_irqsave(&rtc_lock, flags); 185 if (!--smpboot_warm_reset_vector_count) { 186 CMOS_WRITE(0, 0xf); 187 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; 188 } 189 spin_unlock_irqrestore(&rtc_lock, flags); 190 191 } 192 193 /* Run the next set of setup steps for the upcoming CPU */ 194 static void ap_starting(void) 195 { 196 int cpuid = smp_processor_id(); 197 198 /* Mop up eventual mwait_play_dead() wreckage */ 199 this_cpu_write(mwait_cpu_dead.status, 0); 200 this_cpu_write(mwait_cpu_dead.control, 0); 201 202 /* 203 * If woken up by an INIT in an 82489DX configuration the alive 204 * synchronization guarantees that the CPU does not reach this 205 * point before an INIT_deassert IPI reaches the local APIC, so it 206 * is now safe to touch the local APIC. 207 * 208 * Set up this CPU, first the APIC, which is probably redundant on 209 * most boards. 210 */ 211 apic_ap_setup(); 212 213 /* Save the processor parameters. */ 214 smp_store_cpu_info(cpuid); 215 216 /* 217 * The topology information must be up to date before 218 * notify_cpu_starting(). 219 */ 220 set_cpu_sibling_map(cpuid); 221 222 ap_init_aperfmperf(); 223 224 pr_debug("Stack at about %p\n", &cpuid); 225 226 wmb(); 227 228 /* 229 * This runs the AP through all the cpuhp states to its target 230 * state CPUHP_ONLINE. 231 */ 232 notify_cpu_starting(cpuid); 233 } 234 235 static void ap_calibrate_delay(void) 236 { 237 /* 238 * Calibrate the delay loop and update loops_per_jiffy in cpu_data. 239 * smp_store_cpu_info() stored a value that is close but not as 240 * accurate as the value just calculated. 241 * 242 * As this is invoked after the TSC synchronization check, 243 * calibrate_delay_is_known() will skip the calibration routine 244 * when TSC is synchronized across sockets. 245 */ 246 calibrate_delay(); 247 cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy; 248 } 249 250 /* 251 * Activate a secondary processor. 252 */ 253 static void notrace start_secondary(void *unused) 254 { 255 /* 256 * Don't put *anything* except direct CPU state initialization 257 * before cpu_init(), SMP booting is too fragile that we want to 258 * limit the things done here to the most necessary things. 259 */ 260 cr4_init(); 261 262 /* 263 * 32-bit specific. 64-bit reaches this code with the correct page 264 * table established. Yet another historical divergence. 265 */ 266 if (IS_ENABLED(CONFIG_X86_32)) { 267 /* switch away from the initial page table */ 268 load_cr3(swapper_pg_dir); 269 __flush_tlb_all(); 270 } 271 272 cpu_init_exception_handling(); 273 274 /* 275 * Load the microcode before reaching the AP alive synchronization 276 * point below so it is not part of the full per CPU serialized 277 * bringup part when "parallel" bringup is enabled. 278 * 279 * That's even safe when hyperthreading is enabled in the CPU as 280 * the core code starts the primary threads first and leaves the 281 * secondary threads waiting for SIPI. Loading microcode on 282 * physical cores concurrently is a safe operation. 283 * 284 * This covers both the Intel specific issue that concurrent 285 * microcode loading on SMT siblings must be prohibited and the 286 * vendor independent issue`that microcode loading which changes 287 * CPUID, MSRs etc. must be strictly serialized to maintain 288 * software state correctness. 289 */ 290 load_ucode_ap(); 291 292 /* 293 * Synchronization point with the hotplug core. Sets this CPUs 294 * synchronization state to ALIVE and spin-waits for the control CPU to 295 * release this CPU for further bringup. 296 */ 297 cpuhp_ap_sync_alive(); 298 299 cpu_init(); 300 fpu__init_cpu(); 301 rcutree_report_cpu_starting(raw_smp_processor_id()); 302 x86_cpuinit.early_percpu_clock_init(); 303 304 ap_starting(); 305 306 /* Check TSC synchronization with the control CPU. */ 307 check_tsc_sync_target(); 308 309 /* 310 * Calibrate the delay loop after the TSC synchronization check. 311 * This allows to skip the calibration when TSC is synchronized 312 * across sockets. 313 */ 314 ap_calibrate_delay(); 315 316 speculative_store_bypass_ht_init(); 317 318 /* 319 * Lock vector_lock, set CPU online and bring the vector 320 * allocator online. Online must be set with vector_lock held 321 * to prevent a concurrent irq setup/teardown from seeing a 322 * half valid vector space. 323 */ 324 lock_vector_lock(); 325 set_cpu_online(smp_processor_id(), true); 326 lapic_online(); 327 unlock_vector_lock(); 328 x86_platform.nmi_init(); 329 330 /* enable local interrupts */ 331 local_irq_enable(); 332 333 x86_cpuinit.setup_percpu_clockev(); 334 335 wmb(); 336 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 337 } 338 339 /** 340 * topology_phys_to_logical_pkg - Map a physical package id to a logical 341 * @phys_pkg: The physical package id to map 342 * 343 * Returns logical package id or -1 if not found 344 */ 345 int topology_phys_to_logical_pkg(unsigned int phys_pkg) 346 { 347 int cpu; 348 349 for_each_possible_cpu(cpu) { 350 if (per_cpu(logical_maps.phys_pkg_id, cpu) == phys_pkg) 351 return per_cpu(logical_maps.logical_pkg_id, cpu); 352 } 353 return -1; 354 } 355 EXPORT_SYMBOL(topology_phys_to_logical_pkg); 356 357 /** 358 * topology_phys_to_logical_die - Map a physical die id to logical 359 * @die_id: The physical die id to map 360 * @cur_cpu: The CPU for which the mapping is done 361 * 362 * Returns logical die id or -1 if not found 363 */ 364 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu) 365 { 366 int cpu, proc_id = cpu_data(cur_cpu).topo.pkg_id; 367 368 for_each_possible_cpu(cpu) { 369 if (per_cpu(logical_maps.phys_pkg_id, cpu) == proc_id && 370 per_cpu(logical_maps.phys_die_id, cpu) == die_id) 371 return per_cpu(logical_maps.logical_die_id, cpu); 372 } 373 return -1; 374 } 375 376 /** 377 * topology_update_package_map - Update the physical to logical package map 378 * @pkg: The physical package id as retrieved via CPUID 379 * @cpu: The cpu for which this is updated 380 */ 381 int topology_update_package_map(unsigned int pkg, unsigned int cpu) 382 { 383 int new; 384 385 /* Already available somewhere? */ 386 new = topology_phys_to_logical_pkg(pkg); 387 if (new >= 0) 388 goto found; 389 390 new = logical_packages++; 391 if (new != pkg) { 392 pr_info("CPU %u Converting physical %u to logical package %u\n", 393 cpu, pkg, new); 394 } 395 found: 396 per_cpu(logical_maps.phys_pkg_id, cpu) = pkg; 397 per_cpu(logical_maps.logical_pkg_id, cpu) = new; 398 cpu_data(cpu).topo.logical_pkg_id = new; 399 return 0; 400 } 401 /** 402 * topology_update_die_map - Update the physical to logical die map 403 * @die: The die id as retrieved via CPUID 404 * @cpu: The cpu for which this is updated 405 */ 406 int topology_update_die_map(unsigned int die, unsigned int cpu) 407 { 408 int new; 409 410 /* Already available somewhere? */ 411 new = topology_phys_to_logical_die(die, cpu); 412 if (new >= 0) 413 goto found; 414 415 new = logical_die++; 416 if (new != die) { 417 pr_info("CPU %u Converting physical %u to logical die %u\n", 418 cpu, die, new); 419 } 420 found: 421 per_cpu(logical_maps.phys_die_id, cpu) = die; 422 per_cpu(logical_maps.logical_die_id, cpu) = new; 423 cpu_data(cpu).topo.logical_die_id = new; 424 return 0; 425 } 426 427 static void __init smp_store_boot_cpu_info(void) 428 { 429 int id = 0; /* CPU 0 */ 430 struct cpuinfo_x86 *c = &cpu_data(id); 431 432 *c = boot_cpu_data; 433 c->cpu_index = id; 434 topology_update_package_map(c->topo.pkg_id, id); 435 topology_update_die_map(c->topo.die_id, id); 436 c->initialized = true; 437 } 438 439 /* 440 * The bootstrap kernel entry code has set these up. Save them for 441 * a given CPU 442 */ 443 void smp_store_cpu_info(int id) 444 { 445 struct cpuinfo_x86 *c = &cpu_data(id); 446 447 /* Copy boot_cpu_data only on the first bringup */ 448 if (!c->initialized) 449 *c = boot_cpu_data; 450 c->cpu_index = id; 451 /* 452 * During boot time, CPU0 has this setup already. Save the info when 453 * bringing up an AP. 454 */ 455 identify_secondary_cpu(c); 456 c->initialized = true; 457 } 458 459 static bool 460 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 461 { 462 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 463 464 return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); 465 } 466 467 static bool 468 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) 469 { 470 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 471 472 return !WARN_ONCE(!topology_same_node(c, o), 473 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " 474 "[node: %d != %d]. Ignoring dependency.\n", 475 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); 476 } 477 478 #define link_mask(mfunc, c1, c2) \ 479 do { \ 480 cpumask_set_cpu((c1), mfunc(c2)); \ 481 cpumask_set_cpu((c2), mfunc(c1)); \ 482 } while (0) 483 484 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 485 { 486 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 487 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 488 489 if (c->topo.pkg_id == o->topo.pkg_id && 490 c->topo.die_id == o->topo.die_id && 491 c->topo.amd_node_id == o->topo.amd_node_id && 492 per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) { 493 if (c->topo.core_id == o->topo.core_id) 494 return topology_sane(c, o, "smt"); 495 496 if ((c->topo.cu_id != 0xff) && 497 (o->topo.cu_id != 0xff) && 498 (c->topo.cu_id == o->topo.cu_id)) 499 return topology_sane(c, o, "smt"); 500 } 501 502 } else if (c->topo.pkg_id == o->topo.pkg_id && 503 c->topo.die_id == o->topo.die_id && 504 c->topo.core_id == o->topo.core_id) { 505 return topology_sane(c, o, "smt"); 506 } 507 508 return false; 509 } 510 511 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 512 { 513 if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id) 514 return false; 515 516 if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1) 517 return c->topo.amd_node_id == o->topo.amd_node_id; 518 519 return true; 520 } 521 522 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 523 { 524 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 525 526 /* If the arch didn't set up l2c_id, fall back to SMT */ 527 if (per_cpu_l2c_id(cpu1) == BAD_APICID) 528 return match_smt(c, o); 529 530 /* Do not match if L2 cache id does not match: */ 531 if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2)) 532 return false; 533 534 return topology_sane(c, o, "l2c"); 535 } 536 537 /* 538 * Unlike the other levels, we do not enforce keeping a 539 * multicore group inside a NUMA node. If this happens, we will 540 * discard the MC level of the topology later. 541 */ 542 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 543 { 544 if (c->topo.pkg_id == o->topo.pkg_id) 545 return true; 546 return false; 547 } 548 549 /* 550 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs. 551 * 552 * Any Intel CPU that has multiple nodes per package and does not 553 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology. 554 * 555 * When in SNC mode, these CPUs enumerate an LLC that is shared 556 * by multiple NUMA nodes. The LLC is shared for off-package data 557 * access but private to the NUMA node (half of the package) for 558 * on-package access. CPUID (the source of the information about 559 * the LLC) can only enumerate the cache as shared or unshared, 560 * but not this particular configuration. 561 */ 562 563 static const struct x86_cpu_id intel_cod_cpu[] = { 564 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */ 565 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */ 566 X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */ 567 {} 568 }; 569 570 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 571 { 572 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu); 573 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 574 bool intel_snc = id && id->driver_data; 575 576 /* Do not match if we do not have a valid APICID for cpu: */ 577 if (per_cpu_llc_id(cpu1) == BAD_APICID) 578 return false; 579 580 /* Do not match if LLC id does not match: */ 581 if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2)) 582 return false; 583 584 /* 585 * Allow the SNC topology without warning. Return of false 586 * means 'c' does not share the LLC of 'o'. This will be 587 * reflected to userspace. 588 */ 589 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc) 590 return false; 591 592 return topology_sane(c, o, "llc"); 593 } 594 595 596 static inline int x86_sched_itmt_flags(void) 597 { 598 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; 599 } 600 601 #ifdef CONFIG_SCHED_MC 602 static int x86_core_flags(void) 603 { 604 return cpu_core_flags() | x86_sched_itmt_flags(); 605 } 606 #endif 607 #ifdef CONFIG_SCHED_SMT 608 static int x86_smt_flags(void) 609 { 610 return cpu_smt_flags(); 611 } 612 #endif 613 #ifdef CONFIG_SCHED_CLUSTER 614 static int x86_cluster_flags(void) 615 { 616 return cpu_cluster_flags() | x86_sched_itmt_flags(); 617 } 618 #endif 619 620 static int x86_die_flags(void) 621 { 622 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) 623 return x86_sched_itmt_flags(); 624 625 return 0; 626 } 627 628 /* 629 * Set if a package/die has multiple NUMA nodes inside. 630 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel 631 * Sub-NUMA Clustering have this. 632 */ 633 static bool x86_has_numa_in_package; 634 635 static struct sched_domain_topology_level x86_topology[6]; 636 637 static void __init build_sched_topology(void) 638 { 639 int i = 0; 640 641 #ifdef CONFIG_SCHED_SMT 642 x86_topology[i++] = (struct sched_domain_topology_level){ 643 cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) 644 }; 645 #endif 646 #ifdef CONFIG_SCHED_CLUSTER 647 x86_topology[i++] = (struct sched_domain_topology_level){ 648 cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) 649 }; 650 #endif 651 #ifdef CONFIG_SCHED_MC 652 x86_topology[i++] = (struct sched_domain_topology_level){ 653 cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) 654 }; 655 #endif 656 /* 657 * When there is NUMA topology inside the package skip the PKG domain 658 * since the NUMA domains will auto-magically create the right spanning 659 * domains based on the SLIT. 660 */ 661 if (!x86_has_numa_in_package) { 662 x86_topology[i++] = (struct sched_domain_topology_level){ 663 cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG) 664 }; 665 } 666 667 /* 668 * There must be one trailing NULL entry left. 669 */ 670 BUG_ON(i >= ARRAY_SIZE(x86_topology)-1); 671 672 set_sched_topology(x86_topology); 673 } 674 675 void set_cpu_sibling_map(int cpu) 676 { 677 bool has_smt = smp_num_siblings > 1; 678 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1; 679 struct cpuinfo_x86 *c = &cpu_data(cpu); 680 struct cpuinfo_x86 *o; 681 int i, threads; 682 683 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 684 685 if (!has_mp) { 686 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); 687 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 688 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu)); 689 cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); 690 cpumask_set_cpu(cpu, topology_die_cpumask(cpu)); 691 c->booted_cores = 1; 692 return; 693 } 694 695 for_each_cpu(i, cpu_sibling_setup_mask) { 696 o = &cpu_data(i); 697 698 if (match_pkg(c, o) && !topology_same_node(c, o)) 699 x86_has_numa_in_package = true; 700 701 if ((i == cpu) || (has_smt && match_smt(c, o))) 702 link_mask(topology_sibling_cpumask, cpu, i); 703 704 if ((i == cpu) || (has_mp && match_llc(c, o))) 705 link_mask(cpu_llc_shared_mask, cpu, i); 706 707 if ((i == cpu) || (has_mp && match_l2c(c, o))) 708 link_mask(cpu_l2c_shared_mask, cpu, i); 709 710 if ((i == cpu) || (has_mp && match_die(c, o))) 711 link_mask(topology_die_cpumask, cpu, i); 712 } 713 714 threads = cpumask_weight(topology_sibling_cpumask(cpu)); 715 if (threads > __max_smt_threads) 716 __max_smt_threads = threads; 717 718 for_each_cpu(i, topology_sibling_cpumask(cpu)) 719 cpu_data(i).smt_active = threads > 1; 720 721 /* 722 * This needs a separate iteration over the cpus because we rely on all 723 * topology_sibling_cpumask links to be set-up. 724 */ 725 for_each_cpu(i, cpu_sibling_setup_mask) { 726 o = &cpu_data(i); 727 728 if ((i == cpu) || (has_mp && match_pkg(c, o))) { 729 link_mask(topology_core_cpumask, cpu, i); 730 731 /* 732 * Does this new cpu bringup a new core? 733 */ 734 if (threads == 1) { 735 /* 736 * for each core in package, increment 737 * the booted_cores for this new cpu 738 */ 739 if (cpumask_first( 740 topology_sibling_cpumask(i)) == i) 741 c->booted_cores++; 742 /* 743 * increment the core count for all 744 * the other cpus in this package 745 */ 746 if (i != cpu) 747 cpu_data(i).booted_cores++; 748 } else if (i != cpu && !c->booted_cores) 749 c->booted_cores = cpu_data(i).booted_cores; 750 } 751 } 752 } 753 754 /* maps the cpu to the sched domain representing multi-core */ 755 const struct cpumask *cpu_coregroup_mask(int cpu) 756 { 757 return cpu_llc_shared_mask(cpu); 758 } 759 760 const struct cpumask *cpu_clustergroup_mask(int cpu) 761 { 762 return cpu_l2c_shared_mask(cpu); 763 } 764 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask); 765 766 static void impress_friends(void) 767 { 768 int cpu; 769 unsigned long bogosum = 0; 770 /* 771 * Allow the user to impress friends. 772 */ 773 pr_debug("Before bogomips\n"); 774 for_each_online_cpu(cpu) 775 bogosum += cpu_data(cpu).loops_per_jiffy; 776 777 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", 778 num_online_cpus(), 779 bogosum/(500000/HZ), 780 (bogosum/(5000/HZ))%100); 781 782 pr_debug("Before bogocount - setting activated=1\n"); 783 } 784 785 /* 786 * The Multiprocessor Specification 1.4 (1997) example code suggests 787 * that there should be a 10ms delay between the BSP asserting INIT 788 * and de-asserting INIT, when starting a remote processor. 789 * But that slows boot and resume on modern processors, which include 790 * many cores and don't require that delay. 791 * 792 * Cmdline "init_cpu_udelay=" is available to over-ride this delay. 793 * Modern processor families are quirked to remove the delay entirely. 794 */ 795 #define UDELAY_10MS_DEFAULT 10000 796 797 static unsigned int init_udelay = UINT_MAX; 798 799 static int __init cpu_init_udelay(char *str) 800 { 801 get_option(&str, &init_udelay); 802 803 return 0; 804 } 805 early_param("cpu_init_udelay", cpu_init_udelay); 806 807 static void __init smp_quirk_init_udelay(void) 808 { 809 /* if cmdline changed it from default, leave it alone */ 810 if (init_udelay != UINT_MAX) 811 return; 812 813 /* if modern processor, use no delay */ 814 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || 815 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) || 816 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { 817 init_udelay = 0; 818 return; 819 } 820 /* else, use legacy delay */ 821 init_udelay = UDELAY_10MS_DEFAULT; 822 } 823 824 /* 825 * Wake up AP by INIT, INIT, STARTUP sequence. 826 */ 827 static void send_init_sequence(u32 phys_apicid) 828 { 829 int maxlvt = lapic_get_maxlvt(); 830 831 /* Be paranoid about clearing APIC errors. */ 832 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 833 /* Due to the Pentium erratum 3AP. */ 834 if (maxlvt > 3) 835 apic_write(APIC_ESR, 0); 836 apic_read(APIC_ESR); 837 } 838 839 /* Assert INIT on the target CPU */ 840 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid); 841 safe_apic_wait_icr_idle(); 842 843 udelay(init_udelay); 844 845 /* Deassert INIT on the target CPU */ 846 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 847 safe_apic_wait_icr_idle(); 848 } 849 850 /* 851 * Wake up AP by INIT, INIT, STARTUP sequence. 852 */ 853 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip) 854 { 855 unsigned long send_status = 0, accept_status = 0; 856 int num_starts, j, maxlvt; 857 858 preempt_disable(); 859 maxlvt = lapic_get_maxlvt(); 860 send_init_sequence(phys_apicid); 861 862 mb(); 863 864 /* 865 * Should we send STARTUP IPIs ? 866 * 867 * Determine this based on the APIC version. 868 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 869 */ 870 if (APIC_INTEGRATED(boot_cpu_apic_version)) 871 num_starts = 2; 872 else 873 num_starts = 0; 874 875 /* 876 * Run STARTUP IPI loop. 877 */ 878 pr_debug("#startup loops: %d\n", num_starts); 879 880 for (j = 1; j <= num_starts; j++) { 881 pr_debug("Sending STARTUP #%d\n", j); 882 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 883 apic_write(APIC_ESR, 0); 884 apic_read(APIC_ESR); 885 pr_debug("After apic_write\n"); 886 887 /* 888 * STARTUP IPI 889 */ 890 891 /* Target chip */ 892 /* Boot on the stack */ 893 /* Kick the second */ 894 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 895 phys_apicid); 896 897 /* 898 * Give the other CPU some time to accept the IPI. 899 */ 900 if (init_udelay == 0) 901 udelay(10); 902 else 903 udelay(300); 904 905 pr_debug("Startup point 1\n"); 906 907 pr_debug("Waiting for send to finish...\n"); 908 send_status = safe_apic_wait_icr_idle(); 909 910 /* 911 * Give the other CPU some time to accept the IPI. 912 */ 913 if (init_udelay == 0) 914 udelay(10); 915 else 916 udelay(200); 917 918 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 919 apic_write(APIC_ESR, 0); 920 accept_status = (apic_read(APIC_ESR) & 0xEF); 921 if (send_status || accept_status) 922 break; 923 } 924 pr_debug("After Startup\n"); 925 926 if (send_status) 927 pr_err("APIC never delivered???\n"); 928 if (accept_status) 929 pr_err("APIC delivery error (%lx)\n", accept_status); 930 931 preempt_enable(); 932 return (send_status | accept_status); 933 } 934 935 /* reduce the number of lines printed when booting a large cpu count system */ 936 static void announce_cpu(int cpu, int apicid) 937 { 938 static int width, node_width, first = 1; 939 static int current_node = NUMA_NO_NODE; 940 int node = early_cpu_to_node(cpu); 941 942 if (!width) 943 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ 944 945 if (!node_width) 946 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ 947 948 if (system_state < SYSTEM_RUNNING) { 949 if (first) 950 pr_info("x86: Booting SMP configuration:\n"); 951 952 if (node != current_node) { 953 if (current_node > (-1)) 954 pr_cont("\n"); 955 current_node = node; 956 957 printk(KERN_INFO ".... node %*s#%d, CPUs: ", 958 node_width - num_digits(node), " ", node); 959 } 960 961 /* Add padding for the BSP */ 962 if (first) 963 pr_cont("%*s", width + 1, " "); 964 first = 0; 965 966 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); 967 } else 968 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 969 node, cpu, apicid); 970 } 971 972 int common_cpu_up(unsigned int cpu, struct task_struct *idle) 973 { 974 int ret; 975 976 /* Just in case we booted with a single CPU. */ 977 alternatives_enable_smp(); 978 979 per_cpu(pcpu_hot.current_task, cpu) = idle; 980 cpu_init_stack_canary(cpu, idle); 981 982 /* Initialize the interrupt stack(s) */ 983 ret = irq_init_percpu_irqstack(cpu); 984 if (ret) 985 return ret; 986 987 #ifdef CONFIG_X86_32 988 /* Stack for startup_32 can be just as for start_secondary onwards */ 989 per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle); 990 #endif 991 return 0; 992 } 993 994 /* 995 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 996 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 997 * Returns zero if startup was successfully sent, else error code from 998 * ->wakeup_secondary_cpu. 999 */ 1000 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle) 1001 { 1002 unsigned long start_ip = real_mode_header->trampoline_start; 1003 int ret; 1004 1005 #ifdef CONFIG_X86_64 1006 /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */ 1007 if (apic->wakeup_secondary_cpu_64) 1008 start_ip = real_mode_header->trampoline_start64; 1009 #endif 1010 idle->thread.sp = (unsigned long)task_pt_regs(idle); 1011 initial_code = (unsigned long)start_secondary; 1012 1013 if (IS_ENABLED(CONFIG_X86_32)) { 1014 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu); 1015 initial_stack = idle->thread.sp; 1016 } else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) { 1017 smpboot_control = cpu; 1018 } 1019 1020 /* Enable the espfix hack for this CPU */ 1021 init_espfix_ap(cpu); 1022 1023 /* So we see what's up */ 1024 announce_cpu(cpu, apicid); 1025 1026 /* 1027 * This grunge runs the startup process for 1028 * the targeted processor. 1029 */ 1030 if (x86_platform.legacy.warm_reset) { 1031 1032 pr_debug("Setting warm reset code and vector.\n"); 1033 1034 smpboot_setup_warm_reset_vector(start_ip); 1035 /* 1036 * Be paranoid about clearing APIC errors. 1037 */ 1038 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 1039 apic_write(APIC_ESR, 0); 1040 apic_read(APIC_ESR); 1041 } 1042 } 1043 1044 smp_mb(); 1045 1046 /* 1047 * Wake up a CPU in difference cases: 1048 * - Use a method from the APIC driver if one defined, with wakeup 1049 * straight to 64-bit mode preferred over wakeup to RM. 1050 * Otherwise, 1051 * - Use an INIT boot APIC message 1052 */ 1053 if (apic->wakeup_secondary_cpu_64) 1054 ret = apic->wakeup_secondary_cpu_64(apicid, start_ip); 1055 else if (apic->wakeup_secondary_cpu) 1056 ret = apic->wakeup_secondary_cpu(apicid, start_ip); 1057 else 1058 ret = wakeup_secondary_cpu_via_init(apicid, start_ip); 1059 1060 /* If the wakeup mechanism failed, cleanup the warm reset vector */ 1061 if (ret) 1062 arch_cpuhp_cleanup_kick_cpu(cpu); 1063 return ret; 1064 } 1065 1066 int native_kick_ap(unsigned int cpu, struct task_struct *tidle) 1067 { 1068 u32 apicid = apic->cpu_present_to_apicid(cpu); 1069 int err; 1070 1071 lockdep_assert_irqs_enabled(); 1072 1073 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 1074 1075 if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) || 1076 !apic_id_valid(apicid)) { 1077 pr_err("%s: bad cpu %d\n", __func__, cpu); 1078 return -EINVAL; 1079 } 1080 1081 /* 1082 * Save current MTRR state in case it was changed since early boot 1083 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 1084 */ 1085 mtrr_save_state(); 1086 1087 /* the FPU context is blank, nobody can own it */ 1088 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; 1089 1090 err = common_cpu_up(cpu, tidle); 1091 if (err) 1092 return err; 1093 1094 err = do_boot_cpu(apicid, cpu, tidle); 1095 if (err) 1096 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); 1097 1098 return err; 1099 } 1100 1101 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle) 1102 { 1103 return smp_ops.kick_ap_alive(cpu, tidle); 1104 } 1105 1106 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) 1107 { 1108 /* Cleanup possible dangling ends... */ 1109 if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset) 1110 smpboot_restore_warm_reset_vector(); 1111 } 1112 1113 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 1114 { 1115 if (smp_ops.cleanup_dead_cpu) 1116 smp_ops.cleanup_dead_cpu(cpu); 1117 1118 if (system_state == SYSTEM_RUNNING) 1119 pr_info("CPU %u is now offline\n", cpu); 1120 } 1121 1122 void arch_cpuhp_sync_state_poll(void) 1123 { 1124 if (smp_ops.poll_sync_state) 1125 smp_ops.poll_sync_state(); 1126 } 1127 1128 /** 1129 * arch_disable_smp_support() - Disables SMP support for x86 at boottime 1130 */ 1131 void __init arch_disable_smp_support(void) 1132 { 1133 disable_ioapic_support(); 1134 } 1135 1136 /* 1137 * Fall back to non SMP mode after errors. 1138 * 1139 * RED-PEN audit/test this more. I bet there is more state messed up here. 1140 */ 1141 static __init void disable_smp(void) 1142 { 1143 pr_info("SMP disabled\n"); 1144 1145 disable_ioapic_support(); 1146 1147 init_cpu_present(cpumask_of(0)); 1148 init_cpu_possible(cpumask_of(0)); 1149 1150 if (smp_found_config) 1151 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 1152 else 1153 physid_set_mask_of_physid(0, &phys_cpu_present_map); 1154 cpumask_set_cpu(0, topology_sibling_cpumask(0)); 1155 cpumask_set_cpu(0, topology_core_cpumask(0)); 1156 cpumask_set_cpu(0, topology_die_cpumask(0)); 1157 } 1158 1159 static void __init smp_cpu_index_default(void) 1160 { 1161 int i; 1162 struct cpuinfo_x86 *c; 1163 1164 for_each_possible_cpu(i) { 1165 c = &cpu_data(i); 1166 /* mark all to hotplug */ 1167 c->cpu_index = nr_cpu_ids; 1168 } 1169 } 1170 1171 void __init smp_prepare_cpus_common(void) 1172 { 1173 unsigned int i; 1174 1175 smp_cpu_index_default(); 1176 1177 /* 1178 * Setup boot CPU information 1179 */ 1180 smp_store_boot_cpu_info(); /* Final full version of the data */ 1181 mb(); 1182 1183 for_each_possible_cpu(i) { 1184 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 1185 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 1186 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL); 1187 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 1188 zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL); 1189 } 1190 1191 set_cpu_sibling_map(0); 1192 } 1193 1194 #ifdef CONFIG_X86_64 1195 /* Establish whether parallel bringup can be supported. */ 1196 bool __init arch_cpuhp_init_parallel_bringup(void) 1197 { 1198 if (!x86_cpuinit.parallel_bringup) { 1199 pr_info("Parallel CPU startup disabled by the platform\n"); 1200 return false; 1201 } 1202 1203 smpboot_control = STARTUP_READ_APICID; 1204 pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control); 1205 return true; 1206 } 1207 #endif 1208 1209 /* 1210 * Prepare for SMP bootup. 1211 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter 1212 * for common interface support. 1213 */ 1214 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1215 { 1216 smp_prepare_cpus_common(); 1217 1218 switch (apic_intr_mode) { 1219 case APIC_PIC: 1220 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1221 disable_smp(); 1222 return; 1223 case APIC_SYMMETRIC_IO_NO_ROUTING: 1224 disable_smp(); 1225 /* Setup local timer */ 1226 x86_init.timers.setup_percpu_clockev(); 1227 return; 1228 case APIC_VIRTUAL_WIRE: 1229 case APIC_SYMMETRIC_IO: 1230 break; 1231 } 1232 1233 /* Setup local timer */ 1234 x86_init.timers.setup_percpu_clockev(); 1235 1236 pr_info("CPU0: "); 1237 print_cpu_info(&cpu_data(0)); 1238 1239 uv_system_init(); 1240 1241 smp_quirk_init_udelay(); 1242 1243 speculative_store_bypass_ht_init(); 1244 1245 snp_set_wakeup_secondary_cpu(); 1246 } 1247 1248 void arch_thaw_secondary_cpus_begin(void) 1249 { 1250 set_cache_aps_delayed_init(true); 1251 } 1252 1253 void arch_thaw_secondary_cpus_end(void) 1254 { 1255 cache_aps_init(); 1256 } 1257 1258 /* 1259 * Early setup to make printk work. 1260 */ 1261 void __init native_smp_prepare_boot_cpu(void) 1262 { 1263 int me = smp_processor_id(); 1264 1265 /* SMP handles this from setup_per_cpu_areas() */ 1266 if (!IS_ENABLED(CONFIG_SMP)) 1267 switch_gdt_and_percpu_base(me); 1268 1269 native_pv_lock_init(); 1270 } 1271 1272 void __init calculate_max_logical_packages(void) 1273 { 1274 int ncpus; 1275 1276 /* 1277 * Today neither Intel nor AMD support heterogeneous systems so 1278 * extrapolate the boot cpu's data to all packages. 1279 */ 1280 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads(); 1281 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus); 1282 pr_info("Max logical packages: %u\n", __max_logical_packages); 1283 } 1284 1285 void __init native_smp_cpus_done(unsigned int max_cpus) 1286 { 1287 pr_debug("Boot done\n"); 1288 1289 calculate_max_logical_packages(); 1290 build_sched_topology(); 1291 nmi_selftest(); 1292 impress_friends(); 1293 cache_aps_init(); 1294 } 1295 1296 static int __initdata setup_possible_cpus = -1; 1297 static int __init _setup_possible_cpus(char *str) 1298 { 1299 get_option(&str, &setup_possible_cpus); 1300 return 0; 1301 } 1302 early_param("possible_cpus", _setup_possible_cpus); 1303 1304 1305 /* 1306 * cpu_possible_mask should be static, it cannot change as cpu's 1307 * are onlined, or offlined. The reason is per-cpu data-structures 1308 * are allocated by some modules at init time, and don't expect to 1309 * do this dynamically on cpu arrival/departure. 1310 * cpu_present_mask on the other hand can change dynamically. 1311 * In case when cpu_hotplug is not compiled, then we resort to current 1312 * behaviour, which is cpu_possible == cpu_present. 1313 * - Ashok Raj 1314 * 1315 * Three ways to find out the number of additional hotplug CPUs: 1316 * - If the BIOS specified disabled CPUs in ACPI/mptables use that. 1317 * - The user can overwrite it with possible_cpus=NUM 1318 * - Otherwise don't reserve additional CPUs. 1319 * We do this because additional CPUs waste a lot of memory. 1320 * -AK 1321 */ 1322 __init void prefill_possible_map(void) 1323 { 1324 int i, possible; 1325 1326 i = setup_max_cpus ?: 1; 1327 if (setup_possible_cpus == -1) { 1328 possible = num_processors; 1329 #ifdef CONFIG_HOTPLUG_CPU 1330 if (setup_max_cpus) 1331 possible += disabled_cpus; 1332 #else 1333 if (possible > i) 1334 possible = i; 1335 #endif 1336 } else 1337 possible = setup_possible_cpus; 1338 1339 total_cpus = max_t(int, possible, num_processors + disabled_cpus); 1340 1341 /* nr_cpu_ids could be reduced via nr_cpus= */ 1342 if (possible > nr_cpu_ids) { 1343 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n", 1344 possible, nr_cpu_ids); 1345 possible = nr_cpu_ids; 1346 } 1347 1348 #ifdef CONFIG_HOTPLUG_CPU 1349 if (!setup_max_cpus) 1350 #endif 1351 if (possible > i) { 1352 pr_warn("%d Processors exceeds max_cpus limit of %u\n", 1353 possible, setup_max_cpus); 1354 possible = i; 1355 } 1356 1357 set_nr_cpu_ids(possible); 1358 1359 pr_info("Allowing %d CPUs, %d hotplug CPUs\n", 1360 possible, max_t(int, possible - num_processors, 0)); 1361 1362 reset_cpu_possible_mask(); 1363 1364 for (i = 0; i < possible; i++) 1365 set_cpu_possible(i, true); 1366 } 1367 1368 /* correctly size the local cpu masks */ 1369 void __init setup_cpu_local_masks(void) 1370 { 1371 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 1372 } 1373 1374 #ifdef CONFIG_HOTPLUG_CPU 1375 1376 /* Recompute SMT state for all CPUs on offline */ 1377 static void recompute_smt_state(void) 1378 { 1379 int max_threads, cpu; 1380 1381 max_threads = 0; 1382 for_each_online_cpu (cpu) { 1383 int threads = cpumask_weight(topology_sibling_cpumask(cpu)); 1384 1385 if (threads > max_threads) 1386 max_threads = threads; 1387 } 1388 __max_smt_threads = max_threads; 1389 } 1390 1391 static void remove_siblinginfo(int cpu) 1392 { 1393 int sibling; 1394 struct cpuinfo_x86 *c = &cpu_data(cpu); 1395 1396 for_each_cpu(sibling, topology_core_cpumask(cpu)) { 1397 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 1398 /*/ 1399 * last thread sibling in this cpu core going down 1400 */ 1401 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) 1402 cpu_data(sibling).booted_cores--; 1403 } 1404 1405 for_each_cpu(sibling, topology_die_cpumask(cpu)) 1406 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling)); 1407 1408 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) { 1409 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 1410 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1) 1411 cpu_data(sibling).smt_active = false; 1412 } 1413 1414 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) 1415 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); 1416 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu)) 1417 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling)); 1418 cpumask_clear(cpu_llc_shared_mask(cpu)); 1419 cpumask_clear(cpu_l2c_shared_mask(cpu)); 1420 cpumask_clear(topology_sibling_cpumask(cpu)); 1421 cpumask_clear(topology_core_cpumask(cpu)); 1422 cpumask_clear(topology_die_cpumask(cpu)); 1423 c->topo.core_id = 0; 1424 c->booted_cores = 0; 1425 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1426 recompute_smt_state(); 1427 } 1428 1429 static void remove_cpu_from_maps(int cpu) 1430 { 1431 set_cpu_online(cpu, false); 1432 numa_remove_cpu(cpu); 1433 } 1434 1435 void cpu_disable_common(void) 1436 { 1437 int cpu = smp_processor_id(); 1438 1439 remove_siblinginfo(cpu); 1440 1441 /* It's now safe to remove this processor from the online map */ 1442 lock_vector_lock(); 1443 remove_cpu_from_maps(cpu); 1444 unlock_vector_lock(); 1445 fixup_irqs(); 1446 lapic_offline(); 1447 } 1448 1449 int native_cpu_disable(void) 1450 { 1451 int ret; 1452 1453 ret = lapic_can_unplug_cpu(); 1454 if (ret) 1455 return ret; 1456 1457 cpu_disable_common(); 1458 1459 /* 1460 * Disable the local APIC. Otherwise IPI broadcasts will reach 1461 * it. It still responds normally to INIT, NMI, SMI, and SIPI 1462 * messages. 1463 * 1464 * Disabling the APIC must happen after cpu_disable_common() 1465 * which invokes fixup_irqs(). 1466 * 1467 * Disabling the APIC preserves already set bits in IRR, but 1468 * an interrupt arriving after disabling the local APIC does not 1469 * set the corresponding IRR bit. 1470 * 1471 * fixup_irqs() scans IRR for set bits so it can raise a not 1472 * yet handled interrupt on the new destination CPU via an IPI 1473 * but obviously it can't do so for IRR bits which are not set. 1474 * IOW, interrupts arriving after disabling the local APIC will 1475 * be lost. 1476 */ 1477 apic_soft_disable(); 1478 1479 return 0; 1480 } 1481 1482 void play_dead_common(void) 1483 { 1484 idle_task_exit(); 1485 1486 cpuhp_ap_report_dead(); 1487 1488 local_irq_disable(); 1489 } 1490 1491 /* 1492 * We need to flush the caches before going to sleep, lest we have 1493 * dirty data in our caches when we come back up. 1494 */ 1495 static inline void mwait_play_dead(void) 1496 { 1497 struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead); 1498 unsigned int eax, ebx, ecx, edx; 1499 unsigned int highest_cstate = 0; 1500 unsigned int highest_subcstate = 0; 1501 int i; 1502 1503 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1504 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 1505 return; 1506 if (!this_cpu_has(X86_FEATURE_MWAIT)) 1507 return; 1508 if (!this_cpu_has(X86_FEATURE_CLFLUSH)) 1509 return; 1510 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) 1511 return; 1512 1513 eax = CPUID_MWAIT_LEAF; 1514 ecx = 0; 1515 native_cpuid(&eax, &ebx, &ecx, &edx); 1516 1517 /* 1518 * eax will be 0 if EDX enumeration is not valid. 1519 * Initialized below to cstate, sub_cstate value when EDX is valid. 1520 */ 1521 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1522 eax = 0; 1523 } else { 1524 edx >>= MWAIT_SUBSTATE_SIZE; 1525 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1526 if (edx & MWAIT_SUBSTATE_MASK) { 1527 highest_cstate = i; 1528 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1529 } 1530 } 1531 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1532 (highest_subcstate - 1); 1533 } 1534 1535 /* Set up state for the kexec() hack below */ 1536 md->status = CPUDEAD_MWAIT_WAIT; 1537 md->control = CPUDEAD_MWAIT_WAIT; 1538 1539 wbinvd(); 1540 1541 while (1) { 1542 /* 1543 * The CLFLUSH is a workaround for erratum AAI65 for 1544 * the Xeon 7400 series. It's not clear it is actually 1545 * needed, but it should be harmless in either case. 1546 * The WBINVD is insufficient due to the spurious-wakeup 1547 * case where we return around the loop. 1548 */ 1549 mb(); 1550 clflush(md); 1551 mb(); 1552 __monitor(md, 0, 0); 1553 mb(); 1554 __mwait(eax, 0); 1555 1556 if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) { 1557 /* 1558 * Kexec is about to happen. Don't go back into mwait() as 1559 * the kexec kernel might overwrite text and data including 1560 * page tables and stack. So mwait() would resume when the 1561 * monitor cache line is written to and then the CPU goes 1562 * south due to overwritten text, page tables and stack. 1563 * 1564 * Note: This does _NOT_ protect against a stray MCE, NMI, 1565 * SMI. They will resume execution at the instruction 1566 * following the HLT instruction and run into the problem 1567 * which this is trying to prevent. 1568 */ 1569 WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT); 1570 while(1) 1571 native_halt(); 1572 } 1573 } 1574 } 1575 1576 /* 1577 * Kick all "offline" CPUs out of mwait on kexec(). See comment in 1578 * mwait_play_dead(). 1579 */ 1580 void smp_kick_mwait_play_dead(void) 1581 { 1582 u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT; 1583 struct mwait_cpu_dead *md; 1584 unsigned int cpu, i; 1585 1586 for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) { 1587 md = per_cpu_ptr(&mwait_cpu_dead, cpu); 1588 1589 /* Does it sit in mwait_play_dead() ? */ 1590 if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT) 1591 continue; 1592 1593 /* Wait up to 5ms */ 1594 for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) { 1595 /* Bring it out of mwait */ 1596 WRITE_ONCE(md->control, newstate); 1597 udelay(5); 1598 } 1599 1600 if (READ_ONCE(md->status) != newstate) 1601 pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu); 1602 } 1603 } 1604 1605 void __noreturn hlt_play_dead(void) 1606 { 1607 if (__this_cpu_read(cpu_info.x86) >= 4) 1608 wbinvd(); 1609 1610 while (1) 1611 native_halt(); 1612 } 1613 1614 /* 1615 * native_play_dead() is essentially a __noreturn function, but it can't 1616 * be marked as such as the compiler may complain about it. 1617 */ 1618 void native_play_dead(void) 1619 { 1620 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) 1621 __update_spec_ctrl(0); 1622 1623 play_dead_common(); 1624 tboot_shutdown(TB_SHUTDOWN_WFS); 1625 1626 mwait_play_dead(); 1627 if (cpuidle_play_dead()) 1628 hlt_play_dead(); 1629 } 1630 1631 #else /* ... !CONFIG_HOTPLUG_CPU */ 1632 int native_cpu_disable(void) 1633 { 1634 return -ENOSYS; 1635 } 1636 1637 void native_play_dead(void) 1638 { 1639 BUG(); 1640 } 1641 1642 #endif 1643