xref: /linux/arch/x86/kernel/smpboot.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 
64 #include <asm/acpi.h>
65 #include <asm/cacheinfo.h>
66 #include <asm/desc.h>
67 #include <asm/nmi.h>
68 #include <asm/irq.h>
69 #include <asm/realmode.h>
70 #include <asm/cpu.h>
71 #include <asm/numa.h>
72 #include <asm/tlbflush.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/apic.h>
76 #include <asm/io_apic.h>
77 #include <asm/fpu/api.h>
78 #include <asm/setup.h>
79 #include <asm/uv/uv.h>
80 #include <asm/microcode.h>
81 #include <asm/i8259.h>
82 #include <asm/misc.h>
83 #include <asm/qspinlock.h>
84 #include <asm/intel-family.h>
85 #include <asm/cpu_device_id.h>
86 #include <asm/spec-ctrl.h>
87 #include <asm/hw_irq.h>
88 #include <asm/stackprotector.h>
89 #include <asm/sev.h>
90 #include <asm/spec-ctrl.h>
91 
92 /* representing HT siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
95 
96 /* representing HT and core siblings of each logical CPU */
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
98 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
99 
100 /* representing HT, core, and die siblings of each logical CPU */
101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
102 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
103 
104 /* CPUs which are the primary SMT threads */
105 struct cpumask __cpu_primary_thread_mask __read_mostly;
106 
107 /* Representing CPUs for which sibling maps can be computed */
108 static cpumask_var_t cpu_sibling_setup_mask;
109 
110 struct mwait_cpu_dead {
111 	unsigned int	control;
112 	unsigned int	status;
113 };
114 
115 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
116 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
117 
118 /*
119  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
120  * that it's unlikely to be touched by other CPUs.
121  */
122 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
123 
124 /* Maximum number of SMT threads on any online core */
125 int __read_mostly __max_smt_threads = 1;
126 
127 /* Flag to indicate if a complete sched domain rebuild is required */
128 bool x86_topology_update;
129 
130 int arch_update_cpu_topology(void)
131 {
132 	int retval = x86_topology_update;
133 
134 	x86_topology_update = false;
135 	return retval;
136 }
137 
138 static unsigned int smpboot_warm_reset_vector_count;
139 
140 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
141 {
142 	unsigned long flags;
143 
144 	spin_lock_irqsave(&rtc_lock, flags);
145 	if (!smpboot_warm_reset_vector_count++) {
146 		CMOS_WRITE(0xa, 0xf);
147 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
148 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
149 	}
150 	spin_unlock_irqrestore(&rtc_lock, flags);
151 }
152 
153 static inline void smpboot_restore_warm_reset_vector(void)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * Paranoid:  Set warm reset code and vector here back
159 	 * to default values.
160 	 */
161 	spin_lock_irqsave(&rtc_lock, flags);
162 	if (!--smpboot_warm_reset_vector_count) {
163 		CMOS_WRITE(0, 0xf);
164 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
165 	}
166 	spin_unlock_irqrestore(&rtc_lock, flags);
167 
168 }
169 
170 /* Run the next set of setup steps for the upcoming CPU */
171 static void ap_starting(void)
172 {
173 	int cpuid = smp_processor_id();
174 
175 	/* Mop up eventual mwait_play_dead() wreckage */
176 	this_cpu_write(mwait_cpu_dead.status, 0);
177 	this_cpu_write(mwait_cpu_dead.control, 0);
178 
179 	/*
180 	 * If woken up by an INIT in an 82489DX configuration the alive
181 	 * synchronization guarantees that the CPU does not reach this
182 	 * point before an INIT_deassert IPI reaches the local APIC, so it
183 	 * is now safe to touch the local APIC.
184 	 *
185 	 * Set up this CPU, first the APIC, which is probably redundant on
186 	 * most boards.
187 	 */
188 	apic_ap_setup();
189 
190 	/* Save the processor parameters. */
191 	smp_store_cpu_info(cpuid);
192 
193 	/*
194 	 * The topology information must be up to date before
195 	 * notify_cpu_starting().
196 	 */
197 	set_cpu_sibling_map(cpuid);
198 
199 	ap_init_aperfmperf();
200 
201 	pr_debug("Stack at about %p\n", &cpuid);
202 
203 	wmb();
204 
205 	/*
206 	 * This runs the AP through all the cpuhp states to its target
207 	 * state CPUHP_ONLINE.
208 	 */
209 	notify_cpu_starting(cpuid);
210 }
211 
212 static void ap_calibrate_delay(void)
213 {
214 	/*
215 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
216 	 * smp_store_cpu_info() stored a value that is close but not as
217 	 * accurate as the value just calculated.
218 	 *
219 	 * As this is invoked after the TSC synchronization check,
220 	 * calibrate_delay_is_known() will skip the calibration routine
221 	 * when TSC is synchronized across sockets.
222 	 */
223 	calibrate_delay();
224 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
225 }
226 
227 /*
228  * Activate a secondary processor.
229  */
230 static void notrace start_secondary(void *unused)
231 {
232 	/*
233 	 * Don't put *anything* except direct CPU state initialization
234 	 * before cpu_init(), SMP booting is too fragile that we want to
235 	 * limit the things done here to the most necessary things.
236 	 */
237 	cr4_init();
238 
239 	/*
240 	 * 32-bit specific. 64-bit reaches this code with the correct page
241 	 * table established. Yet another historical divergence.
242 	 */
243 	if (IS_ENABLED(CONFIG_X86_32)) {
244 		/* switch away from the initial page table */
245 		load_cr3(swapper_pg_dir);
246 		__flush_tlb_all();
247 	}
248 
249 	cpu_init_exception_handling();
250 
251 	/*
252 	 * Load the microcode before reaching the AP alive synchronization
253 	 * point below so it is not part of the full per CPU serialized
254 	 * bringup part when "parallel" bringup is enabled.
255 	 *
256 	 * That's even safe when hyperthreading is enabled in the CPU as
257 	 * the core code starts the primary threads first and leaves the
258 	 * secondary threads waiting for SIPI. Loading microcode on
259 	 * physical cores concurrently is a safe operation.
260 	 *
261 	 * This covers both the Intel specific issue that concurrent
262 	 * microcode loading on SMT siblings must be prohibited and the
263 	 * vendor independent issue`that microcode loading which changes
264 	 * CPUID, MSRs etc. must be strictly serialized to maintain
265 	 * software state correctness.
266 	 */
267 	load_ucode_ap();
268 
269 	/*
270 	 * Synchronization point with the hotplug core. Sets this CPUs
271 	 * synchronization state to ALIVE and spin-waits for the control CPU to
272 	 * release this CPU for further bringup.
273 	 */
274 	cpuhp_ap_sync_alive();
275 
276 	cpu_init();
277 	fpu__init_cpu();
278 	rcutree_report_cpu_starting(raw_smp_processor_id());
279 	x86_cpuinit.early_percpu_clock_init();
280 
281 	ap_starting();
282 
283 	/* Check TSC synchronization with the control CPU. */
284 	check_tsc_sync_target();
285 
286 	/*
287 	 * Calibrate the delay loop after the TSC synchronization check.
288 	 * This allows to skip the calibration when TSC is synchronized
289 	 * across sockets.
290 	 */
291 	ap_calibrate_delay();
292 
293 	speculative_store_bypass_ht_init();
294 
295 	/*
296 	 * Lock vector_lock, set CPU online and bring the vector
297 	 * allocator online. Online must be set with vector_lock held
298 	 * to prevent a concurrent irq setup/teardown from seeing a
299 	 * half valid vector space.
300 	 */
301 	lock_vector_lock();
302 	set_cpu_online(smp_processor_id(), true);
303 	lapic_online();
304 	unlock_vector_lock();
305 	x86_platform.nmi_init();
306 
307 	/* enable local interrupts */
308 	local_irq_enable();
309 
310 	x86_cpuinit.setup_percpu_clockev();
311 
312 	wmb();
313 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
314 }
315 
316 /*
317  * The bootstrap kernel entry code has set these up. Save them for
318  * a given CPU
319  */
320 void smp_store_cpu_info(int id)
321 {
322 	struct cpuinfo_x86 *c = &cpu_data(id);
323 
324 	/* Copy boot_cpu_data only on the first bringup */
325 	if (!c->initialized)
326 		*c = boot_cpu_data;
327 	c->cpu_index = id;
328 	/*
329 	 * During boot time, CPU0 has this setup already. Save the info when
330 	 * bringing up an AP.
331 	 */
332 	identify_secondary_cpu(c);
333 	c->initialized = true;
334 }
335 
336 static bool
337 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
338 {
339 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
340 
341 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
342 }
343 
344 static bool
345 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
346 {
347 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
348 
349 	return !WARN_ONCE(!topology_same_node(c, o),
350 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
351 		"[node: %d != %d]. Ignoring dependency.\n",
352 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
353 }
354 
355 #define link_mask(mfunc, c1, c2)					\
356 do {									\
357 	cpumask_set_cpu((c1), mfunc(c2));				\
358 	cpumask_set_cpu((c2), mfunc(c1));				\
359 } while (0)
360 
361 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
362 {
363 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
364 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
365 
366 		if (c->topo.pkg_id == o->topo.pkg_id &&
367 		    c->topo.die_id == o->topo.die_id &&
368 		    c->topo.amd_node_id == o->topo.amd_node_id &&
369 		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
370 			if (c->topo.core_id == o->topo.core_id)
371 				return topology_sane(c, o, "smt");
372 
373 			if ((c->topo.cu_id != 0xff) &&
374 			    (o->topo.cu_id != 0xff) &&
375 			    (c->topo.cu_id == o->topo.cu_id))
376 				return topology_sane(c, o, "smt");
377 		}
378 
379 	} else if (c->topo.pkg_id == o->topo.pkg_id &&
380 		   c->topo.die_id == o->topo.die_id &&
381 		   c->topo.core_id == o->topo.core_id) {
382 		return topology_sane(c, o, "smt");
383 	}
384 
385 	return false;
386 }
387 
388 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
389 {
390 	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
391 		return false;
392 
393 	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
394 		return c->topo.amd_node_id == o->topo.amd_node_id;
395 
396 	return true;
397 }
398 
399 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
400 {
401 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
402 
403 	/* If the arch didn't set up l2c_id, fall back to SMT */
404 	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
405 		return match_smt(c, o);
406 
407 	/* Do not match if L2 cache id does not match: */
408 	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
409 		return false;
410 
411 	return topology_sane(c, o, "l2c");
412 }
413 
414 /*
415  * Unlike the other levels, we do not enforce keeping a
416  * multicore group inside a NUMA node.  If this happens, we will
417  * discard the MC level of the topology later.
418  */
419 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
420 {
421 	if (c->topo.pkg_id == o->topo.pkg_id)
422 		return true;
423 	return false;
424 }
425 
426 /*
427  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
428  *
429  * Any Intel CPU that has multiple nodes per package and does not
430  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
431  *
432  * When in SNC mode, these CPUs enumerate an LLC that is shared
433  * by multiple NUMA nodes. The LLC is shared for off-package data
434  * access but private to the NUMA node (half of the package) for
435  * on-package access. CPUID (the source of the information about
436  * the LLC) can only enumerate the cache as shared or unshared,
437  * but not this particular configuration.
438  */
439 
440 static const struct x86_cpu_id intel_cod_cpu[] = {
441 	X86_MATCH_VFM(INTEL_HASWELL_X,	 0),	/* COD */
442 	X86_MATCH_VFM(INTEL_BROADWELL_X, 0),	/* COD */
443 	X86_MATCH_VFM(INTEL_ANY,	 1),	/* SNC */
444 	{}
445 };
446 
447 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
448 {
449 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
450 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
451 	bool intel_snc = id && id->driver_data;
452 
453 	/* Do not match if we do not have a valid APICID for cpu: */
454 	if (per_cpu_llc_id(cpu1) == BAD_APICID)
455 		return false;
456 
457 	/* Do not match if LLC id does not match: */
458 	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
459 		return false;
460 
461 	/*
462 	 * Allow the SNC topology without warning. Return of false
463 	 * means 'c' does not share the LLC of 'o'. This will be
464 	 * reflected to userspace.
465 	 */
466 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
467 		return false;
468 
469 	return topology_sane(c, o, "llc");
470 }
471 
472 
473 static inline int x86_sched_itmt_flags(void)
474 {
475 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
476 }
477 
478 #ifdef CONFIG_SCHED_MC
479 static int x86_core_flags(void)
480 {
481 	return cpu_core_flags() | x86_sched_itmt_flags();
482 }
483 #endif
484 #ifdef CONFIG_SCHED_SMT
485 static int x86_smt_flags(void)
486 {
487 	return cpu_smt_flags();
488 }
489 #endif
490 #ifdef CONFIG_SCHED_CLUSTER
491 static int x86_cluster_flags(void)
492 {
493 	return cpu_cluster_flags() | x86_sched_itmt_flags();
494 }
495 #endif
496 
497 static int x86_die_flags(void)
498 {
499 	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
500 	       return x86_sched_itmt_flags();
501 
502 	return 0;
503 }
504 
505 /*
506  * Set if a package/die has multiple NUMA nodes inside.
507  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
508  * Sub-NUMA Clustering have this.
509  */
510 static bool x86_has_numa_in_package;
511 
512 static struct sched_domain_topology_level x86_topology[6];
513 
514 static void __init build_sched_topology(void)
515 {
516 	int i = 0;
517 
518 #ifdef CONFIG_SCHED_SMT
519 	x86_topology[i++] = (struct sched_domain_topology_level){
520 		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
521 	};
522 #endif
523 #ifdef CONFIG_SCHED_CLUSTER
524 	x86_topology[i++] = (struct sched_domain_topology_level){
525 		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
526 	};
527 #endif
528 #ifdef CONFIG_SCHED_MC
529 	x86_topology[i++] = (struct sched_domain_topology_level){
530 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
531 	};
532 #endif
533 	/*
534 	 * When there is NUMA topology inside the package skip the PKG domain
535 	 * since the NUMA domains will auto-magically create the right spanning
536 	 * domains based on the SLIT.
537 	 */
538 	if (!x86_has_numa_in_package) {
539 		x86_topology[i++] = (struct sched_domain_topology_level){
540 			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
541 		};
542 	}
543 
544 	/*
545 	 * There must be one trailing NULL entry left.
546 	 */
547 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
548 
549 	set_sched_topology(x86_topology);
550 }
551 
552 void set_cpu_sibling_map(int cpu)
553 {
554 	bool has_smt = __max_threads_per_core > 1;
555 	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
556 	struct cpuinfo_x86 *c = &cpu_data(cpu);
557 	struct cpuinfo_x86 *o;
558 	int i, threads;
559 
560 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
561 
562 	if (!has_mp) {
563 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
564 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
565 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
566 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
567 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
568 		c->booted_cores = 1;
569 		return;
570 	}
571 
572 	for_each_cpu(i, cpu_sibling_setup_mask) {
573 		o = &cpu_data(i);
574 
575 		if (match_pkg(c, o) && !topology_same_node(c, o))
576 			x86_has_numa_in_package = true;
577 
578 		if ((i == cpu) || (has_smt && match_smt(c, o)))
579 			link_mask(topology_sibling_cpumask, cpu, i);
580 
581 		if ((i == cpu) || (has_mp && match_llc(c, o)))
582 			link_mask(cpu_llc_shared_mask, cpu, i);
583 
584 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
585 			link_mask(cpu_l2c_shared_mask, cpu, i);
586 
587 		if ((i == cpu) || (has_mp && match_die(c, o)))
588 			link_mask(topology_die_cpumask, cpu, i);
589 	}
590 
591 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
592 	if (threads > __max_smt_threads)
593 		__max_smt_threads = threads;
594 
595 	for_each_cpu(i, topology_sibling_cpumask(cpu))
596 		cpu_data(i).smt_active = threads > 1;
597 
598 	/*
599 	 * This needs a separate iteration over the cpus because we rely on all
600 	 * topology_sibling_cpumask links to be set-up.
601 	 */
602 	for_each_cpu(i, cpu_sibling_setup_mask) {
603 		o = &cpu_data(i);
604 
605 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
606 			link_mask(topology_core_cpumask, cpu, i);
607 
608 			/*
609 			 *  Does this new cpu bringup a new core?
610 			 */
611 			if (threads == 1) {
612 				/*
613 				 * for each core in package, increment
614 				 * the booted_cores for this new cpu
615 				 */
616 				if (cpumask_first(
617 				    topology_sibling_cpumask(i)) == i)
618 					c->booted_cores++;
619 				/*
620 				 * increment the core count for all
621 				 * the other cpus in this package
622 				 */
623 				if (i != cpu)
624 					cpu_data(i).booted_cores++;
625 			} else if (i != cpu && !c->booted_cores)
626 				c->booted_cores = cpu_data(i).booted_cores;
627 		}
628 	}
629 }
630 
631 /* maps the cpu to the sched domain representing multi-core */
632 const struct cpumask *cpu_coregroup_mask(int cpu)
633 {
634 	return cpu_llc_shared_mask(cpu);
635 }
636 
637 const struct cpumask *cpu_clustergroup_mask(int cpu)
638 {
639 	return cpu_l2c_shared_mask(cpu);
640 }
641 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
642 
643 static void impress_friends(void)
644 {
645 	int cpu;
646 	unsigned long bogosum = 0;
647 	/*
648 	 * Allow the user to impress friends.
649 	 */
650 	pr_debug("Before bogomips\n");
651 	for_each_online_cpu(cpu)
652 		bogosum += cpu_data(cpu).loops_per_jiffy;
653 
654 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
655 		num_online_cpus(),
656 		bogosum/(500000/HZ),
657 		(bogosum/(5000/HZ))%100);
658 
659 	pr_debug("Before bogocount - setting activated=1\n");
660 }
661 
662 /*
663  * The Multiprocessor Specification 1.4 (1997) example code suggests
664  * that there should be a 10ms delay between the BSP asserting INIT
665  * and de-asserting INIT, when starting a remote processor.
666  * But that slows boot and resume on modern processors, which include
667  * many cores and don't require that delay.
668  *
669  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
670  * Modern processor families are quirked to remove the delay entirely.
671  */
672 #define UDELAY_10MS_DEFAULT 10000
673 
674 static unsigned int init_udelay = UINT_MAX;
675 
676 static int __init cpu_init_udelay(char *str)
677 {
678 	get_option(&str, &init_udelay);
679 
680 	return 0;
681 }
682 early_param("cpu_init_udelay", cpu_init_udelay);
683 
684 static void __init smp_quirk_init_udelay(void)
685 {
686 	/* if cmdline changed it from default, leave it alone */
687 	if (init_udelay != UINT_MAX)
688 		return;
689 
690 	/* if modern processor, use no delay */
691 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
692 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
693 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
694 		init_udelay = 0;
695 		return;
696 	}
697 	/* else, use legacy delay */
698 	init_udelay = UDELAY_10MS_DEFAULT;
699 }
700 
701 /*
702  * Wake up AP by INIT, INIT, STARTUP sequence.
703  */
704 static void send_init_sequence(u32 phys_apicid)
705 {
706 	int maxlvt = lapic_get_maxlvt();
707 
708 	/* Be paranoid about clearing APIC errors. */
709 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
710 		/* Due to the Pentium erratum 3AP.  */
711 		if (maxlvt > 3)
712 			apic_write(APIC_ESR, 0);
713 		apic_read(APIC_ESR);
714 	}
715 
716 	/* Assert INIT on the target CPU */
717 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
718 	safe_apic_wait_icr_idle();
719 
720 	udelay(init_udelay);
721 
722 	/* Deassert INIT on the target CPU */
723 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
724 	safe_apic_wait_icr_idle();
725 }
726 
727 /*
728  * Wake up AP by INIT, INIT, STARTUP sequence.
729  */
730 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
731 {
732 	unsigned long send_status = 0, accept_status = 0;
733 	int num_starts, j, maxlvt;
734 
735 	preempt_disable();
736 	maxlvt = lapic_get_maxlvt();
737 	send_init_sequence(phys_apicid);
738 
739 	mb();
740 
741 	/*
742 	 * Should we send STARTUP IPIs ?
743 	 *
744 	 * Determine this based on the APIC version.
745 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
746 	 */
747 	if (APIC_INTEGRATED(boot_cpu_apic_version))
748 		num_starts = 2;
749 	else
750 		num_starts = 0;
751 
752 	/*
753 	 * Run STARTUP IPI loop.
754 	 */
755 	pr_debug("#startup loops: %d\n", num_starts);
756 
757 	for (j = 1; j <= num_starts; j++) {
758 		pr_debug("Sending STARTUP #%d\n", j);
759 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
760 			apic_write(APIC_ESR, 0);
761 		apic_read(APIC_ESR);
762 		pr_debug("After apic_write\n");
763 
764 		/*
765 		 * STARTUP IPI
766 		 */
767 
768 		/* Target chip */
769 		/* Boot on the stack */
770 		/* Kick the second */
771 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
772 			       phys_apicid);
773 
774 		/*
775 		 * Give the other CPU some time to accept the IPI.
776 		 */
777 		if (init_udelay == 0)
778 			udelay(10);
779 		else
780 			udelay(300);
781 
782 		pr_debug("Startup point 1\n");
783 
784 		pr_debug("Waiting for send to finish...\n");
785 		send_status = safe_apic_wait_icr_idle();
786 
787 		/*
788 		 * Give the other CPU some time to accept the IPI.
789 		 */
790 		if (init_udelay == 0)
791 			udelay(10);
792 		else
793 			udelay(200);
794 
795 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
796 			apic_write(APIC_ESR, 0);
797 		accept_status = (apic_read(APIC_ESR) & 0xEF);
798 		if (send_status || accept_status)
799 			break;
800 	}
801 	pr_debug("After Startup\n");
802 
803 	if (send_status)
804 		pr_err("APIC never delivered???\n");
805 	if (accept_status)
806 		pr_err("APIC delivery error (%lx)\n", accept_status);
807 
808 	preempt_enable();
809 	return (send_status | accept_status);
810 }
811 
812 /* reduce the number of lines printed when booting a large cpu count system */
813 static void announce_cpu(int cpu, int apicid)
814 {
815 	static int width, node_width, first = 1;
816 	static int current_node = NUMA_NO_NODE;
817 	int node = early_cpu_to_node(cpu);
818 
819 	if (!width)
820 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
821 
822 	if (!node_width)
823 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
824 
825 	if (system_state < SYSTEM_RUNNING) {
826 		if (first)
827 			pr_info("x86: Booting SMP configuration:\n");
828 
829 		if (node != current_node) {
830 			if (current_node > (-1))
831 				pr_cont("\n");
832 			current_node = node;
833 
834 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
835 			       node_width - num_digits(node), " ", node);
836 		}
837 
838 		/* Add padding for the BSP */
839 		if (first)
840 			pr_cont("%*s", width + 1, " ");
841 		first = 0;
842 
843 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
844 	} else
845 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
846 			node, cpu, apicid);
847 }
848 
849 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
850 {
851 	int ret;
852 
853 	/* Just in case we booted with a single CPU. */
854 	alternatives_enable_smp();
855 
856 	per_cpu(pcpu_hot.current_task, cpu) = idle;
857 	cpu_init_stack_canary(cpu, idle);
858 
859 	/* Initialize the interrupt stack(s) */
860 	ret = irq_init_percpu_irqstack(cpu);
861 	if (ret)
862 		return ret;
863 
864 #ifdef CONFIG_X86_32
865 	/* Stack for startup_32 can be just as for start_secondary onwards */
866 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
867 #endif
868 	return 0;
869 }
870 
871 /*
872  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
873  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
874  * Returns zero if startup was successfully sent, else error code from
875  * ->wakeup_secondary_cpu.
876  */
877 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
878 {
879 	unsigned long start_ip = real_mode_header->trampoline_start;
880 	int ret;
881 
882 #ifdef CONFIG_X86_64
883 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
884 	if (apic->wakeup_secondary_cpu_64)
885 		start_ip = real_mode_header->trampoline_start64;
886 #endif
887 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
888 	initial_code = (unsigned long)start_secondary;
889 
890 	if (IS_ENABLED(CONFIG_X86_32)) {
891 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
892 		initial_stack  = idle->thread.sp;
893 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
894 		smpboot_control = cpu;
895 	}
896 
897 	/* Enable the espfix hack for this CPU */
898 	init_espfix_ap(cpu);
899 
900 	/* So we see what's up */
901 	announce_cpu(cpu, apicid);
902 
903 	/*
904 	 * This grunge runs the startup process for
905 	 * the targeted processor.
906 	 */
907 	if (x86_platform.legacy.warm_reset) {
908 
909 		pr_debug("Setting warm reset code and vector.\n");
910 
911 		smpboot_setup_warm_reset_vector(start_ip);
912 		/*
913 		 * Be paranoid about clearing APIC errors.
914 		*/
915 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
916 			apic_write(APIC_ESR, 0);
917 			apic_read(APIC_ESR);
918 		}
919 	}
920 
921 	smp_mb();
922 
923 	/*
924 	 * Wake up a CPU in difference cases:
925 	 * - Use a method from the APIC driver if one defined, with wakeup
926 	 *   straight to 64-bit mode preferred over wakeup to RM.
927 	 * Otherwise,
928 	 * - Use an INIT boot APIC message
929 	 */
930 	if (apic->wakeup_secondary_cpu_64)
931 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
932 	else if (apic->wakeup_secondary_cpu)
933 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
934 	else
935 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
936 
937 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
938 	if (ret)
939 		arch_cpuhp_cleanup_kick_cpu(cpu);
940 	return ret;
941 }
942 
943 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
944 {
945 	u32 apicid = apic->cpu_present_to_apicid(cpu);
946 	int err;
947 
948 	lockdep_assert_irqs_enabled();
949 
950 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
951 
952 	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
953 		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
954 		return -EINVAL;
955 	}
956 
957 	if (!test_bit(apicid, phys_cpu_present_map)) {
958 		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
959 		return -EINVAL;
960 	}
961 
962 	/*
963 	 * Save current MTRR state in case it was changed since early boot
964 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
965 	 */
966 	mtrr_save_state();
967 
968 	/* the FPU context is blank, nobody can own it */
969 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
970 
971 	err = common_cpu_up(cpu, tidle);
972 	if (err)
973 		return err;
974 
975 	err = do_boot_cpu(apicid, cpu, tidle);
976 	if (err)
977 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
978 
979 	return err;
980 }
981 
982 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
983 {
984 	return smp_ops.kick_ap_alive(cpu, tidle);
985 }
986 
987 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
988 {
989 	/* Cleanup possible dangling ends... */
990 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
991 		smpboot_restore_warm_reset_vector();
992 }
993 
994 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
995 {
996 	if (smp_ops.cleanup_dead_cpu)
997 		smp_ops.cleanup_dead_cpu(cpu);
998 
999 	if (system_state == SYSTEM_RUNNING)
1000 		pr_info("CPU %u is now offline\n", cpu);
1001 }
1002 
1003 void arch_cpuhp_sync_state_poll(void)
1004 {
1005 	if (smp_ops.poll_sync_state)
1006 		smp_ops.poll_sync_state();
1007 }
1008 
1009 /**
1010  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1011  */
1012 void __init arch_disable_smp_support(void)
1013 {
1014 	disable_ioapic_support();
1015 }
1016 
1017 /*
1018  * Fall back to non SMP mode after errors.
1019  *
1020  * RED-PEN audit/test this more. I bet there is more state messed up here.
1021  */
1022 static __init void disable_smp(void)
1023 {
1024 	pr_info("SMP disabled\n");
1025 
1026 	disable_ioapic_support();
1027 	topology_reset_possible_cpus_up();
1028 
1029 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1030 	cpumask_set_cpu(0, topology_core_cpumask(0));
1031 	cpumask_set_cpu(0, topology_die_cpumask(0));
1032 }
1033 
1034 void __init smp_prepare_cpus_common(void)
1035 {
1036 	unsigned int cpu, node;
1037 
1038 	/* Mark all except the boot CPU as hotpluggable */
1039 	for_each_possible_cpu(cpu) {
1040 		if (cpu)
1041 			per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
1042 	}
1043 
1044 	for_each_possible_cpu(cpu) {
1045 		node = cpu_to_node(cpu);
1046 
1047 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map,    cpu), GFP_KERNEL, node);
1048 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map,       cpu), GFP_KERNEL, node);
1049 		zalloc_cpumask_var_node(&per_cpu(cpu_die_map,        cpu), GFP_KERNEL, node);
1050 		zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
1051 		zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
1052 	}
1053 
1054 	set_cpu_sibling_map(0);
1055 }
1056 
1057 void __init smp_prepare_boot_cpu(void)
1058 {
1059 	smp_ops.smp_prepare_boot_cpu();
1060 }
1061 
1062 #ifdef CONFIG_X86_64
1063 /* Establish whether parallel bringup can be supported. */
1064 bool __init arch_cpuhp_init_parallel_bringup(void)
1065 {
1066 	if (!x86_cpuinit.parallel_bringup) {
1067 		pr_info("Parallel CPU startup disabled by the platform\n");
1068 		return false;
1069 	}
1070 
1071 	smpboot_control = STARTUP_READ_APICID;
1072 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1073 	return true;
1074 }
1075 #endif
1076 
1077 /*
1078  * Prepare for SMP bootup.
1079  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1080  *            for common interface support.
1081  */
1082 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1083 {
1084 	smp_prepare_cpus_common();
1085 
1086 	switch (apic_intr_mode) {
1087 	case APIC_PIC:
1088 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1089 		disable_smp();
1090 		return;
1091 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1092 		disable_smp();
1093 		/* Setup local timer */
1094 		x86_init.timers.setup_percpu_clockev();
1095 		return;
1096 	case APIC_VIRTUAL_WIRE:
1097 	case APIC_SYMMETRIC_IO:
1098 		break;
1099 	}
1100 
1101 	/* Setup local timer */
1102 	x86_init.timers.setup_percpu_clockev();
1103 
1104 	pr_info("CPU0: ");
1105 	print_cpu_info(&cpu_data(0));
1106 
1107 	uv_system_init();
1108 
1109 	smp_quirk_init_udelay();
1110 
1111 	speculative_store_bypass_ht_init();
1112 
1113 	snp_set_wakeup_secondary_cpu();
1114 }
1115 
1116 void arch_thaw_secondary_cpus_begin(void)
1117 {
1118 	set_cache_aps_delayed_init(true);
1119 }
1120 
1121 void arch_thaw_secondary_cpus_end(void)
1122 {
1123 	cache_aps_init();
1124 }
1125 
1126 /*
1127  * Early setup to make printk work.
1128  */
1129 void __init native_smp_prepare_boot_cpu(void)
1130 {
1131 	int me = smp_processor_id();
1132 
1133 	/* SMP handles this from setup_per_cpu_areas() */
1134 	if (!IS_ENABLED(CONFIG_SMP))
1135 		switch_gdt_and_percpu_base(me);
1136 
1137 	native_pv_lock_init();
1138 }
1139 
1140 void __init native_smp_cpus_done(unsigned int max_cpus)
1141 {
1142 	pr_debug("Boot done\n");
1143 
1144 	build_sched_topology();
1145 	nmi_selftest();
1146 	impress_friends();
1147 	cache_aps_init();
1148 }
1149 
1150 /* correctly size the local cpu masks */
1151 void __init setup_cpu_local_masks(void)
1152 {
1153 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1154 }
1155 
1156 #ifdef CONFIG_HOTPLUG_CPU
1157 
1158 /* Recompute SMT state for all CPUs on offline */
1159 static void recompute_smt_state(void)
1160 {
1161 	int max_threads, cpu;
1162 
1163 	max_threads = 0;
1164 	for_each_online_cpu (cpu) {
1165 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1166 
1167 		if (threads > max_threads)
1168 			max_threads = threads;
1169 	}
1170 	__max_smt_threads = max_threads;
1171 }
1172 
1173 static void remove_siblinginfo(int cpu)
1174 {
1175 	int sibling;
1176 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1177 
1178 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1179 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1180 		/*/
1181 		 * last thread sibling in this cpu core going down
1182 		 */
1183 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1184 			cpu_data(sibling).booted_cores--;
1185 	}
1186 
1187 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1188 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1189 
1190 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1191 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1192 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1193 			cpu_data(sibling).smt_active = false;
1194 	}
1195 
1196 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1197 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1198 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1199 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1200 	cpumask_clear(cpu_llc_shared_mask(cpu));
1201 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1202 	cpumask_clear(topology_sibling_cpumask(cpu));
1203 	cpumask_clear(topology_core_cpumask(cpu));
1204 	cpumask_clear(topology_die_cpumask(cpu));
1205 	c->topo.core_id = 0;
1206 	c->booted_cores = 0;
1207 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1208 	recompute_smt_state();
1209 }
1210 
1211 static void remove_cpu_from_maps(int cpu)
1212 {
1213 	set_cpu_online(cpu, false);
1214 	numa_remove_cpu(cpu);
1215 }
1216 
1217 void cpu_disable_common(void)
1218 {
1219 	int cpu = smp_processor_id();
1220 
1221 	remove_siblinginfo(cpu);
1222 
1223 	/* It's now safe to remove this processor from the online map */
1224 	lock_vector_lock();
1225 	remove_cpu_from_maps(cpu);
1226 	unlock_vector_lock();
1227 	fixup_irqs();
1228 	lapic_offline();
1229 }
1230 
1231 int native_cpu_disable(void)
1232 {
1233 	int ret;
1234 
1235 	ret = lapic_can_unplug_cpu();
1236 	if (ret)
1237 		return ret;
1238 
1239 	cpu_disable_common();
1240 
1241         /*
1242          * Disable the local APIC. Otherwise IPI broadcasts will reach
1243          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1244          * messages.
1245          *
1246          * Disabling the APIC must happen after cpu_disable_common()
1247          * which invokes fixup_irqs().
1248          *
1249          * Disabling the APIC preserves already set bits in IRR, but
1250          * an interrupt arriving after disabling the local APIC does not
1251          * set the corresponding IRR bit.
1252          *
1253          * fixup_irqs() scans IRR for set bits so it can raise a not
1254          * yet handled interrupt on the new destination CPU via an IPI
1255          * but obviously it can't do so for IRR bits which are not set.
1256          * IOW, interrupts arriving after disabling the local APIC will
1257          * be lost.
1258          */
1259 	apic_soft_disable();
1260 
1261 	return 0;
1262 }
1263 
1264 void play_dead_common(void)
1265 {
1266 	idle_task_exit();
1267 
1268 	cpuhp_ap_report_dead();
1269 
1270 	local_irq_disable();
1271 }
1272 
1273 /*
1274  * We need to flush the caches before going to sleep, lest we have
1275  * dirty data in our caches when we come back up.
1276  */
1277 static inline void mwait_play_dead(void)
1278 {
1279 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1280 	unsigned int eax, ebx, ecx, edx;
1281 	unsigned int highest_cstate = 0;
1282 	unsigned int highest_subcstate = 0;
1283 	int i;
1284 
1285 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1286 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1287 		return;
1288 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1289 		return;
1290 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1291 		return;
1292 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1293 		return;
1294 
1295 	eax = CPUID_MWAIT_LEAF;
1296 	ecx = 0;
1297 	native_cpuid(&eax, &ebx, &ecx, &edx);
1298 
1299 	/*
1300 	 * eax will be 0 if EDX enumeration is not valid.
1301 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1302 	 */
1303 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1304 		eax = 0;
1305 	} else {
1306 		edx >>= MWAIT_SUBSTATE_SIZE;
1307 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1308 			if (edx & MWAIT_SUBSTATE_MASK) {
1309 				highest_cstate = i;
1310 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1311 			}
1312 		}
1313 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1314 			(highest_subcstate - 1);
1315 	}
1316 
1317 	/* Set up state for the kexec() hack below */
1318 	md->status = CPUDEAD_MWAIT_WAIT;
1319 	md->control = CPUDEAD_MWAIT_WAIT;
1320 
1321 	wbinvd();
1322 
1323 	while (1) {
1324 		/*
1325 		 * The CLFLUSH is a workaround for erratum AAI65 for
1326 		 * the Xeon 7400 series.  It's not clear it is actually
1327 		 * needed, but it should be harmless in either case.
1328 		 * The WBINVD is insufficient due to the spurious-wakeup
1329 		 * case where we return around the loop.
1330 		 */
1331 		mb();
1332 		clflush(md);
1333 		mb();
1334 		__monitor(md, 0, 0);
1335 		mb();
1336 		__mwait(eax, 0);
1337 
1338 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1339 			/*
1340 			 * Kexec is about to happen. Don't go back into mwait() as
1341 			 * the kexec kernel might overwrite text and data including
1342 			 * page tables and stack. So mwait() would resume when the
1343 			 * monitor cache line is written to and then the CPU goes
1344 			 * south due to overwritten text, page tables and stack.
1345 			 *
1346 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1347 			 * SMI. They will resume execution at the instruction
1348 			 * following the HLT instruction and run into the problem
1349 			 * which this is trying to prevent.
1350 			 */
1351 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1352 			while(1)
1353 				native_halt();
1354 		}
1355 	}
1356 }
1357 
1358 /*
1359  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1360  * mwait_play_dead().
1361  */
1362 void smp_kick_mwait_play_dead(void)
1363 {
1364 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1365 	struct mwait_cpu_dead *md;
1366 	unsigned int cpu, i;
1367 
1368 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1369 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1370 
1371 		/* Does it sit in mwait_play_dead() ? */
1372 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1373 			continue;
1374 
1375 		/* Wait up to 5ms */
1376 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1377 			/* Bring it out of mwait */
1378 			WRITE_ONCE(md->control, newstate);
1379 			udelay(5);
1380 		}
1381 
1382 		if (READ_ONCE(md->status) != newstate)
1383 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1384 	}
1385 }
1386 
1387 void __noreturn hlt_play_dead(void)
1388 {
1389 	if (__this_cpu_read(cpu_info.x86) >= 4)
1390 		wbinvd();
1391 
1392 	while (1)
1393 		native_halt();
1394 }
1395 
1396 /*
1397  * native_play_dead() is essentially a __noreturn function, but it can't
1398  * be marked as such as the compiler may complain about it.
1399  */
1400 void native_play_dead(void)
1401 {
1402 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1403 		__update_spec_ctrl(0);
1404 
1405 	play_dead_common();
1406 	tboot_shutdown(TB_SHUTDOWN_WFS);
1407 
1408 	mwait_play_dead();
1409 	if (cpuidle_play_dead())
1410 		hlt_play_dead();
1411 }
1412 
1413 #else /* ... !CONFIG_HOTPLUG_CPU */
1414 int native_cpu_disable(void)
1415 {
1416 	return -ENOSYS;
1417 }
1418 
1419 void native_play_dead(void)
1420 {
1421 	BUG();
1422 }
1423 
1424 #endif
1425