xref: /linux/arch/x86/kernel/smpboot.c (revision 2d7f3d1a5866705be2393150e1ffdf67030ab88d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 
64 #include <asm/acpi.h>
65 #include <asm/cacheinfo.h>
66 #include <asm/desc.h>
67 #include <asm/nmi.h>
68 #include <asm/irq.h>
69 #include <asm/realmode.h>
70 #include <asm/cpu.h>
71 #include <asm/numa.h>
72 #include <asm/tlbflush.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/apic.h>
76 #include <asm/io_apic.h>
77 #include <asm/fpu/api.h>
78 #include <asm/setup.h>
79 #include <asm/uv/uv.h>
80 #include <asm/microcode.h>
81 #include <asm/i8259.h>
82 #include <asm/misc.h>
83 #include <asm/qspinlock.h>
84 #include <asm/intel-family.h>
85 #include <asm/cpu_device_id.h>
86 #include <asm/spec-ctrl.h>
87 #include <asm/hw_irq.h>
88 #include <asm/stackprotector.h>
89 #include <asm/sev.h>
90 #include <asm/spec-ctrl.h>
91 
92 /* representing HT siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
95 
96 /* representing HT and core siblings of each logical CPU */
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
98 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
99 
100 /* representing HT, core, and die siblings of each logical CPU */
101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
102 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
103 
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107 
108 /* CPUs which are the primary SMT threads */
109 struct cpumask __cpu_primary_thread_mask __read_mostly;
110 
111 /* Representing CPUs for which sibling maps can be computed */
112 static cpumask_var_t cpu_sibling_setup_mask;
113 
114 struct mwait_cpu_dead {
115 	unsigned int	control;
116 	unsigned int	status;
117 };
118 
119 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
120 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
121 
122 /*
123  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
124  * that it's unlikely to be touched by other CPUs.
125  */
126 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
127 
128 /* Logical package management. */
129 struct logical_maps {
130 	u32	phys_pkg_id;
131 	u32	phys_die_id;
132 	u32	logical_pkg_id;
133 	u32	logical_die_id;
134 };
135 
136 /* Temporary workaround until the full topology mechanics is in place */
137 static DEFINE_PER_CPU_READ_MOSTLY(struct logical_maps, logical_maps) = {
138 	.phys_pkg_id	= U32_MAX,
139 	.phys_die_id	= U32_MAX,
140 };
141 
142 unsigned int __max_logical_packages __read_mostly;
143 EXPORT_SYMBOL(__max_logical_packages);
144 static unsigned int logical_packages __read_mostly;
145 static unsigned int logical_die __read_mostly;
146 
147 /* Maximum number of SMT threads on any online core */
148 int __read_mostly __max_smt_threads = 1;
149 
150 /* Flag to indicate if a complete sched domain rebuild is required */
151 bool x86_topology_update;
152 
153 int arch_update_cpu_topology(void)
154 {
155 	int retval = x86_topology_update;
156 
157 	x86_topology_update = false;
158 	return retval;
159 }
160 
161 static unsigned int smpboot_warm_reset_vector_count;
162 
163 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
164 {
165 	unsigned long flags;
166 
167 	spin_lock_irqsave(&rtc_lock, flags);
168 	if (!smpboot_warm_reset_vector_count++) {
169 		CMOS_WRITE(0xa, 0xf);
170 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
171 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
172 	}
173 	spin_unlock_irqrestore(&rtc_lock, flags);
174 }
175 
176 static inline void smpboot_restore_warm_reset_vector(void)
177 {
178 	unsigned long flags;
179 
180 	/*
181 	 * Paranoid:  Set warm reset code and vector here back
182 	 * to default values.
183 	 */
184 	spin_lock_irqsave(&rtc_lock, flags);
185 	if (!--smpboot_warm_reset_vector_count) {
186 		CMOS_WRITE(0, 0xf);
187 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
188 	}
189 	spin_unlock_irqrestore(&rtc_lock, flags);
190 
191 }
192 
193 /* Run the next set of setup steps for the upcoming CPU */
194 static void ap_starting(void)
195 {
196 	int cpuid = smp_processor_id();
197 
198 	/* Mop up eventual mwait_play_dead() wreckage */
199 	this_cpu_write(mwait_cpu_dead.status, 0);
200 	this_cpu_write(mwait_cpu_dead.control, 0);
201 
202 	/*
203 	 * If woken up by an INIT in an 82489DX configuration the alive
204 	 * synchronization guarantees that the CPU does not reach this
205 	 * point before an INIT_deassert IPI reaches the local APIC, so it
206 	 * is now safe to touch the local APIC.
207 	 *
208 	 * Set up this CPU, first the APIC, which is probably redundant on
209 	 * most boards.
210 	 */
211 	apic_ap_setup();
212 
213 	/* Save the processor parameters. */
214 	smp_store_cpu_info(cpuid);
215 
216 	/*
217 	 * The topology information must be up to date before
218 	 * notify_cpu_starting().
219 	 */
220 	set_cpu_sibling_map(cpuid);
221 
222 	ap_init_aperfmperf();
223 
224 	pr_debug("Stack at about %p\n", &cpuid);
225 
226 	wmb();
227 
228 	/*
229 	 * This runs the AP through all the cpuhp states to its target
230 	 * state CPUHP_ONLINE.
231 	 */
232 	notify_cpu_starting(cpuid);
233 }
234 
235 static void ap_calibrate_delay(void)
236 {
237 	/*
238 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
239 	 * smp_store_cpu_info() stored a value that is close but not as
240 	 * accurate as the value just calculated.
241 	 *
242 	 * As this is invoked after the TSC synchronization check,
243 	 * calibrate_delay_is_known() will skip the calibration routine
244 	 * when TSC is synchronized across sockets.
245 	 */
246 	calibrate_delay();
247 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
248 }
249 
250 /*
251  * Activate a secondary processor.
252  */
253 static void notrace start_secondary(void *unused)
254 {
255 	/*
256 	 * Don't put *anything* except direct CPU state initialization
257 	 * before cpu_init(), SMP booting is too fragile that we want to
258 	 * limit the things done here to the most necessary things.
259 	 */
260 	cr4_init();
261 
262 	/*
263 	 * 32-bit specific. 64-bit reaches this code with the correct page
264 	 * table established. Yet another historical divergence.
265 	 */
266 	if (IS_ENABLED(CONFIG_X86_32)) {
267 		/* switch away from the initial page table */
268 		load_cr3(swapper_pg_dir);
269 		__flush_tlb_all();
270 	}
271 
272 	cpu_init_exception_handling();
273 
274 	/*
275 	 * Load the microcode before reaching the AP alive synchronization
276 	 * point below so it is not part of the full per CPU serialized
277 	 * bringup part when "parallel" bringup is enabled.
278 	 *
279 	 * That's even safe when hyperthreading is enabled in the CPU as
280 	 * the core code starts the primary threads first and leaves the
281 	 * secondary threads waiting for SIPI. Loading microcode on
282 	 * physical cores concurrently is a safe operation.
283 	 *
284 	 * This covers both the Intel specific issue that concurrent
285 	 * microcode loading on SMT siblings must be prohibited and the
286 	 * vendor independent issue`that microcode loading which changes
287 	 * CPUID, MSRs etc. must be strictly serialized to maintain
288 	 * software state correctness.
289 	 */
290 	load_ucode_ap();
291 
292 	/*
293 	 * Synchronization point with the hotplug core. Sets this CPUs
294 	 * synchronization state to ALIVE and spin-waits for the control CPU to
295 	 * release this CPU for further bringup.
296 	 */
297 	cpuhp_ap_sync_alive();
298 
299 	cpu_init();
300 	fpu__init_cpu();
301 	rcutree_report_cpu_starting(raw_smp_processor_id());
302 	x86_cpuinit.early_percpu_clock_init();
303 
304 	ap_starting();
305 
306 	/* Check TSC synchronization with the control CPU. */
307 	check_tsc_sync_target();
308 
309 	/*
310 	 * Calibrate the delay loop after the TSC synchronization check.
311 	 * This allows to skip the calibration when TSC is synchronized
312 	 * across sockets.
313 	 */
314 	ap_calibrate_delay();
315 
316 	speculative_store_bypass_ht_init();
317 
318 	/*
319 	 * Lock vector_lock, set CPU online and bring the vector
320 	 * allocator online. Online must be set with vector_lock held
321 	 * to prevent a concurrent irq setup/teardown from seeing a
322 	 * half valid vector space.
323 	 */
324 	lock_vector_lock();
325 	set_cpu_online(smp_processor_id(), true);
326 	lapic_online();
327 	unlock_vector_lock();
328 	x86_platform.nmi_init();
329 
330 	/* enable local interrupts */
331 	local_irq_enable();
332 
333 	x86_cpuinit.setup_percpu_clockev();
334 
335 	wmb();
336 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
337 }
338 
339 /**
340  * topology_phys_to_logical_pkg - Map a physical package id to a logical
341  * @phys_pkg:	The physical package id to map
342  *
343  * Returns logical package id or -1 if not found
344  */
345 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
346 {
347 	int cpu;
348 
349 	for_each_possible_cpu(cpu) {
350 		if (per_cpu(logical_maps.phys_pkg_id, cpu) == phys_pkg)
351 			return per_cpu(logical_maps.logical_pkg_id, cpu);
352 	}
353 	return -1;
354 }
355 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
356 
357 /**
358  * topology_phys_to_logical_die - Map a physical die id to logical
359  * @die_id:	The physical die id to map
360  * @cur_cpu:	The CPU for which the mapping is done
361  *
362  * Returns logical die id or -1 if not found
363  */
364 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
365 {
366 	int cpu, proc_id = cpu_data(cur_cpu).topo.pkg_id;
367 
368 	for_each_possible_cpu(cpu) {
369 		if (per_cpu(logical_maps.phys_pkg_id, cpu) == proc_id &&
370 		    per_cpu(logical_maps.phys_die_id, cpu) == die_id)
371 			return per_cpu(logical_maps.logical_die_id, cpu);
372 	}
373 	return -1;
374 }
375 
376 /**
377  * topology_update_package_map - Update the physical to logical package map
378  * @pkg:	The physical package id as retrieved via CPUID
379  * @cpu:	The cpu for which this is updated
380  */
381 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
382 {
383 	int new;
384 
385 	/* Already available somewhere? */
386 	new = topology_phys_to_logical_pkg(pkg);
387 	if (new >= 0)
388 		goto found;
389 
390 	new = logical_packages++;
391 	if (new != pkg) {
392 		pr_info("CPU %u Converting physical %u to logical package %u\n",
393 			cpu, pkg, new);
394 	}
395 found:
396 	per_cpu(logical_maps.phys_pkg_id, cpu) = pkg;
397 	per_cpu(logical_maps.logical_pkg_id, cpu) = new;
398 	cpu_data(cpu).topo.logical_pkg_id = new;
399 	return 0;
400 }
401 /**
402  * topology_update_die_map - Update the physical to logical die map
403  * @die:	The die id as retrieved via CPUID
404  * @cpu:	The cpu for which this is updated
405  */
406 int topology_update_die_map(unsigned int die, unsigned int cpu)
407 {
408 	int new;
409 
410 	/* Already available somewhere? */
411 	new = topology_phys_to_logical_die(die, cpu);
412 	if (new >= 0)
413 		goto found;
414 
415 	new = logical_die++;
416 	if (new != die) {
417 		pr_info("CPU %u Converting physical %u to logical die %u\n",
418 			cpu, die, new);
419 	}
420 found:
421 	per_cpu(logical_maps.phys_die_id, cpu) = die;
422 	per_cpu(logical_maps.logical_die_id, cpu) = new;
423 	cpu_data(cpu).topo.logical_die_id = new;
424 	return 0;
425 }
426 
427 static void __init smp_store_boot_cpu_info(void)
428 {
429 	int id = 0; /* CPU 0 */
430 	struct cpuinfo_x86 *c = &cpu_data(id);
431 
432 	*c = boot_cpu_data;
433 	c->cpu_index = id;
434 	topology_update_package_map(c->topo.pkg_id, id);
435 	topology_update_die_map(c->topo.die_id, id);
436 	c->initialized = true;
437 }
438 
439 /*
440  * The bootstrap kernel entry code has set these up. Save them for
441  * a given CPU
442  */
443 void smp_store_cpu_info(int id)
444 {
445 	struct cpuinfo_x86 *c = &cpu_data(id);
446 
447 	/* Copy boot_cpu_data only on the first bringup */
448 	if (!c->initialized)
449 		*c = boot_cpu_data;
450 	c->cpu_index = id;
451 	/*
452 	 * During boot time, CPU0 has this setup already. Save the info when
453 	 * bringing up an AP.
454 	 */
455 	identify_secondary_cpu(c);
456 	c->initialized = true;
457 }
458 
459 static bool
460 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
461 {
462 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
463 
464 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
465 }
466 
467 static bool
468 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
469 {
470 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
471 
472 	return !WARN_ONCE(!topology_same_node(c, o),
473 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
474 		"[node: %d != %d]. Ignoring dependency.\n",
475 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
476 }
477 
478 #define link_mask(mfunc, c1, c2)					\
479 do {									\
480 	cpumask_set_cpu((c1), mfunc(c2));				\
481 	cpumask_set_cpu((c2), mfunc(c1));				\
482 } while (0)
483 
484 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
485 {
486 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
487 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
488 
489 		if (c->topo.pkg_id == o->topo.pkg_id &&
490 		    c->topo.die_id == o->topo.die_id &&
491 		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
492 			if (c->topo.core_id == o->topo.core_id)
493 				return topology_sane(c, o, "smt");
494 
495 			if ((c->topo.cu_id != 0xff) &&
496 			    (o->topo.cu_id != 0xff) &&
497 			    (c->topo.cu_id == o->topo.cu_id))
498 				return topology_sane(c, o, "smt");
499 		}
500 
501 	} else if (c->topo.pkg_id == o->topo.pkg_id &&
502 		   c->topo.die_id == o->topo.die_id &&
503 		   c->topo.core_id == o->topo.core_id) {
504 		return topology_sane(c, o, "smt");
505 	}
506 
507 	return false;
508 }
509 
510 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
511 {
512 	if (c->topo.pkg_id == o->topo.pkg_id &&
513 	    c->topo.die_id == o->topo.die_id)
514 		return true;
515 	return false;
516 }
517 
518 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
519 {
520 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
521 
522 	/* If the arch didn't set up l2c_id, fall back to SMT */
523 	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
524 		return match_smt(c, o);
525 
526 	/* Do not match if L2 cache id does not match: */
527 	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
528 		return false;
529 
530 	return topology_sane(c, o, "l2c");
531 }
532 
533 /*
534  * Unlike the other levels, we do not enforce keeping a
535  * multicore group inside a NUMA node.  If this happens, we will
536  * discard the MC level of the topology later.
537  */
538 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
539 {
540 	if (c->topo.pkg_id == o->topo.pkg_id)
541 		return true;
542 	return false;
543 }
544 
545 /*
546  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
547  *
548  * Any Intel CPU that has multiple nodes per package and does not
549  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
550  *
551  * When in SNC mode, these CPUs enumerate an LLC that is shared
552  * by multiple NUMA nodes. The LLC is shared for off-package data
553  * access but private to the NUMA node (half of the package) for
554  * on-package access. CPUID (the source of the information about
555  * the LLC) can only enumerate the cache as shared or unshared,
556  * but not this particular configuration.
557  */
558 
559 static const struct x86_cpu_id intel_cod_cpu[] = {
560 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
561 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
562 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
563 	{}
564 };
565 
566 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
567 {
568 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
569 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
570 	bool intel_snc = id && id->driver_data;
571 
572 	/* Do not match if we do not have a valid APICID for cpu: */
573 	if (per_cpu_llc_id(cpu1) == BAD_APICID)
574 		return false;
575 
576 	/* Do not match if LLC id does not match: */
577 	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
578 		return false;
579 
580 	/*
581 	 * Allow the SNC topology without warning. Return of false
582 	 * means 'c' does not share the LLC of 'o'. This will be
583 	 * reflected to userspace.
584 	 */
585 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
586 		return false;
587 
588 	return topology_sane(c, o, "llc");
589 }
590 
591 
592 static inline int x86_sched_itmt_flags(void)
593 {
594 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
595 }
596 
597 #ifdef CONFIG_SCHED_MC
598 static int x86_core_flags(void)
599 {
600 	return cpu_core_flags() | x86_sched_itmt_flags();
601 }
602 #endif
603 #ifdef CONFIG_SCHED_SMT
604 static int x86_smt_flags(void)
605 {
606 	return cpu_smt_flags();
607 }
608 #endif
609 #ifdef CONFIG_SCHED_CLUSTER
610 static int x86_cluster_flags(void)
611 {
612 	return cpu_cluster_flags() | x86_sched_itmt_flags();
613 }
614 #endif
615 
616 static int x86_die_flags(void)
617 {
618 	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
619 	       return x86_sched_itmt_flags();
620 
621 	return 0;
622 }
623 
624 /*
625  * Set if a package/die has multiple NUMA nodes inside.
626  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
627  * Sub-NUMA Clustering have this.
628  */
629 static bool x86_has_numa_in_package;
630 
631 static struct sched_domain_topology_level x86_topology[6];
632 
633 static void __init build_sched_topology(void)
634 {
635 	int i = 0;
636 
637 #ifdef CONFIG_SCHED_SMT
638 	x86_topology[i++] = (struct sched_domain_topology_level){
639 		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
640 	};
641 #endif
642 #ifdef CONFIG_SCHED_CLUSTER
643 	x86_topology[i++] = (struct sched_domain_topology_level){
644 		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
645 	};
646 #endif
647 #ifdef CONFIG_SCHED_MC
648 	x86_topology[i++] = (struct sched_domain_topology_level){
649 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
650 	};
651 #endif
652 	/*
653 	 * When there is NUMA topology inside the package skip the PKG domain
654 	 * since the NUMA domains will auto-magically create the right spanning
655 	 * domains based on the SLIT.
656 	 */
657 	if (!x86_has_numa_in_package) {
658 		x86_topology[i++] = (struct sched_domain_topology_level){
659 			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
660 		};
661 	}
662 
663 	/*
664 	 * There must be one trailing NULL entry left.
665 	 */
666 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
667 
668 	set_sched_topology(x86_topology);
669 }
670 
671 void set_cpu_sibling_map(int cpu)
672 {
673 	bool has_smt = smp_num_siblings > 1;
674 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
675 	struct cpuinfo_x86 *c = &cpu_data(cpu);
676 	struct cpuinfo_x86 *o;
677 	int i, threads;
678 
679 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
680 
681 	if (!has_mp) {
682 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
683 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
684 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
685 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
686 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
687 		c->booted_cores = 1;
688 		return;
689 	}
690 
691 	for_each_cpu(i, cpu_sibling_setup_mask) {
692 		o = &cpu_data(i);
693 
694 		if (match_pkg(c, o) && !topology_same_node(c, o))
695 			x86_has_numa_in_package = true;
696 
697 		if ((i == cpu) || (has_smt && match_smt(c, o)))
698 			link_mask(topology_sibling_cpumask, cpu, i);
699 
700 		if ((i == cpu) || (has_mp && match_llc(c, o)))
701 			link_mask(cpu_llc_shared_mask, cpu, i);
702 
703 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
704 			link_mask(cpu_l2c_shared_mask, cpu, i);
705 
706 		if ((i == cpu) || (has_mp && match_die(c, o)))
707 			link_mask(topology_die_cpumask, cpu, i);
708 	}
709 
710 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
711 	if (threads > __max_smt_threads)
712 		__max_smt_threads = threads;
713 
714 	for_each_cpu(i, topology_sibling_cpumask(cpu))
715 		cpu_data(i).smt_active = threads > 1;
716 
717 	/*
718 	 * This needs a separate iteration over the cpus because we rely on all
719 	 * topology_sibling_cpumask links to be set-up.
720 	 */
721 	for_each_cpu(i, cpu_sibling_setup_mask) {
722 		o = &cpu_data(i);
723 
724 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
725 			link_mask(topology_core_cpumask, cpu, i);
726 
727 			/*
728 			 *  Does this new cpu bringup a new core?
729 			 */
730 			if (threads == 1) {
731 				/*
732 				 * for each core in package, increment
733 				 * the booted_cores for this new cpu
734 				 */
735 				if (cpumask_first(
736 				    topology_sibling_cpumask(i)) == i)
737 					c->booted_cores++;
738 				/*
739 				 * increment the core count for all
740 				 * the other cpus in this package
741 				 */
742 				if (i != cpu)
743 					cpu_data(i).booted_cores++;
744 			} else if (i != cpu && !c->booted_cores)
745 				c->booted_cores = cpu_data(i).booted_cores;
746 		}
747 	}
748 }
749 
750 /* maps the cpu to the sched domain representing multi-core */
751 const struct cpumask *cpu_coregroup_mask(int cpu)
752 {
753 	return cpu_llc_shared_mask(cpu);
754 }
755 
756 const struct cpumask *cpu_clustergroup_mask(int cpu)
757 {
758 	return cpu_l2c_shared_mask(cpu);
759 }
760 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
761 
762 static void impress_friends(void)
763 {
764 	int cpu;
765 	unsigned long bogosum = 0;
766 	/*
767 	 * Allow the user to impress friends.
768 	 */
769 	pr_debug("Before bogomips\n");
770 	for_each_online_cpu(cpu)
771 		bogosum += cpu_data(cpu).loops_per_jiffy;
772 
773 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
774 		num_online_cpus(),
775 		bogosum/(500000/HZ),
776 		(bogosum/(5000/HZ))%100);
777 
778 	pr_debug("Before bogocount - setting activated=1\n");
779 }
780 
781 /*
782  * The Multiprocessor Specification 1.4 (1997) example code suggests
783  * that there should be a 10ms delay between the BSP asserting INIT
784  * and de-asserting INIT, when starting a remote processor.
785  * But that slows boot and resume on modern processors, which include
786  * many cores and don't require that delay.
787  *
788  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
789  * Modern processor families are quirked to remove the delay entirely.
790  */
791 #define UDELAY_10MS_DEFAULT 10000
792 
793 static unsigned int init_udelay = UINT_MAX;
794 
795 static int __init cpu_init_udelay(char *str)
796 {
797 	get_option(&str, &init_udelay);
798 
799 	return 0;
800 }
801 early_param("cpu_init_udelay", cpu_init_udelay);
802 
803 static void __init smp_quirk_init_udelay(void)
804 {
805 	/* if cmdline changed it from default, leave it alone */
806 	if (init_udelay != UINT_MAX)
807 		return;
808 
809 	/* if modern processor, use no delay */
810 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
811 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
812 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
813 		init_udelay = 0;
814 		return;
815 	}
816 	/* else, use legacy delay */
817 	init_udelay = UDELAY_10MS_DEFAULT;
818 }
819 
820 /*
821  * Wake up AP by INIT, INIT, STARTUP sequence.
822  */
823 static void send_init_sequence(u32 phys_apicid)
824 {
825 	int maxlvt = lapic_get_maxlvt();
826 
827 	/* Be paranoid about clearing APIC errors. */
828 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
829 		/* Due to the Pentium erratum 3AP.  */
830 		if (maxlvt > 3)
831 			apic_write(APIC_ESR, 0);
832 		apic_read(APIC_ESR);
833 	}
834 
835 	/* Assert INIT on the target CPU */
836 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
837 	safe_apic_wait_icr_idle();
838 
839 	udelay(init_udelay);
840 
841 	/* Deassert INIT on the target CPU */
842 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
843 	safe_apic_wait_icr_idle();
844 }
845 
846 /*
847  * Wake up AP by INIT, INIT, STARTUP sequence.
848  */
849 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
850 {
851 	unsigned long send_status = 0, accept_status = 0;
852 	int num_starts, j, maxlvt;
853 
854 	preempt_disable();
855 	maxlvt = lapic_get_maxlvt();
856 	send_init_sequence(phys_apicid);
857 
858 	mb();
859 
860 	/*
861 	 * Should we send STARTUP IPIs ?
862 	 *
863 	 * Determine this based on the APIC version.
864 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
865 	 */
866 	if (APIC_INTEGRATED(boot_cpu_apic_version))
867 		num_starts = 2;
868 	else
869 		num_starts = 0;
870 
871 	/*
872 	 * Run STARTUP IPI loop.
873 	 */
874 	pr_debug("#startup loops: %d\n", num_starts);
875 
876 	for (j = 1; j <= num_starts; j++) {
877 		pr_debug("Sending STARTUP #%d\n", j);
878 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
879 			apic_write(APIC_ESR, 0);
880 		apic_read(APIC_ESR);
881 		pr_debug("After apic_write\n");
882 
883 		/*
884 		 * STARTUP IPI
885 		 */
886 
887 		/* Target chip */
888 		/* Boot on the stack */
889 		/* Kick the second */
890 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
891 			       phys_apicid);
892 
893 		/*
894 		 * Give the other CPU some time to accept the IPI.
895 		 */
896 		if (init_udelay == 0)
897 			udelay(10);
898 		else
899 			udelay(300);
900 
901 		pr_debug("Startup point 1\n");
902 
903 		pr_debug("Waiting for send to finish...\n");
904 		send_status = safe_apic_wait_icr_idle();
905 
906 		/*
907 		 * Give the other CPU some time to accept the IPI.
908 		 */
909 		if (init_udelay == 0)
910 			udelay(10);
911 		else
912 			udelay(200);
913 
914 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
915 			apic_write(APIC_ESR, 0);
916 		accept_status = (apic_read(APIC_ESR) & 0xEF);
917 		if (send_status || accept_status)
918 			break;
919 	}
920 	pr_debug("After Startup\n");
921 
922 	if (send_status)
923 		pr_err("APIC never delivered???\n");
924 	if (accept_status)
925 		pr_err("APIC delivery error (%lx)\n", accept_status);
926 
927 	preempt_enable();
928 	return (send_status | accept_status);
929 }
930 
931 /* reduce the number of lines printed when booting a large cpu count system */
932 static void announce_cpu(int cpu, int apicid)
933 {
934 	static int width, node_width, first = 1;
935 	static int current_node = NUMA_NO_NODE;
936 	int node = early_cpu_to_node(cpu);
937 
938 	if (!width)
939 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
940 
941 	if (!node_width)
942 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
943 
944 	if (system_state < SYSTEM_RUNNING) {
945 		if (first)
946 			pr_info("x86: Booting SMP configuration:\n");
947 
948 		if (node != current_node) {
949 			if (current_node > (-1))
950 				pr_cont("\n");
951 			current_node = node;
952 
953 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
954 			       node_width - num_digits(node), " ", node);
955 		}
956 
957 		/* Add padding for the BSP */
958 		if (first)
959 			pr_cont("%*s", width + 1, " ");
960 		first = 0;
961 
962 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
963 	} else
964 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
965 			node, cpu, apicid);
966 }
967 
968 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
969 {
970 	int ret;
971 
972 	/* Just in case we booted with a single CPU. */
973 	alternatives_enable_smp();
974 
975 	per_cpu(pcpu_hot.current_task, cpu) = idle;
976 	cpu_init_stack_canary(cpu, idle);
977 
978 	/* Initialize the interrupt stack(s) */
979 	ret = irq_init_percpu_irqstack(cpu);
980 	if (ret)
981 		return ret;
982 
983 #ifdef CONFIG_X86_32
984 	/* Stack for startup_32 can be just as for start_secondary onwards */
985 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
986 #endif
987 	return 0;
988 }
989 
990 /*
991  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
992  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
993  * Returns zero if startup was successfully sent, else error code from
994  * ->wakeup_secondary_cpu.
995  */
996 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
997 {
998 	unsigned long start_ip = real_mode_header->trampoline_start;
999 	int ret;
1000 
1001 #ifdef CONFIG_X86_64
1002 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1003 	if (apic->wakeup_secondary_cpu_64)
1004 		start_ip = real_mode_header->trampoline_start64;
1005 #endif
1006 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1007 	initial_code = (unsigned long)start_secondary;
1008 
1009 	if (IS_ENABLED(CONFIG_X86_32)) {
1010 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1011 		initial_stack  = idle->thread.sp;
1012 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1013 		smpboot_control = cpu;
1014 	}
1015 
1016 	/* Enable the espfix hack for this CPU */
1017 	init_espfix_ap(cpu);
1018 
1019 	/* So we see what's up */
1020 	announce_cpu(cpu, apicid);
1021 
1022 	/*
1023 	 * This grunge runs the startup process for
1024 	 * the targeted processor.
1025 	 */
1026 	if (x86_platform.legacy.warm_reset) {
1027 
1028 		pr_debug("Setting warm reset code and vector.\n");
1029 
1030 		smpboot_setup_warm_reset_vector(start_ip);
1031 		/*
1032 		 * Be paranoid about clearing APIC errors.
1033 		*/
1034 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1035 			apic_write(APIC_ESR, 0);
1036 			apic_read(APIC_ESR);
1037 		}
1038 	}
1039 
1040 	smp_mb();
1041 
1042 	/*
1043 	 * Wake up a CPU in difference cases:
1044 	 * - Use a method from the APIC driver if one defined, with wakeup
1045 	 *   straight to 64-bit mode preferred over wakeup to RM.
1046 	 * Otherwise,
1047 	 * - Use an INIT boot APIC message
1048 	 */
1049 	if (apic->wakeup_secondary_cpu_64)
1050 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1051 	else if (apic->wakeup_secondary_cpu)
1052 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1053 	else
1054 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1055 
1056 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1057 	if (ret)
1058 		arch_cpuhp_cleanup_kick_cpu(cpu);
1059 	return ret;
1060 }
1061 
1062 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1063 {
1064 	u32 apicid = apic->cpu_present_to_apicid(cpu);
1065 	int err;
1066 
1067 	lockdep_assert_irqs_enabled();
1068 
1069 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1070 
1071 	if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) ||
1072 	    !apic_id_valid(apicid)) {
1073 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1074 		return -EINVAL;
1075 	}
1076 
1077 	/*
1078 	 * Save current MTRR state in case it was changed since early boot
1079 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1080 	 */
1081 	mtrr_save_state();
1082 
1083 	/* the FPU context is blank, nobody can own it */
1084 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1085 
1086 	err = common_cpu_up(cpu, tidle);
1087 	if (err)
1088 		return err;
1089 
1090 	err = do_boot_cpu(apicid, cpu, tidle);
1091 	if (err)
1092 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1093 
1094 	return err;
1095 }
1096 
1097 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1098 {
1099 	return smp_ops.kick_ap_alive(cpu, tidle);
1100 }
1101 
1102 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1103 {
1104 	/* Cleanup possible dangling ends... */
1105 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1106 		smpboot_restore_warm_reset_vector();
1107 }
1108 
1109 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1110 {
1111 	if (smp_ops.cleanup_dead_cpu)
1112 		smp_ops.cleanup_dead_cpu(cpu);
1113 
1114 	if (system_state == SYSTEM_RUNNING)
1115 		pr_info("CPU %u is now offline\n", cpu);
1116 }
1117 
1118 void arch_cpuhp_sync_state_poll(void)
1119 {
1120 	if (smp_ops.poll_sync_state)
1121 		smp_ops.poll_sync_state();
1122 }
1123 
1124 /**
1125  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1126  */
1127 void __init arch_disable_smp_support(void)
1128 {
1129 	disable_ioapic_support();
1130 }
1131 
1132 /*
1133  * Fall back to non SMP mode after errors.
1134  *
1135  * RED-PEN audit/test this more. I bet there is more state messed up here.
1136  */
1137 static __init void disable_smp(void)
1138 {
1139 	pr_info("SMP disabled\n");
1140 
1141 	disable_ioapic_support();
1142 
1143 	init_cpu_present(cpumask_of(0));
1144 	init_cpu_possible(cpumask_of(0));
1145 
1146 	if (smp_found_config)
1147 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1148 	else
1149 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1150 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1151 	cpumask_set_cpu(0, topology_core_cpumask(0));
1152 	cpumask_set_cpu(0, topology_die_cpumask(0));
1153 }
1154 
1155 static void __init smp_cpu_index_default(void)
1156 {
1157 	int i;
1158 	struct cpuinfo_x86 *c;
1159 
1160 	for_each_possible_cpu(i) {
1161 		c = &cpu_data(i);
1162 		/* mark all to hotplug */
1163 		c->cpu_index = nr_cpu_ids;
1164 	}
1165 }
1166 
1167 void __init smp_prepare_cpus_common(void)
1168 {
1169 	unsigned int i;
1170 
1171 	smp_cpu_index_default();
1172 
1173 	/*
1174 	 * Setup boot CPU information
1175 	 */
1176 	smp_store_boot_cpu_info(); /* Final full version of the data */
1177 	mb();
1178 
1179 	for_each_possible_cpu(i) {
1180 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1181 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1182 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1183 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1184 		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1185 	}
1186 
1187 	set_cpu_sibling_map(0);
1188 }
1189 
1190 #ifdef CONFIG_X86_64
1191 /* Establish whether parallel bringup can be supported. */
1192 bool __init arch_cpuhp_init_parallel_bringup(void)
1193 {
1194 	if (!x86_cpuinit.parallel_bringup) {
1195 		pr_info("Parallel CPU startup disabled by the platform\n");
1196 		return false;
1197 	}
1198 
1199 	smpboot_control = STARTUP_READ_APICID;
1200 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1201 	return true;
1202 }
1203 #endif
1204 
1205 /*
1206  * Prepare for SMP bootup.
1207  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1208  *            for common interface support.
1209  */
1210 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1211 {
1212 	smp_prepare_cpus_common();
1213 
1214 	switch (apic_intr_mode) {
1215 	case APIC_PIC:
1216 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1217 		disable_smp();
1218 		return;
1219 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1220 		disable_smp();
1221 		/* Setup local timer */
1222 		x86_init.timers.setup_percpu_clockev();
1223 		return;
1224 	case APIC_VIRTUAL_WIRE:
1225 	case APIC_SYMMETRIC_IO:
1226 		break;
1227 	}
1228 
1229 	/* Setup local timer */
1230 	x86_init.timers.setup_percpu_clockev();
1231 
1232 	pr_info("CPU0: ");
1233 	print_cpu_info(&cpu_data(0));
1234 
1235 	uv_system_init();
1236 
1237 	smp_quirk_init_udelay();
1238 
1239 	speculative_store_bypass_ht_init();
1240 
1241 	snp_set_wakeup_secondary_cpu();
1242 }
1243 
1244 void arch_thaw_secondary_cpus_begin(void)
1245 {
1246 	set_cache_aps_delayed_init(true);
1247 }
1248 
1249 void arch_thaw_secondary_cpus_end(void)
1250 {
1251 	cache_aps_init();
1252 }
1253 
1254 /*
1255  * Early setup to make printk work.
1256  */
1257 void __init native_smp_prepare_boot_cpu(void)
1258 {
1259 	int me = smp_processor_id();
1260 
1261 	/* SMP handles this from setup_per_cpu_areas() */
1262 	if (!IS_ENABLED(CONFIG_SMP))
1263 		switch_gdt_and_percpu_base(me);
1264 
1265 	native_pv_lock_init();
1266 }
1267 
1268 void __init calculate_max_logical_packages(void)
1269 {
1270 	int ncpus;
1271 
1272 	/*
1273 	 * Today neither Intel nor AMD support heterogeneous systems so
1274 	 * extrapolate the boot cpu's data to all packages.
1275 	 */
1276 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1277 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1278 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1279 }
1280 
1281 void __init native_smp_cpus_done(unsigned int max_cpus)
1282 {
1283 	pr_debug("Boot done\n");
1284 
1285 	calculate_max_logical_packages();
1286 	build_sched_topology();
1287 	nmi_selftest();
1288 	impress_friends();
1289 	cache_aps_init();
1290 }
1291 
1292 static int __initdata setup_possible_cpus = -1;
1293 static int __init _setup_possible_cpus(char *str)
1294 {
1295 	get_option(&str, &setup_possible_cpus);
1296 	return 0;
1297 }
1298 early_param("possible_cpus", _setup_possible_cpus);
1299 
1300 
1301 /*
1302  * cpu_possible_mask should be static, it cannot change as cpu's
1303  * are onlined, or offlined. The reason is per-cpu data-structures
1304  * are allocated by some modules at init time, and don't expect to
1305  * do this dynamically on cpu arrival/departure.
1306  * cpu_present_mask on the other hand can change dynamically.
1307  * In case when cpu_hotplug is not compiled, then we resort to current
1308  * behaviour, which is cpu_possible == cpu_present.
1309  * - Ashok Raj
1310  *
1311  * Three ways to find out the number of additional hotplug CPUs:
1312  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1313  * - The user can overwrite it with possible_cpus=NUM
1314  * - Otherwise don't reserve additional CPUs.
1315  * We do this because additional CPUs waste a lot of memory.
1316  * -AK
1317  */
1318 __init void prefill_possible_map(void)
1319 {
1320 	int i, possible;
1321 
1322 	i = setup_max_cpus ?: 1;
1323 	if (setup_possible_cpus == -1) {
1324 		possible = num_processors;
1325 #ifdef CONFIG_HOTPLUG_CPU
1326 		if (setup_max_cpus)
1327 			possible += disabled_cpus;
1328 #else
1329 		if (possible > i)
1330 			possible = i;
1331 #endif
1332 	} else
1333 		possible = setup_possible_cpus;
1334 
1335 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1336 
1337 	/* nr_cpu_ids could be reduced via nr_cpus= */
1338 	if (possible > nr_cpu_ids) {
1339 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1340 			possible, nr_cpu_ids);
1341 		possible = nr_cpu_ids;
1342 	}
1343 
1344 #ifdef CONFIG_HOTPLUG_CPU
1345 	if (!setup_max_cpus)
1346 #endif
1347 	if (possible > i) {
1348 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1349 			possible, setup_max_cpus);
1350 		possible = i;
1351 	}
1352 
1353 	set_nr_cpu_ids(possible);
1354 
1355 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1356 		possible, max_t(int, possible - num_processors, 0));
1357 
1358 	reset_cpu_possible_mask();
1359 
1360 	for (i = 0; i < possible; i++)
1361 		set_cpu_possible(i, true);
1362 }
1363 
1364 /* correctly size the local cpu masks */
1365 void __init setup_cpu_local_masks(void)
1366 {
1367 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1368 }
1369 
1370 #ifdef CONFIG_HOTPLUG_CPU
1371 
1372 /* Recompute SMT state for all CPUs on offline */
1373 static void recompute_smt_state(void)
1374 {
1375 	int max_threads, cpu;
1376 
1377 	max_threads = 0;
1378 	for_each_online_cpu (cpu) {
1379 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1380 
1381 		if (threads > max_threads)
1382 			max_threads = threads;
1383 	}
1384 	__max_smt_threads = max_threads;
1385 }
1386 
1387 static void remove_siblinginfo(int cpu)
1388 {
1389 	int sibling;
1390 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1391 
1392 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1393 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1394 		/*/
1395 		 * last thread sibling in this cpu core going down
1396 		 */
1397 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1398 			cpu_data(sibling).booted_cores--;
1399 	}
1400 
1401 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1402 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1403 
1404 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1405 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1406 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1407 			cpu_data(sibling).smt_active = false;
1408 	}
1409 
1410 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1411 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1412 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1413 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1414 	cpumask_clear(cpu_llc_shared_mask(cpu));
1415 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1416 	cpumask_clear(topology_sibling_cpumask(cpu));
1417 	cpumask_clear(topology_core_cpumask(cpu));
1418 	cpumask_clear(topology_die_cpumask(cpu));
1419 	c->topo.core_id = 0;
1420 	c->booted_cores = 0;
1421 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1422 	recompute_smt_state();
1423 }
1424 
1425 static void remove_cpu_from_maps(int cpu)
1426 {
1427 	set_cpu_online(cpu, false);
1428 	numa_remove_cpu(cpu);
1429 }
1430 
1431 void cpu_disable_common(void)
1432 {
1433 	int cpu = smp_processor_id();
1434 
1435 	remove_siblinginfo(cpu);
1436 
1437 	/* It's now safe to remove this processor from the online map */
1438 	lock_vector_lock();
1439 	remove_cpu_from_maps(cpu);
1440 	unlock_vector_lock();
1441 	fixup_irqs();
1442 	lapic_offline();
1443 }
1444 
1445 int native_cpu_disable(void)
1446 {
1447 	int ret;
1448 
1449 	ret = lapic_can_unplug_cpu();
1450 	if (ret)
1451 		return ret;
1452 
1453 	cpu_disable_common();
1454 
1455         /*
1456          * Disable the local APIC. Otherwise IPI broadcasts will reach
1457          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1458          * messages.
1459          *
1460          * Disabling the APIC must happen after cpu_disable_common()
1461          * which invokes fixup_irqs().
1462          *
1463          * Disabling the APIC preserves already set bits in IRR, but
1464          * an interrupt arriving after disabling the local APIC does not
1465          * set the corresponding IRR bit.
1466          *
1467          * fixup_irqs() scans IRR for set bits so it can raise a not
1468          * yet handled interrupt on the new destination CPU via an IPI
1469          * but obviously it can't do so for IRR bits which are not set.
1470          * IOW, interrupts arriving after disabling the local APIC will
1471          * be lost.
1472          */
1473 	apic_soft_disable();
1474 
1475 	return 0;
1476 }
1477 
1478 void play_dead_common(void)
1479 {
1480 	idle_task_exit();
1481 
1482 	cpuhp_ap_report_dead();
1483 
1484 	local_irq_disable();
1485 }
1486 
1487 /*
1488  * We need to flush the caches before going to sleep, lest we have
1489  * dirty data in our caches when we come back up.
1490  */
1491 static inline void mwait_play_dead(void)
1492 {
1493 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1494 	unsigned int eax, ebx, ecx, edx;
1495 	unsigned int highest_cstate = 0;
1496 	unsigned int highest_subcstate = 0;
1497 	int i;
1498 
1499 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1500 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1501 		return;
1502 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1503 		return;
1504 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1505 		return;
1506 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1507 		return;
1508 
1509 	eax = CPUID_MWAIT_LEAF;
1510 	ecx = 0;
1511 	native_cpuid(&eax, &ebx, &ecx, &edx);
1512 
1513 	/*
1514 	 * eax will be 0 if EDX enumeration is not valid.
1515 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1516 	 */
1517 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1518 		eax = 0;
1519 	} else {
1520 		edx >>= MWAIT_SUBSTATE_SIZE;
1521 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1522 			if (edx & MWAIT_SUBSTATE_MASK) {
1523 				highest_cstate = i;
1524 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1525 			}
1526 		}
1527 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1528 			(highest_subcstate - 1);
1529 	}
1530 
1531 	/* Set up state for the kexec() hack below */
1532 	md->status = CPUDEAD_MWAIT_WAIT;
1533 	md->control = CPUDEAD_MWAIT_WAIT;
1534 
1535 	wbinvd();
1536 
1537 	while (1) {
1538 		/*
1539 		 * The CLFLUSH is a workaround for erratum AAI65 for
1540 		 * the Xeon 7400 series.  It's not clear it is actually
1541 		 * needed, but it should be harmless in either case.
1542 		 * The WBINVD is insufficient due to the spurious-wakeup
1543 		 * case where we return around the loop.
1544 		 */
1545 		mb();
1546 		clflush(md);
1547 		mb();
1548 		__monitor(md, 0, 0);
1549 		mb();
1550 		__mwait(eax, 0);
1551 
1552 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1553 			/*
1554 			 * Kexec is about to happen. Don't go back into mwait() as
1555 			 * the kexec kernel might overwrite text and data including
1556 			 * page tables and stack. So mwait() would resume when the
1557 			 * monitor cache line is written to and then the CPU goes
1558 			 * south due to overwritten text, page tables and stack.
1559 			 *
1560 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1561 			 * SMI. They will resume execution at the instruction
1562 			 * following the HLT instruction and run into the problem
1563 			 * which this is trying to prevent.
1564 			 */
1565 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1566 			while(1)
1567 				native_halt();
1568 		}
1569 	}
1570 }
1571 
1572 /*
1573  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1574  * mwait_play_dead().
1575  */
1576 void smp_kick_mwait_play_dead(void)
1577 {
1578 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1579 	struct mwait_cpu_dead *md;
1580 	unsigned int cpu, i;
1581 
1582 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1583 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1584 
1585 		/* Does it sit in mwait_play_dead() ? */
1586 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1587 			continue;
1588 
1589 		/* Wait up to 5ms */
1590 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1591 			/* Bring it out of mwait */
1592 			WRITE_ONCE(md->control, newstate);
1593 			udelay(5);
1594 		}
1595 
1596 		if (READ_ONCE(md->status) != newstate)
1597 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1598 	}
1599 }
1600 
1601 void __noreturn hlt_play_dead(void)
1602 {
1603 	if (__this_cpu_read(cpu_info.x86) >= 4)
1604 		wbinvd();
1605 
1606 	while (1)
1607 		native_halt();
1608 }
1609 
1610 /*
1611  * native_play_dead() is essentially a __noreturn function, but it can't
1612  * be marked as such as the compiler may complain about it.
1613  */
1614 void native_play_dead(void)
1615 {
1616 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1617 		__update_spec_ctrl(0);
1618 
1619 	play_dead_common();
1620 	tboot_shutdown(TB_SHUTDOWN_WFS);
1621 
1622 	mwait_play_dead();
1623 	if (cpuidle_play_dead())
1624 		hlt_play_dead();
1625 }
1626 
1627 #else /* ... !CONFIG_HOTPLUG_CPU */
1628 int native_cpu_disable(void)
1629 {
1630 	return -ENOSYS;
1631 }
1632 
1633 void native_play_dead(void)
1634 {
1635 	BUG();
1636 }
1637 
1638 #endif
1639