xref: /linux/arch/x86/kernel/smpboot.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58 
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87 
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 
92 /* representing HT, core, and die siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
95 
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
97 
98 /* Per CPU bogomips and other parameters */
99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
100 EXPORT_PER_CPU_SYMBOL(cpu_info);
101 
102 /* Logical package management. We might want to allocate that dynamically */
103 unsigned int __max_logical_packages __read_mostly;
104 EXPORT_SYMBOL(__max_logical_packages);
105 static unsigned int logical_packages __read_mostly;
106 static unsigned int logical_die __read_mostly;
107 
108 /* Maximum number of SMT threads on any online core */
109 int __read_mostly __max_smt_threads = 1;
110 
111 /* Flag to indicate if a complete sched domain rebuild is required */
112 bool x86_topology_update;
113 
114 int arch_update_cpu_topology(void)
115 {
116 	int retval = x86_topology_update;
117 
118 	x86_topology_update = false;
119 	return retval;
120 }
121 
122 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
123 {
124 	unsigned long flags;
125 
126 	spin_lock_irqsave(&rtc_lock, flags);
127 	CMOS_WRITE(0xa, 0xf);
128 	spin_unlock_irqrestore(&rtc_lock, flags);
129 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
130 							start_eip >> 4;
131 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
132 							start_eip & 0xf;
133 }
134 
135 static inline void smpboot_restore_warm_reset_vector(void)
136 {
137 	unsigned long flags;
138 
139 	/*
140 	 * Paranoid:  Set warm reset code and vector here back
141 	 * to default values.
142 	 */
143 	spin_lock_irqsave(&rtc_lock, flags);
144 	CMOS_WRITE(0, 0xf);
145 	spin_unlock_irqrestore(&rtc_lock, flags);
146 
147 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
148 }
149 
150 /*
151  * Report back to the Boot Processor during boot time or to the caller processor
152  * during CPU online.
153  */
154 static void smp_callin(void)
155 {
156 	int cpuid;
157 
158 	/*
159 	 * If waken up by an INIT in an 82489DX configuration
160 	 * cpu_callout_mask guarantees we don't get here before
161 	 * an INIT_deassert IPI reaches our local APIC, so it is
162 	 * now safe to touch our local APIC.
163 	 */
164 	cpuid = smp_processor_id();
165 
166 	/*
167 	 * the boot CPU has finished the init stage and is spinning
168 	 * on callin_map until we finish. We are free to set up this
169 	 * CPU, first the APIC. (this is probably redundant on most
170 	 * boards)
171 	 */
172 	apic_ap_setup();
173 
174 	/*
175 	 * Save our processor parameters. Note: this information
176 	 * is needed for clock calibration.
177 	 */
178 	smp_store_cpu_info(cpuid);
179 
180 	/*
181 	 * The topology information must be up to date before
182 	 * calibrate_delay() and notify_cpu_starting().
183 	 */
184 	set_cpu_sibling_map(raw_smp_processor_id());
185 
186 	/*
187 	 * Get our bogomips.
188 	 * Update loops_per_jiffy in cpu_data. Previous call to
189 	 * smp_store_cpu_info() stored a value that is close but not as
190 	 * accurate as the value just calculated.
191 	 */
192 	calibrate_delay();
193 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
194 	pr_debug("Stack at about %p\n", &cpuid);
195 
196 	wmb();
197 
198 	notify_cpu_starting(cpuid);
199 
200 	/*
201 	 * Allow the master to continue.
202 	 */
203 	cpumask_set_cpu(cpuid, cpu_callin_mask);
204 }
205 
206 static int cpu0_logical_apicid;
207 static int enable_start_cpu0;
208 /*
209  * Activate a secondary processor.
210  */
211 static void notrace start_secondary(void *unused)
212 {
213 	/*
214 	 * Don't put *anything* except direct CPU state initialization
215 	 * before cpu_init(), SMP booting is too fragile that we want to
216 	 * limit the things done here to the most necessary things.
217 	 */
218 	cr4_init();
219 
220 #ifdef CONFIG_X86_32
221 	/* switch away from the initial page table */
222 	load_cr3(swapper_pg_dir);
223 	__flush_tlb_all();
224 #endif
225 	load_current_idt();
226 	cpu_init();
227 	x86_cpuinit.early_percpu_clock_init();
228 	preempt_disable();
229 	smp_callin();
230 
231 	enable_start_cpu0 = 0;
232 
233 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
234 	barrier();
235 	/*
236 	 * Check TSC synchronization with the boot CPU:
237 	 */
238 	check_tsc_sync_target();
239 
240 	speculative_store_bypass_ht_init();
241 
242 	/*
243 	 * Lock vector_lock, set CPU online and bring the vector
244 	 * allocator online. Online must be set with vector_lock held
245 	 * to prevent a concurrent irq setup/teardown from seeing a
246 	 * half valid vector space.
247 	 */
248 	lock_vector_lock();
249 	set_cpu_online(smp_processor_id(), true);
250 	lapic_online();
251 	unlock_vector_lock();
252 	cpu_set_state_online(smp_processor_id());
253 	x86_platform.nmi_init();
254 
255 	/* enable local interrupts */
256 	local_irq_enable();
257 
258 	/* to prevent fake stack check failure in clock setup */
259 	boot_init_stack_canary();
260 
261 	x86_cpuinit.setup_percpu_clockev();
262 
263 	wmb();
264 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
265 }
266 
267 /**
268  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
269  * @cpu:	CPU to check
270  */
271 bool topology_is_primary_thread(unsigned int cpu)
272 {
273 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
274 }
275 
276 /**
277  * topology_smt_supported - Check whether SMT is supported by the CPUs
278  */
279 bool topology_smt_supported(void)
280 {
281 	return smp_num_siblings > 1;
282 }
283 
284 /**
285  * topology_phys_to_logical_pkg - Map a physical package id to a logical
286  *
287  * Returns logical package id or -1 if not found
288  */
289 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
290 {
291 	int cpu;
292 
293 	for_each_possible_cpu(cpu) {
294 		struct cpuinfo_x86 *c = &cpu_data(cpu);
295 
296 		if (c->initialized && c->phys_proc_id == phys_pkg)
297 			return c->logical_proc_id;
298 	}
299 	return -1;
300 }
301 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
302 /**
303  * topology_phys_to_logical_die - Map a physical die id to logical
304  *
305  * Returns logical die id or -1 if not found
306  */
307 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
308 {
309 	int cpu;
310 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
311 
312 	for_each_possible_cpu(cpu) {
313 		struct cpuinfo_x86 *c = &cpu_data(cpu);
314 
315 		if (c->initialized && c->cpu_die_id == die_id &&
316 		    c->phys_proc_id == proc_id)
317 			return c->logical_die_id;
318 	}
319 	return -1;
320 }
321 EXPORT_SYMBOL(topology_phys_to_logical_die);
322 
323 /**
324  * topology_update_package_map - Update the physical to logical package map
325  * @pkg:	The physical package id as retrieved via CPUID
326  * @cpu:	The cpu for which this is updated
327  */
328 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
329 {
330 	int new;
331 
332 	/* Already available somewhere? */
333 	new = topology_phys_to_logical_pkg(pkg);
334 	if (new >= 0)
335 		goto found;
336 
337 	new = logical_packages++;
338 	if (new != pkg) {
339 		pr_info("CPU %u Converting physical %u to logical package %u\n",
340 			cpu, pkg, new);
341 	}
342 found:
343 	cpu_data(cpu).logical_proc_id = new;
344 	return 0;
345 }
346 /**
347  * topology_update_die_map - Update the physical to logical die map
348  * @die:	The die id as retrieved via CPUID
349  * @cpu:	The cpu for which this is updated
350  */
351 int topology_update_die_map(unsigned int die, unsigned int cpu)
352 {
353 	int new;
354 
355 	/* Already available somewhere? */
356 	new = topology_phys_to_logical_die(die, cpu);
357 	if (new >= 0)
358 		goto found;
359 
360 	new = logical_die++;
361 	if (new != die) {
362 		pr_info("CPU %u Converting physical %u to logical die %u\n",
363 			cpu, die, new);
364 	}
365 found:
366 	cpu_data(cpu).logical_die_id = new;
367 	return 0;
368 }
369 
370 void __init smp_store_boot_cpu_info(void)
371 {
372 	int id = 0; /* CPU 0 */
373 	struct cpuinfo_x86 *c = &cpu_data(id);
374 
375 	*c = boot_cpu_data;
376 	c->cpu_index = id;
377 	topology_update_package_map(c->phys_proc_id, id);
378 	topology_update_die_map(c->cpu_die_id, id);
379 	c->initialized = true;
380 }
381 
382 /*
383  * The bootstrap kernel entry code has set these up. Save them for
384  * a given CPU
385  */
386 void smp_store_cpu_info(int id)
387 {
388 	struct cpuinfo_x86 *c = &cpu_data(id);
389 
390 	/* Copy boot_cpu_data only on the first bringup */
391 	if (!c->initialized)
392 		*c = boot_cpu_data;
393 	c->cpu_index = id;
394 	/*
395 	 * During boot time, CPU0 has this setup already. Save the info when
396 	 * bringing up AP or offlined CPU0.
397 	 */
398 	identify_secondary_cpu(c);
399 	c->initialized = true;
400 }
401 
402 static bool
403 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
404 {
405 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
406 
407 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
408 }
409 
410 static bool
411 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
412 {
413 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
414 
415 	return !WARN_ONCE(!topology_same_node(c, o),
416 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
417 		"[node: %d != %d]. Ignoring dependency.\n",
418 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
419 }
420 
421 #define link_mask(mfunc, c1, c2)					\
422 do {									\
423 	cpumask_set_cpu((c1), mfunc(c2));				\
424 	cpumask_set_cpu((c2), mfunc(c1));				\
425 } while (0)
426 
427 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
428 {
429 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
430 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
431 
432 		if (c->phys_proc_id == o->phys_proc_id &&
433 		    c->cpu_die_id == o->cpu_die_id &&
434 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
435 			if (c->cpu_core_id == o->cpu_core_id)
436 				return topology_sane(c, o, "smt");
437 
438 			if ((c->cu_id != 0xff) &&
439 			    (o->cu_id != 0xff) &&
440 			    (c->cu_id == o->cu_id))
441 				return topology_sane(c, o, "smt");
442 		}
443 
444 	} else if (c->phys_proc_id == o->phys_proc_id &&
445 		   c->cpu_die_id == o->cpu_die_id &&
446 		   c->cpu_core_id == o->cpu_core_id) {
447 		return topology_sane(c, o, "smt");
448 	}
449 
450 	return false;
451 }
452 
453 /*
454  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
455  *
456  * These are Intel CPUs that enumerate an LLC that is shared by
457  * multiple NUMA nodes. The LLC on these systems is shared for
458  * off-package data access but private to the NUMA node (half
459  * of the package) for on-package access.
460  *
461  * CPUID (the source of the information about the LLC) can only
462  * enumerate the cache as being shared *or* unshared, but not
463  * this particular configuration. The CPU in this case enumerates
464  * the cache to be shared across the entire package (spanning both
465  * NUMA nodes).
466  */
467 
468 static const struct x86_cpu_id snc_cpu[] = {
469 	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
470 	{}
471 };
472 
473 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
474 {
475 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
476 
477 	/* Do not match if we do not have a valid APICID for cpu: */
478 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
479 		return false;
480 
481 	/* Do not match if LLC id does not match: */
482 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
483 		return false;
484 
485 	/*
486 	 * Allow the SNC topology without warning. Return of false
487 	 * means 'c' does not share the LLC of 'o'. This will be
488 	 * reflected to userspace.
489 	 */
490 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
491 		return false;
492 
493 	return topology_sane(c, o, "llc");
494 }
495 
496 /*
497  * Unlike the other levels, we do not enforce keeping a
498  * multicore group inside a NUMA node.  If this happens, we will
499  * discard the MC level of the topology later.
500  */
501 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
502 {
503 	if (c->phys_proc_id == o->phys_proc_id)
504 		return true;
505 	return false;
506 }
507 
508 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
509 {
510 	if ((c->phys_proc_id == o->phys_proc_id) &&
511 		(c->cpu_die_id == o->cpu_die_id))
512 		return true;
513 	return false;
514 }
515 
516 
517 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
518 static inline int x86_sched_itmt_flags(void)
519 {
520 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
521 }
522 
523 #ifdef CONFIG_SCHED_MC
524 static int x86_core_flags(void)
525 {
526 	return cpu_core_flags() | x86_sched_itmt_flags();
527 }
528 #endif
529 #ifdef CONFIG_SCHED_SMT
530 static int x86_smt_flags(void)
531 {
532 	return cpu_smt_flags() | x86_sched_itmt_flags();
533 }
534 #endif
535 #endif
536 
537 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
538 #ifdef CONFIG_SCHED_SMT
539 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
540 #endif
541 #ifdef CONFIG_SCHED_MC
542 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
543 #endif
544 	{ NULL, },
545 };
546 
547 static struct sched_domain_topology_level x86_topology[] = {
548 #ifdef CONFIG_SCHED_SMT
549 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
550 #endif
551 #ifdef CONFIG_SCHED_MC
552 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
553 #endif
554 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
555 	{ NULL, },
556 };
557 
558 /*
559  * Set if a package/die has multiple NUMA nodes inside.
560  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
561  * Sub-NUMA Clustering have this.
562  */
563 static bool x86_has_numa_in_package;
564 
565 void set_cpu_sibling_map(int cpu)
566 {
567 	bool has_smt = smp_num_siblings > 1;
568 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
569 	struct cpuinfo_x86 *c = &cpu_data(cpu);
570 	struct cpuinfo_x86 *o;
571 	int i, threads;
572 
573 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
574 
575 	if (!has_mp) {
576 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
577 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
578 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
579 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
580 		c->booted_cores = 1;
581 		return;
582 	}
583 
584 	for_each_cpu(i, cpu_sibling_setup_mask) {
585 		o = &cpu_data(i);
586 
587 		if ((i == cpu) || (has_smt && match_smt(c, o)))
588 			link_mask(topology_sibling_cpumask, cpu, i);
589 
590 		if ((i == cpu) || (has_mp && match_llc(c, o)))
591 			link_mask(cpu_llc_shared_mask, cpu, i);
592 
593 	}
594 
595 	/*
596 	 * This needs a separate iteration over the cpus because we rely on all
597 	 * topology_sibling_cpumask links to be set-up.
598 	 */
599 	for_each_cpu(i, cpu_sibling_setup_mask) {
600 		o = &cpu_data(i);
601 
602 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
603 			link_mask(topology_core_cpumask, cpu, i);
604 
605 			/*
606 			 *  Does this new cpu bringup a new core?
607 			 */
608 			if (cpumask_weight(
609 			    topology_sibling_cpumask(cpu)) == 1) {
610 				/*
611 				 * for each core in package, increment
612 				 * the booted_cores for this new cpu
613 				 */
614 				if (cpumask_first(
615 				    topology_sibling_cpumask(i)) == i)
616 					c->booted_cores++;
617 				/*
618 				 * increment the core count for all
619 				 * the other cpus in this package
620 				 */
621 				if (i != cpu)
622 					cpu_data(i).booted_cores++;
623 			} else if (i != cpu && !c->booted_cores)
624 				c->booted_cores = cpu_data(i).booted_cores;
625 		}
626 		if (match_pkg(c, o) && !topology_same_node(c, o))
627 			x86_has_numa_in_package = true;
628 
629 		if ((i == cpu) || (has_mp && match_die(c, o)))
630 			link_mask(topology_die_cpumask, cpu, i);
631 	}
632 
633 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
634 	if (threads > __max_smt_threads)
635 		__max_smt_threads = threads;
636 }
637 
638 /* maps the cpu to the sched domain representing multi-core */
639 const struct cpumask *cpu_coregroup_mask(int cpu)
640 {
641 	return cpu_llc_shared_mask(cpu);
642 }
643 
644 static void impress_friends(void)
645 {
646 	int cpu;
647 	unsigned long bogosum = 0;
648 	/*
649 	 * Allow the user to impress friends.
650 	 */
651 	pr_debug("Before bogomips\n");
652 	for_each_possible_cpu(cpu)
653 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
654 			bogosum += cpu_data(cpu).loops_per_jiffy;
655 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
656 		num_online_cpus(),
657 		bogosum/(500000/HZ),
658 		(bogosum/(5000/HZ))%100);
659 
660 	pr_debug("Before bogocount - setting activated=1\n");
661 }
662 
663 void __inquire_remote_apic(int apicid)
664 {
665 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
666 	const char * const names[] = { "ID", "VERSION", "SPIV" };
667 	int timeout;
668 	u32 status;
669 
670 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
671 
672 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
673 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
674 
675 		/*
676 		 * Wait for idle.
677 		 */
678 		status = safe_apic_wait_icr_idle();
679 		if (status)
680 			pr_cont("a previous APIC delivery may have failed\n");
681 
682 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
683 
684 		timeout = 0;
685 		do {
686 			udelay(100);
687 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
688 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
689 
690 		switch (status) {
691 		case APIC_ICR_RR_VALID:
692 			status = apic_read(APIC_RRR);
693 			pr_cont("%08x\n", status);
694 			break;
695 		default:
696 			pr_cont("failed\n");
697 		}
698 	}
699 }
700 
701 /*
702  * The Multiprocessor Specification 1.4 (1997) example code suggests
703  * that there should be a 10ms delay between the BSP asserting INIT
704  * and de-asserting INIT, when starting a remote processor.
705  * But that slows boot and resume on modern processors, which include
706  * many cores and don't require that delay.
707  *
708  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
709  * Modern processor families are quirked to remove the delay entirely.
710  */
711 #define UDELAY_10MS_DEFAULT 10000
712 
713 static unsigned int init_udelay = UINT_MAX;
714 
715 static int __init cpu_init_udelay(char *str)
716 {
717 	get_option(&str, &init_udelay);
718 
719 	return 0;
720 }
721 early_param("cpu_init_udelay", cpu_init_udelay);
722 
723 static void __init smp_quirk_init_udelay(void)
724 {
725 	/* if cmdline changed it from default, leave it alone */
726 	if (init_udelay != UINT_MAX)
727 		return;
728 
729 	/* if modern processor, use no delay */
730 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
731 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
732 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
733 		init_udelay = 0;
734 		return;
735 	}
736 	/* else, use legacy delay */
737 	init_udelay = UDELAY_10MS_DEFAULT;
738 }
739 
740 /*
741  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
742  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
743  * won't ... remember to clear down the APIC, etc later.
744  */
745 int
746 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
747 {
748 	unsigned long send_status, accept_status = 0;
749 	int maxlvt;
750 
751 	/* Target chip */
752 	/* Boot on the stack */
753 	/* Kick the second */
754 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
755 
756 	pr_debug("Waiting for send to finish...\n");
757 	send_status = safe_apic_wait_icr_idle();
758 
759 	/*
760 	 * Give the other CPU some time to accept the IPI.
761 	 */
762 	udelay(200);
763 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
764 		maxlvt = lapic_get_maxlvt();
765 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
766 			apic_write(APIC_ESR, 0);
767 		accept_status = (apic_read(APIC_ESR) & 0xEF);
768 	}
769 	pr_debug("NMI sent\n");
770 
771 	if (send_status)
772 		pr_err("APIC never delivered???\n");
773 	if (accept_status)
774 		pr_err("APIC delivery error (%lx)\n", accept_status);
775 
776 	return (send_status | accept_status);
777 }
778 
779 static int
780 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
781 {
782 	unsigned long send_status = 0, accept_status = 0;
783 	int maxlvt, num_starts, j;
784 
785 	maxlvt = lapic_get_maxlvt();
786 
787 	/*
788 	 * Be paranoid about clearing APIC errors.
789 	 */
790 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
791 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
792 			apic_write(APIC_ESR, 0);
793 		apic_read(APIC_ESR);
794 	}
795 
796 	pr_debug("Asserting INIT\n");
797 
798 	/*
799 	 * Turn INIT on target chip
800 	 */
801 	/*
802 	 * Send IPI
803 	 */
804 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
805 		       phys_apicid);
806 
807 	pr_debug("Waiting for send to finish...\n");
808 	send_status = safe_apic_wait_icr_idle();
809 
810 	udelay(init_udelay);
811 
812 	pr_debug("Deasserting INIT\n");
813 
814 	/* Target chip */
815 	/* Send IPI */
816 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
817 
818 	pr_debug("Waiting for send to finish...\n");
819 	send_status = safe_apic_wait_icr_idle();
820 
821 	mb();
822 
823 	/*
824 	 * Should we send STARTUP IPIs ?
825 	 *
826 	 * Determine this based on the APIC version.
827 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
828 	 */
829 	if (APIC_INTEGRATED(boot_cpu_apic_version))
830 		num_starts = 2;
831 	else
832 		num_starts = 0;
833 
834 	/*
835 	 * Run STARTUP IPI loop.
836 	 */
837 	pr_debug("#startup loops: %d\n", num_starts);
838 
839 	for (j = 1; j <= num_starts; j++) {
840 		pr_debug("Sending STARTUP #%d\n", j);
841 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
842 			apic_write(APIC_ESR, 0);
843 		apic_read(APIC_ESR);
844 		pr_debug("After apic_write\n");
845 
846 		/*
847 		 * STARTUP IPI
848 		 */
849 
850 		/* Target chip */
851 		/* Boot on the stack */
852 		/* Kick the second */
853 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
854 			       phys_apicid);
855 
856 		/*
857 		 * Give the other CPU some time to accept the IPI.
858 		 */
859 		if (init_udelay == 0)
860 			udelay(10);
861 		else
862 			udelay(300);
863 
864 		pr_debug("Startup point 1\n");
865 
866 		pr_debug("Waiting for send to finish...\n");
867 		send_status = safe_apic_wait_icr_idle();
868 
869 		/*
870 		 * Give the other CPU some time to accept the IPI.
871 		 */
872 		if (init_udelay == 0)
873 			udelay(10);
874 		else
875 			udelay(200);
876 
877 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
878 			apic_write(APIC_ESR, 0);
879 		accept_status = (apic_read(APIC_ESR) & 0xEF);
880 		if (send_status || accept_status)
881 			break;
882 	}
883 	pr_debug("After Startup\n");
884 
885 	if (send_status)
886 		pr_err("APIC never delivered???\n");
887 	if (accept_status)
888 		pr_err("APIC delivery error (%lx)\n", accept_status);
889 
890 	return (send_status | accept_status);
891 }
892 
893 /* reduce the number of lines printed when booting a large cpu count system */
894 static void announce_cpu(int cpu, int apicid)
895 {
896 	static int current_node = NUMA_NO_NODE;
897 	int node = early_cpu_to_node(cpu);
898 	static int width, node_width;
899 
900 	if (!width)
901 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
902 
903 	if (!node_width)
904 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
905 
906 	if (cpu == 1)
907 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
908 
909 	if (system_state < SYSTEM_RUNNING) {
910 		if (node != current_node) {
911 			if (current_node > (-1))
912 				pr_cont("\n");
913 			current_node = node;
914 
915 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
916 			       node_width - num_digits(node), " ", node);
917 		}
918 
919 		/* Add padding for the BSP */
920 		if (cpu == 1)
921 			pr_cont("%*s", width + 1, " ");
922 
923 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
924 
925 	} else
926 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
927 			node, cpu, apicid);
928 }
929 
930 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
931 {
932 	int cpu;
933 
934 	cpu = smp_processor_id();
935 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
936 		return NMI_HANDLED;
937 
938 	return NMI_DONE;
939 }
940 
941 /*
942  * Wake up AP by INIT, INIT, STARTUP sequence.
943  *
944  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
945  * boot-strap code which is not a desired behavior for waking up BSP. To
946  * void the boot-strap code, wake up CPU0 by NMI instead.
947  *
948  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
949  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
950  * We'll change this code in the future to wake up hard offlined CPU0 if
951  * real platform and request are available.
952  */
953 static int
954 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
955 	       int *cpu0_nmi_registered)
956 {
957 	int id;
958 	int boot_error;
959 
960 	preempt_disable();
961 
962 	/*
963 	 * Wake up AP by INIT, INIT, STARTUP sequence.
964 	 */
965 	if (cpu) {
966 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
967 		goto out;
968 	}
969 
970 	/*
971 	 * Wake up BSP by nmi.
972 	 *
973 	 * Register a NMI handler to help wake up CPU0.
974 	 */
975 	boot_error = register_nmi_handler(NMI_LOCAL,
976 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
977 
978 	if (!boot_error) {
979 		enable_start_cpu0 = 1;
980 		*cpu0_nmi_registered = 1;
981 		if (apic->dest_logical == APIC_DEST_LOGICAL)
982 			id = cpu0_logical_apicid;
983 		else
984 			id = apicid;
985 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
986 	}
987 
988 out:
989 	preempt_enable();
990 
991 	return boot_error;
992 }
993 
994 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
995 {
996 	int ret;
997 
998 	/* Just in case we booted with a single CPU. */
999 	alternatives_enable_smp();
1000 
1001 	per_cpu(current_task, cpu) = idle;
1002 
1003 	/* Initialize the interrupt stack(s) */
1004 	ret = irq_init_percpu_irqstack(cpu);
1005 	if (ret)
1006 		return ret;
1007 
1008 #ifdef CONFIG_X86_32
1009 	/* Stack for startup_32 can be just as for start_secondary onwards */
1010 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1011 #else
1012 	initial_gs = per_cpu_offset(cpu);
1013 #endif
1014 	return 0;
1015 }
1016 
1017 /*
1018  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1019  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1020  * Returns zero if CPU booted OK, else error code from
1021  * ->wakeup_secondary_cpu.
1022  */
1023 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1024 		       int *cpu0_nmi_registered)
1025 {
1026 	/* start_ip had better be page-aligned! */
1027 	unsigned long start_ip = real_mode_header->trampoline_start;
1028 
1029 	unsigned long boot_error = 0;
1030 	unsigned long timeout;
1031 
1032 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1033 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1034 	initial_code = (unsigned long)start_secondary;
1035 	initial_stack  = idle->thread.sp;
1036 
1037 	/* Enable the espfix hack for this CPU */
1038 	init_espfix_ap(cpu);
1039 
1040 	/* So we see what's up */
1041 	announce_cpu(cpu, apicid);
1042 
1043 	/*
1044 	 * This grunge runs the startup process for
1045 	 * the targeted processor.
1046 	 */
1047 
1048 	if (x86_platform.legacy.warm_reset) {
1049 
1050 		pr_debug("Setting warm reset code and vector.\n");
1051 
1052 		smpboot_setup_warm_reset_vector(start_ip);
1053 		/*
1054 		 * Be paranoid about clearing APIC errors.
1055 		*/
1056 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1057 			apic_write(APIC_ESR, 0);
1058 			apic_read(APIC_ESR);
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * AP might wait on cpu_callout_mask in cpu_init() with
1064 	 * cpu_initialized_mask set if previous attempt to online
1065 	 * it timed-out. Clear cpu_initialized_mask so that after
1066 	 * INIT/SIPI it could start with a clean state.
1067 	 */
1068 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1069 	smp_mb();
1070 
1071 	/*
1072 	 * Wake up a CPU in difference cases:
1073 	 * - Use the method in the APIC driver if it's defined
1074 	 * Otherwise,
1075 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1076 	 */
1077 	if (apic->wakeup_secondary_cpu)
1078 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1079 	else
1080 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1081 						     cpu0_nmi_registered);
1082 
1083 	if (!boot_error) {
1084 		/*
1085 		 * Wait 10s total for first sign of life from AP
1086 		 */
1087 		boot_error = -1;
1088 		timeout = jiffies + 10*HZ;
1089 		while (time_before(jiffies, timeout)) {
1090 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1091 				/*
1092 				 * Tell AP to proceed with initialization
1093 				 */
1094 				cpumask_set_cpu(cpu, cpu_callout_mask);
1095 				boot_error = 0;
1096 				break;
1097 			}
1098 			schedule();
1099 		}
1100 	}
1101 
1102 	if (!boot_error) {
1103 		/*
1104 		 * Wait till AP completes initial initialization
1105 		 */
1106 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1107 			/*
1108 			 * Allow other tasks to run while we wait for the
1109 			 * AP to come online. This also gives a chance
1110 			 * for the MTRR work(triggered by the AP coming online)
1111 			 * to be completed in the stop machine context.
1112 			 */
1113 			schedule();
1114 		}
1115 	}
1116 
1117 	if (x86_platform.legacy.warm_reset) {
1118 		/*
1119 		 * Cleanup possible dangling ends...
1120 		 */
1121 		smpboot_restore_warm_reset_vector();
1122 	}
1123 
1124 	return boot_error;
1125 }
1126 
1127 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1128 {
1129 	int apicid = apic->cpu_present_to_apicid(cpu);
1130 	int cpu0_nmi_registered = 0;
1131 	unsigned long flags;
1132 	int err, ret = 0;
1133 
1134 	lockdep_assert_irqs_enabled();
1135 
1136 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1137 
1138 	if (apicid == BAD_APICID ||
1139 	    !physid_isset(apicid, phys_cpu_present_map) ||
1140 	    !apic->apic_id_valid(apicid)) {
1141 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1142 		return -EINVAL;
1143 	}
1144 
1145 	/*
1146 	 * Already booted CPU?
1147 	 */
1148 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1149 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1150 		return -ENOSYS;
1151 	}
1152 
1153 	/*
1154 	 * Save current MTRR state in case it was changed since early boot
1155 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1156 	 */
1157 	mtrr_save_state();
1158 
1159 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1160 	err = cpu_check_up_prepare(cpu);
1161 	if (err && err != -EBUSY)
1162 		return err;
1163 
1164 	/* the FPU context is blank, nobody can own it */
1165 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1166 
1167 	err = common_cpu_up(cpu, tidle);
1168 	if (err)
1169 		return err;
1170 
1171 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1172 	if (err) {
1173 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1174 		ret = -EIO;
1175 		goto unreg_nmi;
1176 	}
1177 
1178 	/*
1179 	 * Check TSC synchronization with the AP (keep irqs disabled
1180 	 * while doing so):
1181 	 */
1182 	local_irq_save(flags);
1183 	check_tsc_sync_source(cpu);
1184 	local_irq_restore(flags);
1185 
1186 	while (!cpu_online(cpu)) {
1187 		cpu_relax();
1188 		touch_nmi_watchdog();
1189 	}
1190 
1191 unreg_nmi:
1192 	/*
1193 	 * Clean up the nmi handler. Do this after the callin and callout sync
1194 	 * to avoid impact of possible long unregister time.
1195 	 */
1196 	if (cpu0_nmi_registered)
1197 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1198 
1199 	return ret;
1200 }
1201 
1202 /**
1203  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1204  */
1205 void arch_disable_smp_support(void)
1206 {
1207 	disable_ioapic_support();
1208 }
1209 
1210 /*
1211  * Fall back to non SMP mode after errors.
1212  *
1213  * RED-PEN audit/test this more. I bet there is more state messed up here.
1214  */
1215 static __init void disable_smp(void)
1216 {
1217 	pr_info("SMP disabled\n");
1218 
1219 	disable_ioapic_support();
1220 
1221 	init_cpu_present(cpumask_of(0));
1222 	init_cpu_possible(cpumask_of(0));
1223 
1224 	if (smp_found_config)
1225 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1226 	else
1227 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1228 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1229 	cpumask_set_cpu(0, topology_core_cpumask(0));
1230 	cpumask_set_cpu(0, topology_die_cpumask(0));
1231 }
1232 
1233 /*
1234  * Various sanity checks.
1235  */
1236 static void __init smp_sanity_check(void)
1237 {
1238 	preempt_disable();
1239 
1240 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1241 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1242 		unsigned int cpu;
1243 		unsigned nr;
1244 
1245 		pr_warn("More than 8 CPUs detected - skipping them\n"
1246 			"Use CONFIG_X86_BIGSMP\n");
1247 
1248 		nr = 0;
1249 		for_each_present_cpu(cpu) {
1250 			if (nr >= 8)
1251 				set_cpu_present(cpu, false);
1252 			nr++;
1253 		}
1254 
1255 		nr = 0;
1256 		for_each_possible_cpu(cpu) {
1257 			if (nr >= 8)
1258 				set_cpu_possible(cpu, false);
1259 			nr++;
1260 		}
1261 
1262 		nr_cpu_ids = 8;
1263 	}
1264 #endif
1265 
1266 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1267 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1268 			hard_smp_processor_id());
1269 
1270 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1271 	}
1272 
1273 	/*
1274 	 * Should not be necessary because the MP table should list the boot
1275 	 * CPU too, but we do it for the sake of robustness anyway.
1276 	 */
1277 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1278 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1279 			  boot_cpu_physical_apicid);
1280 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1281 	}
1282 	preempt_enable();
1283 }
1284 
1285 static void __init smp_cpu_index_default(void)
1286 {
1287 	int i;
1288 	struct cpuinfo_x86 *c;
1289 
1290 	for_each_possible_cpu(i) {
1291 		c = &cpu_data(i);
1292 		/* mark all to hotplug */
1293 		c->cpu_index = nr_cpu_ids;
1294 	}
1295 }
1296 
1297 static void __init smp_get_logical_apicid(void)
1298 {
1299 	if (x2apic_mode)
1300 		cpu0_logical_apicid = apic_read(APIC_LDR);
1301 	else
1302 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1303 }
1304 
1305 /*
1306  * Prepare for SMP bootup.
1307  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1308  *            for common interface support.
1309  */
1310 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1311 {
1312 	unsigned int i;
1313 
1314 	smp_cpu_index_default();
1315 
1316 	/*
1317 	 * Setup boot CPU information
1318 	 */
1319 	smp_store_boot_cpu_info(); /* Final full version of the data */
1320 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1321 	mb();
1322 
1323 	for_each_possible_cpu(i) {
1324 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1325 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1326 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1327 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1328 	}
1329 
1330 	/*
1331 	 * Set 'default' x86 topology, this matches default_topology() in that
1332 	 * it has NUMA nodes as a topology level. See also
1333 	 * native_smp_cpus_done().
1334 	 *
1335 	 * Must be done before set_cpus_sibling_map() is ran.
1336 	 */
1337 	set_sched_topology(x86_topology);
1338 
1339 	set_cpu_sibling_map(0);
1340 
1341 	smp_sanity_check();
1342 
1343 	switch (apic_intr_mode) {
1344 	case APIC_PIC:
1345 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1346 		disable_smp();
1347 		return;
1348 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1349 		disable_smp();
1350 		/* Setup local timer */
1351 		x86_init.timers.setup_percpu_clockev();
1352 		return;
1353 	case APIC_VIRTUAL_WIRE:
1354 	case APIC_SYMMETRIC_IO:
1355 		break;
1356 	}
1357 
1358 	/* Setup local timer */
1359 	x86_init.timers.setup_percpu_clockev();
1360 
1361 	smp_get_logical_apicid();
1362 
1363 	pr_info("CPU0: ");
1364 	print_cpu_info(&cpu_data(0));
1365 
1366 	uv_system_init();
1367 
1368 	set_mtrr_aps_delayed_init();
1369 
1370 	smp_quirk_init_udelay();
1371 
1372 	speculative_store_bypass_ht_init();
1373 }
1374 
1375 void arch_enable_nonboot_cpus_begin(void)
1376 {
1377 	set_mtrr_aps_delayed_init();
1378 }
1379 
1380 void arch_enable_nonboot_cpus_end(void)
1381 {
1382 	mtrr_aps_init();
1383 }
1384 
1385 /*
1386  * Early setup to make printk work.
1387  */
1388 void __init native_smp_prepare_boot_cpu(void)
1389 {
1390 	int me = smp_processor_id();
1391 	switch_to_new_gdt(me);
1392 	/* already set me in cpu_online_mask in boot_cpu_init() */
1393 	cpumask_set_cpu(me, cpu_callout_mask);
1394 	cpu_set_state_online(me);
1395 	native_pv_lock_init();
1396 }
1397 
1398 void __init calculate_max_logical_packages(void)
1399 {
1400 	int ncpus;
1401 
1402 	/*
1403 	 * Today neither Intel nor AMD support heterogenous systems so
1404 	 * extrapolate the boot cpu's data to all packages.
1405 	 */
1406 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1407 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1408 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1409 }
1410 
1411 void __init native_smp_cpus_done(unsigned int max_cpus)
1412 {
1413 	pr_debug("Boot done\n");
1414 
1415 	calculate_max_logical_packages();
1416 
1417 	if (x86_has_numa_in_package)
1418 		set_sched_topology(x86_numa_in_package_topology);
1419 
1420 	nmi_selftest();
1421 	impress_friends();
1422 	mtrr_aps_init();
1423 }
1424 
1425 static int __initdata setup_possible_cpus = -1;
1426 static int __init _setup_possible_cpus(char *str)
1427 {
1428 	get_option(&str, &setup_possible_cpus);
1429 	return 0;
1430 }
1431 early_param("possible_cpus", _setup_possible_cpus);
1432 
1433 
1434 /*
1435  * cpu_possible_mask should be static, it cannot change as cpu's
1436  * are onlined, or offlined. The reason is per-cpu data-structures
1437  * are allocated by some modules at init time, and dont expect to
1438  * do this dynamically on cpu arrival/departure.
1439  * cpu_present_mask on the other hand can change dynamically.
1440  * In case when cpu_hotplug is not compiled, then we resort to current
1441  * behaviour, which is cpu_possible == cpu_present.
1442  * - Ashok Raj
1443  *
1444  * Three ways to find out the number of additional hotplug CPUs:
1445  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1446  * - The user can overwrite it with possible_cpus=NUM
1447  * - Otherwise don't reserve additional CPUs.
1448  * We do this because additional CPUs waste a lot of memory.
1449  * -AK
1450  */
1451 __init void prefill_possible_map(void)
1452 {
1453 	int i, possible;
1454 
1455 	/* No boot processor was found in mptable or ACPI MADT */
1456 	if (!num_processors) {
1457 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1458 			int apicid = boot_cpu_physical_apicid;
1459 			int cpu = hard_smp_processor_id();
1460 
1461 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1462 
1463 			/* Make sure boot cpu is enumerated */
1464 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1465 			    apic->apic_id_valid(apicid))
1466 				generic_processor_info(apicid, boot_cpu_apic_version);
1467 		}
1468 
1469 		if (!num_processors)
1470 			num_processors = 1;
1471 	}
1472 
1473 	i = setup_max_cpus ?: 1;
1474 	if (setup_possible_cpus == -1) {
1475 		possible = num_processors;
1476 #ifdef CONFIG_HOTPLUG_CPU
1477 		if (setup_max_cpus)
1478 			possible += disabled_cpus;
1479 #else
1480 		if (possible > i)
1481 			possible = i;
1482 #endif
1483 	} else
1484 		possible = setup_possible_cpus;
1485 
1486 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1487 
1488 	/* nr_cpu_ids could be reduced via nr_cpus= */
1489 	if (possible > nr_cpu_ids) {
1490 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1491 			possible, nr_cpu_ids);
1492 		possible = nr_cpu_ids;
1493 	}
1494 
1495 #ifdef CONFIG_HOTPLUG_CPU
1496 	if (!setup_max_cpus)
1497 #endif
1498 	if (possible > i) {
1499 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1500 			possible, setup_max_cpus);
1501 		possible = i;
1502 	}
1503 
1504 	nr_cpu_ids = possible;
1505 
1506 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1507 		possible, max_t(int, possible - num_processors, 0));
1508 
1509 	reset_cpu_possible_mask();
1510 
1511 	for (i = 0; i < possible; i++)
1512 		set_cpu_possible(i, true);
1513 }
1514 
1515 #ifdef CONFIG_HOTPLUG_CPU
1516 
1517 /* Recompute SMT state for all CPUs on offline */
1518 static void recompute_smt_state(void)
1519 {
1520 	int max_threads, cpu;
1521 
1522 	max_threads = 0;
1523 	for_each_online_cpu (cpu) {
1524 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1525 
1526 		if (threads > max_threads)
1527 			max_threads = threads;
1528 	}
1529 	__max_smt_threads = max_threads;
1530 }
1531 
1532 static void remove_siblinginfo(int cpu)
1533 {
1534 	int sibling;
1535 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1536 
1537 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1538 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1539 		/*/
1540 		 * last thread sibling in this cpu core going down
1541 		 */
1542 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1543 			cpu_data(sibling).booted_cores--;
1544 	}
1545 
1546 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1547 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1548 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1549 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1550 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1551 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1552 	cpumask_clear(cpu_llc_shared_mask(cpu));
1553 	cpumask_clear(topology_sibling_cpumask(cpu));
1554 	cpumask_clear(topology_core_cpumask(cpu));
1555 	cpumask_clear(topology_die_cpumask(cpu));
1556 	c->cpu_core_id = 0;
1557 	c->booted_cores = 0;
1558 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1559 	recompute_smt_state();
1560 }
1561 
1562 static void remove_cpu_from_maps(int cpu)
1563 {
1564 	set_cpu_online(cpu, false);
1565 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1566 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1567 	/* was set by cpu_init() */
1568 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1569 	numa_remove_cpu(cpu);
1570 }
1571 
1572 void cpu_disable_common(void)
1573 {
1574 	int cpu = smp_processor_id();
1575 
1576 	remove_siblinginfo(cpu);
1577 
1578 	/* It's now safe to remove this processor from the online map */
1579 	lock_vector_lock();
1580 	remove_cpu_from_maps(cpu);
1581 	unlock_vector_lock();
1582 	fixup_irqs();
1583 	lapic_offline();
1584 }
1585 
1586 int native_cpu_disable(void)
1587 {
1588 	int ret;
1589 
1590 	ret = lapic_can_unplug_cpu();
1591 	if (ret)
1592 		return ret;
1593 
1594 	/*
1595 	 * Disable the local APIC. Otherwise IPI broadcasts will reach
1596 	 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1597 	 * messages.
1598 	 */
1599 	apic_soft_disable();
1600 	cpu_disable_common();
1601 
1602 	return 0;
1603 }
1604 
1605 int common_cpu_die(unsigned int cpu)
1606 {
1607 	int ret = 0;
1608 
1609 	/* We don't do anything here: idle task is faking death itself. */
1610 
1611 	/* They ack this in play_dead() by setting CPU_DEAD */
1612 	if (cpu_wait_death(cpu, 5)) {
1613 		if (system_state == SYSTEM_RUNNING)
1614 			pr_info("CPU %u is now offline\n", cpu);
1615 	} else {
1616 		pr_err("CPU %u didn't die...\n", cpu);
1617 		ret = -1;
1618 	}
1619 
1620 	return ret;
1621 }
1622 
1623 void native_cpu_die(unsigned int cpu)
1624 {
1625 	common_cpu_die(cpu);
1626 }
1627 
1628 void play_dead_common(void)
1629 {
1630 	idle_task_exit();
1631 
1632 	/* Ack it */
1633 	(void)cpu_report_death();
1634 
1635 	/*
1636 	 * With physical CPU hotplug, we should halt the cpu
1637 	 */
1638 	local_irq_disable();
1639 }
1640 
1641 static bool wakeup_cpu0(void)
1642 {
1643 	if (smp_processor_id() == 0 && enable_start_cpu0)
1644 		return true;
1645 
1646 	return false;
1647 }
1648 
1649 /*
1650  * We need to flush the caches before going to sleep, lest we have
1651  * dirty data in our caches when we come back up.
1652  */
1653 static inline void mwait_play_dead(void)
1654 {
1655 	unsigned int eax, ebx, ecx, edx;
1656 	unsigned int highest_cstate = 0;
1657 	unsigned int highest_subcstate = 0;
1658 	void *mwait_ptr;
1659 	int i;
1660 
1661 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1662 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1663 		return;
1664 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1665 		return;
1666 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1667 		return;
1668 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1669 		return;
1670 
1671 	eax = CPUID_MWAIT_LEAF;
1672 	ecx = 0;
1673 	native_cpuid(&eax, &ebx, &ecx, &edx);
1674 
1675 	/*
1676 	 * eax will be 0 if EDX enumeration is not valid.
1677 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1678 	 */
1679 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1680 		eax = 0;
1681 	} else {
1682 		edx >>= MWAIT_SUBSTATE_SIZE;
1683 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1684 			if (edx & MWAIT_SUBSTATE_MASK) {
1685 				highest_cstate = i;
1686 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1687 			}
1688 		}
1689 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1690 			(highest_subcstate - 1);
1691 	}
1692 
1693 	/*
1694 	 * This should be a memory location in a cache line which is
1695 	 * unlikely to be touched by other processors.  The actual
1696 	 * content is immaterial as it is not actually modified in any way.
1697 	 */
1698 	mwait_ptr = &current_thread_info()->flags;
1699 
1700 	wbinvd();
1701 
1702 	while (1) {
1703 		/*
1704 		 * The CLFLUSH is a workaround for erratum AAI65 for
1705 		 * the Xeon 7400 series.  It's not clear it is actually
1706 		 * needed, but it should be harmless in either case.
1707 		 * The WBINVD is insufficient due to the spurious-wakeup
1708 		 * case where we return around the loop.
1709 		 */
1710 		mb();
1711 		clflush(mwait_ptr);
1712 		mb();
1713 		__monitor(mwait_ptr, 0, 0);
1714 		mb();
1715 		__mwait(eax, 0);
1716 		/*
1717 		 * If NMI wants to wake up CPU0, start CPU0.
1718 		 */
1719 		if (wakeup_cpu0())
1720 			start_cpu0();
1721 	}
1722 }
1723 
1724 void hlt_play_dead(void)
1725 {
1726 	if (__this_cpu_read(cpu_info.x86) >= 4)
1727 		wbinvd();
1728 
1729 	while (1) {
1730 		native_halt();
1731 		/*
1732 		 * If NMI wants to wake up CPU0, start CPU0.
1733 		 */
1734 		if (wakeup_cpu0())
1735 			start_cpu0();
1736 	}
1737 }
1738 
1739 void native_play_dead(void)
1740 {
1741 	play_dead_common();
1742 	tboot_shutdown(TB_SHUTDOWN_WFS);
1743 
1744 	mwait_play_dead();	/* Only returns on failure */
1745 	if (cpuidle_play_dead())
1746 		hlt_play_dead();
1747 }
1748 
1749 #else /* ... !CONFIG_HOTPLUG_CPU */
1750 int native_cpu_disable(void)
1751 {
1752 	return -ENOSYS;
1753 }
1754 
1755 void native_cpu_die(unsigned int cpu)
1756 {
1757 	/* We said "no" in __cpu_disable */
1758 	BUG();
1759 }
1760 
1761 void native_play_dead(void)
1762 {
1763 	BUG();
1764 }
1765 
1766 #endif
1767