xref: /linux/arch/x86/kernel/smpboot.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 
64 #include <asm/acpi.h>
65 #include <asm/cacheinfo.h>
66 #include <asm/desc.h>
67 #include <asm/nmi.h>
68 #include <asm/irq.h>
69 #include <asm/realmode.h>
70 #include <asm/cpu.h>
71 #include <asm/numa.h>
72 #include <asm/tlbflush.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/apic.h>
76 #include <asm/io_apic.h>
77 #include <asm/fpu/api.h>
78 #include <asm/setup.h>
79 #include <asm/uv/uv.h>
80 #include <asm/microcode.h>
81 #include <asm/i8259.h>
82 #include <asm/misc.h>
83 #include <asm/qspinlock.h>
84 #include <asm/intel-family.h>
85 #include <asm/cpu_device_id.h>
86 #include <asm/spec-ctrl.h>
87 #include <asm/hw_irq.h>
88 #include <asm/stackprotector.h>
89 #include <asm/sev.h>
90 #include <asm/spec-ctrl.h>
91 
92 /* representing HT siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
95 
96 /* representing HT and core siblings of each logical CPU */
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
98 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
99 
100 /* representing HT, core, and die siblings of each logical CPU */
101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
102 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
103 
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107 
108 /* CPUs which are the primary SMT threads */
109 struct cpumask __cpu_primary_thread_mask __read_mostly;
110 
111 /* Representing CPUs for which sibling maps can be computed */
112 static cpumask_var_t cpu_sibling_setup_mask;
113 
114 struct mwait_cpu_dead {
115 	unsigned int	control;
116 	unsigned int	status;
117 };
118 
119 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
120 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
121 
122 /*
123  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
124  * that it's unlikely to be touched by other CPUs.
125  */
126 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
127 
128 /* Logical package management. */
129 struct logical_maps {
130 	u32	phys_pkg_id;
131 	u32	phys_die_id;
132 	u32	logical_pkg_id;
133 	u32	logical_die_id;
134 };
135 
136 /* Temporary workaround until the full topology mechanics is in place */
137 static DEFINE_PER_CPU_READ_MOSTLY(struct logical_maps, logical_maps) = {
138 	.phys_pkg_id	= U32_MAX,
139 	.phys_die_id	= U32_MAX,
140 };
141 
142 unsigned int __max_logical_packages __read_mostly;
143 EXPORT_SYMBOL(__max_logical_packages);
144 static unsigned int logical_packages __read_mostly;
145 static unsigned int logical_die __read_mostly;
146 
147 /* Maximum number of SMT threads on any online core */
148 int __read_mostly __max_smt_threads = 1;
149 
150 /* Flag to indicate if a complete sched domain rebuild is required */
151 bool x86_topology_update;
152 
153 int arch_update_cpu_topology(void)
154 {
155 	int retval = x86_topology_update;
156 
157 	x86_topology_update = false;
158 	return retval;
159 }
160 
161 static unsigned int smpboot_warm_reset_vector_count;
162 
163 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
164 {
165 	unsigned long flags;
166 
167 	spin_lock_irqsave(&rtc_lock, flags);
168 	if (!smpboot_warm_reset_vector_count++) {
169 		CMOS_WRITE(0xa, 0xf);
170 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
171 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
172 	}
173 	spin_unlock_irqrestore(&rtc_lock, flags);
174 }
175 
176 static inline void smpboot_restore_warm_reset_vector(void)
177 {
178 	unsigned long flags;
179 
180 	/*
181 	 * Paranoid:  Set warm reset code and vector here back
182 	 * to default values.
183 	 */
184 	spin_lock_irqsave(&rtc_lock, flags);
185 	if (!--smpboot_warm_reset_vector_count) {
186 		CMOS_WRITE(0, 0xf);
187 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
188 	}
189 	spin_unlock_irqrestore(&rtc_lock, flags);
190 
191 }
192 
193 /* Run the next set of setup steps for the upcoming CPU */
194 static void ap_starting(void)
195 {
196 	int cpuid = smp_processor_id();
197 
198 	/* Mop up eventual mwait_play_dead() wreckage */
199 	this_cpu_write(mwait_cpu_dead.status, 0);
200 	this_cpu_write(mwait_cpu_dead.control, 0);
201 
202 	/*
203 	 * If woken up by an INIT in an 82489DX configuration the alive
204 	 * synchronization guarantees that the CPU does not reach this
205 	 * point before an INIT_deassert IPI reaches the local APIC, so it
206 	 * is now safe to touch the local APIC.
207 	 *
208 	 * Set up this CPU, first the APIC, which is probably redundant on
209 	 * most boards.
210 	 */
211 	apic_ap_setup();
212 
213 	/* Save the processor parameters. */
214 	smp_store_cpu_info(cpuid);
215 
216 	/*
217 	 * The topology information must be up to date before
218 	 * notify_cpu_starting().
219 	 */
220 	set_cpu_sibling_map(cpuid);
221 
222 	ap_init_aperfmperf();
223 
224 	pr_debug("Stack at about %p\n", &cpuid);
225 
226 	wmb();
227 
228 	/*
229 	 * This runs the AP through all the cpuhp states to its target
230 	 * state CPUHP_ONLINE.
231 	 */
232 	notify_cpu_starting(cpuid);
233 }
234 
235 static void ap_calibrate_delay(void)
236 {
237 	/*
238 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
239 	 * smp_store_cpu_info() stored a value that is close but not as
240 	 * accurate as the value just calculated.
241 	 *
242 	 * As this is invoked after the TSC synchronization check,
243 	 * calibrate_delay_is_known() will skip the calibration routine
244 	 * when TSC is synchronized across sockets.
245 	 */
246 	calibrate_delay();
247 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
248 }
249 
250 /*
251  * Activate a secondary processor.
252  */
253 static void notrace start_secondary(void *unused)
254 {
255 	/*
256 	 * Don't put *anything* except direct CPU state initialization
257 	 * before cpu_init(), SMP booting is too fragile that we want to
258 	 * limit the things done here to the most necessary things.
259 	 */
260 	cr4_init();
261 
262 	/*
263 	 * 32-bit specific. 64-bit reaches this code with the correct page
264 	 * table established. Yet another historical divergence.
265 	 */
266 	if (IS_ENABLED(CONFIG_X86_32)) {
267 		/* switch away from the initial page table */
268 		load_cr3(swapper_pg_dir);
269 		__flush_tlb_all();
270 	}
271 
272 	cpu_init_exception_handling();
273 
274 	/*
275 	 * 32-bit systems load the microcode from the ASM startup code for
276 	 * historical reasons.
277 	 *
278 	 * On 64-bit systems load it before reaching the AP alive
279 	 * synchronization point below so it is not part of the full per
280 	 * CPU serialized bringup part when "parallel" bringup is enabled.
281 	 *
282 	 * That's even safe when hyperthreading is enabled in the CPU as
283 	 * the core code starts the primary threads first and leaves the
284 	 * secondary threads waiting for SIPI. Loading microcode on
285 	 * physical cores concurrently is a safe operation.
286 	 *
287 	 * This covers both the Intel specific issue that concurrent
288 	 * microcode loading on SMT siblings must be prohibited and the
289 	 * vendor independent issue`that microcode loading which changes
290 	 * CPUID, MSRs etc. must be strictly serialized to maintain
291 	 * software state correctness.
292 	 */
293 	if (IS_ENABLED(CONFIG_X86_64))
294 		load_ucode_ap();
295 
296 	/*
297 	 * Synchronization point with the hotplug core. Sets this CPUs
298 	 * synchronization state to ALIVE and spin-waits for the control CPU to
299 	 * release this CPU for further bringup.
300 	 */
301 	cpuhp_ap_sync_alive();
302 
303 	cpu_init();
304 	fpu__init_cpu();
305 	rcutree_report_cpu_starting(raw_smp_processor_id());
306 	x86_cpuinit.early_percpu_clock_init();
307 
308 	ap_starting();
309 
310 	/* Check TSC synchronization with the control CPU. */
311 	check_tsc_sync_target();
312 
313 	/*
314 	 * Calibrate the delay loop after the TSC synchronization check.
315 	 * This allows to skip the calibration when TSC is synchronized
316 	 * across sockets.
317 	 */
318 	ap_calibrate_delay();
319 
320 	speculative_store_bypass_ht_init();
321 
322 	/*
323 	 * Lock vector_lock, set CPU online and bring the vector
324 	 * allocator online. Online must be set with vector_lock held
325 	 * to prevent a concurrent irq setup/teardown from seeing a
326 	 * half valid vector space.
327 	 */
328 	lock_vector_lock();
329 	set_cpu_online(smp_processor_id(), true);
330 	lapic_online();
331 	unlock_vector_lock();
332 	x86_platform.nmi_init();
333 
334 	/* enable local interrupts */
335 	local_irq_enable();
336 
337 	x86_cpuinit.setup_percpu_clockev();
338 
339 	wmb();
340 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
341 }
342 
343 /**
344  * topology_phys_to_logical_pkg - Map a physical package id to a logical
345  * @phys_pkg:	The physical package id to map
346  *
347  * Returns logical package id or -1 if not found
348  */
349 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
350 {
351 	int cpu;
352 
353 	for_each_possible_cpu(cpu) {
354 		if (per_cpu(logical_maps.phys_pkg_id, cpu) == phys_pkg)
355 			return per_cpu(logical_maps.logical_pkg_id, cpu);
356 	}
357 	return -1;
358 }
359 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
360 
361 /**
362  * topology_phys_to_logical_die - Map a physical die id to logical
363  * @die_id:	The physical die id to map
364  * @cur_cpu:	The CPU for which the mapping is done
365  *
366  * Returns logical die id or -1 if not found
367  */
368 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
369 {
370 	int cpu, proc_id = cpu_data(cur_cpu).topo.pkg_id;
371 
372 	for_each_possible_cpu(cpu) {
373 		if (per_cpu(logical_maps.phys_pkg_id, cpu) == proc_id &&
374 		    per_cpu(logical_maps.phys_die_id, cpu) == die_id)
375 			return per_cpu(logical_maps.logical_die_id, cpu);
376 	}
377 	return -1;
378 }
379 
380 /**
381  * topology_update_package_map - Update the physical to logical package map
382  * @pkg:	The physical package id as retrieved via CPUID
383  * @cpu:	The cpu for which this is updated
384  */
385 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
386 {
387 	int new;
388 
389 	/* Already available somewhere? */
390 	new = topology_phys_to_logical_pkg(pkg);
391 	if (new >= 0)
392 		goto found;
393 
394 	new = logical_packages++;
395 	if (new != pkg) {
396 		pr_info("CPU %u Converting physical %u to logical package %u\n",
397 			cpu, pkg, new);
398 	}
399 found:
400 	per_cpu(logical_maps.phys_pkg_id, cpu) = pkg;
401 	per_cpu(logical_maps.logical_pkg_id, cpu) = new;
402 	cpu_data(cpu).topo.logical_pkg_id = new;
403 	return 0;
404 }
405 /**
406  * topology_update_die_map - Update the physical to logical die map
407  * @die:	The die id as retrieved via CPUID
408  * @cpu:	The cpu for which this is updated
409  */
410 int topology_update_die_map(unsigned int die, unsigned int cpu)
411 {
412 	int new;
413 
414 	/* Already available somewhere? */
415 	new = topology_phys_to_logical_die(die, cpu);
416 	if (new >= 0)
417 		goto found;
418 
419 	new = logical_die++;
420 	if (new != die) {
421 		pr_info("CPU %u Converting physical %u to logical die %u\n",
422 			cpu, die, new);
423 	}
424 found:
425 	per_cpu(logical_maps.phys_die_id, cpu) = die;
426 	per_cpu(logical_maps.logical_die_id, cpu) = new;
427 	cpu_data(cpu).topo.logical_die_id = new;
428 	return 0;
429 }
430 
431 static void __init smp_store_boot_cpu_info(void)
432 {
433 	int id = 0; /* CPU 0 */
434 	struct cpuinfo_x86 *c = &cpu_data(id);
435 
436 	*c = boot_cpu_data;
437 	c->cpu_index = id;
438 	topology_update_package_map(c->topo.pkg_id, id);
439 	topology_update_die_map(c->topo.die_id, id);
440 	c->initialized = true;
441 }
442 
443 /*
444  * The bootstrap kernel entry code has set these up. Save them for
445  * a given CPU
446  */
447 void smp_store_cpu_info(int id)
448 {
449 	struct cpuinfo_x86 *c = &cpu_data(id);
450 
451 	/* Copy boot_cpu_data only on the first bringup */
452 	if (!c->initialized)
453 		*c = boot_cpu_data;
454 	c->cpu_index = id;
455 	/*
456 	 * During boot time, CPU0 has this setup already. Save the info when
457 	 * bringing up an AP.
458 	 */
459 	identify_secondary_cpu(c);
460 	c->initialized = true;
461 }
462 
463 static bool
464 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
465 {
466 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
467 
468 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
469 }
470 
471 static bool
472 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
473 {
474 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
475 
476 	return !WARN_ONCE(!topology_same_node(c, o),
477 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
478 		"[node: %d != %d]. Ignoring dependency.\n",
479 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
480 }
481 
482 #define link_mask(mfunc, c1, c2)					\
483 do {									\
484 	cpumask_set_cpu((c1), mfunc(c2));				\
485 	cpumask_set_cpu((c2), mfunc(c1));				\
486 } while (0)
487 
488 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
489 {
490 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
491 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
492 
493 		if (c->topo.pkg_id == o->topo.pkg_id &&
494 		    c->topo.die_id == o->topo.die_id &&
495 		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
496 			if (c->topo.core_id == o->topo.core_id)
497 				return topology_sane(c, o, "smt");
498 
499 			if ((c->topo.cu_id != 0xff) &&
500 			    (o->topo.cu_id != 0xff) &&
501 			    (c->topo.cu_id == o->topo.cu_id))
502 				return topology_sane(c, o, "smt");
503 		}
504 
505 	} else if (c->topo.pkg_id == o->topo.pkg_id &&
506 		   c->topo.die_id == o->topo.die_id &&
507 		   c->topo.core_id == o->topo.core_id) {
508 		return topology_sane(c, o, "smt");
509 	}
510 
511 	return false;
512 }
513 
514 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
515 {
516 	if (c->topo.pkg_id == o->topo.pkg_id &&
517 	    c->topo.die_id == o->topo.die_id)
518 		return true;
519 	return false;
520 }
521 
522 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
523 {
524 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
525 
526 	/* If the arch didn't set up l2c_id, fall back to SMT */
527 	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
528 		return match_smt(c, o);
529 
530 	/* Do not match if L2 cache id does not match: */
531 	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
532 		return false;
533 
534 	return topology_sane(c, o, "l2c");
535 }
536 
537 /*
538  * Unlike the other levels, we do not enforce keeping a
539  * multicore group inside a NUMA node.  If this happens, we will
540  * discard the MC level of the topology later.
541  */
542 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
543 {
544 	if (c->topo.pkg_id == o->topo.pkg_id)
545 		return true;
546 	return false;
547 }
548 
549 /*
550  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
551  *
552  * Any Intel CPU that has multiple nodes per package and does not
553  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
554  *
555  * When in SNC mode, these CPUs enumerate an LLC that is shared
556  * by multiple NUMA nodes. The LLC is shared for off-package data
557  * access but private to the NUMA node (half of the package) for
558  * on-package access. CPUID (the source of the information about
559  * the LLC) can only enumerate the cache as shared or unshared,
560  * but not this particular configuration.
561  */
562 
563 static const struct x86_cpu_id intel_cod_cpu[] = {
564 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
565 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
566 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
567 	{}
568 };
569 
570 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
571 {
572 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
573 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
574 	bool intel_snc = id && id->driver_data;
575 
576 	/* Do not match if we do not have a valid APICID for cpu: */
577 	if (per_cpu_llc_id(cpu1) == BAD_APICID)
578 		return false;
579 
580 	/* Do not match if LLC id does not match: */
581 	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
582 		return false;
583 
584 	/*
585 	 * Allow the SNC topology without warning. Return of false
586 	 * means 'c' does not share the LLC of 'o'. This will be
587 	 * reflected to userspace.
588 	 */
589 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
590 		return false;
591 
592 	return topology_sane(c, o, "llc");
593 }
594 
595 
596 static inline int x86_sched_itmt_flags(void)
597 {
598 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
599 }
600 
601 #ifdef CONFIG_SCHED_MC
602 static int x86_core_flags(void)
603 {
604 	return cpu_core_flags() | x86_sched_itmt_flags();
605 }
606 #endif
607 #ifdef CONFIG_SCHED_SMT
608 static int x86_smt_flags(void)
609 {
610 	return cpu_smt_flags();
611 }
612 #endif
613 #ifdef CONFIG_SCHED_CLUSTER
614 static int x86_cluster_flags(void)
615 {
616 	return cpu_cluster_flags() | x86_sched_itmt_flags();
617 }
618 #endif
619 
620 static int x86_die_flags(void)
621 {
622 	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
623 	       return x86_sched_itmt_flags();
624 
625 	return 0;
626 }
627 
628 /*
629  * Set if a package/die has multiple NUMA nodes inside.
630  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
631  * Sub-NUMA Clustering have this.
632  */
633 static bool x86_has_numa_in_package;
634 
635 static struct sched_domain_topology_level x86_topology[6];
636 
637 static void __init build_sched_topology(void)
638 {
639 	int i = 0;
640 
641 #ifdef CONFIG_SCHED_SMT
642 	x86_topology[i++] = (struct sched_domain_topology_level){
643 		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
644 	};
645 #endif
646 #ifdef CONFIG_SCHED_CLUSTER
647 	x86_topology[i++] = (struct sched_domain_topology_level){
648 		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
649 	};
650 #endif
651 #ifdef CONFIG_SCHED_MC
652 	x86_topology[i++] = (struct sched_domain_topology_level){
653 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
654 	};
655 #endif
656 	/*
657 	 * When there is NUMA topology inside the package skip the PKG domain
658 	 * since the NUMA domains will auto-magically create the right spanning
659 	 * domains based on the SLIT.
660 	 */
661 	if (!x86_has_numa_in_package) {
662 		x86_topology[i++] = (struct sched_domain_topology_level){
663 			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
664 		};
665 	}
666 
667 	/*
668 	 * There must be one trailing NULL entry left.
669 	 */
670 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
671 
672 	set_sched_topology(x86_topology);
673 }
674 
675 void set_cpu_sibling_map(int cpu)
676 {
677 	bool has_smt = smp_num_siblings > 1;
678 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
679 	struct cpuinfo_x86 *c = &cpu_data(cpu);
680 	struct cpuinfo_x86 *o;
681 	int i, threads;
682 
683 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
684 
685 	if (!has_mp) {
686 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
687 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
688 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
689 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
690 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
691 		c->booted_cores = 1;
692 		return;
693 	}
694 
695 	for_each_cpu(i, cpu_sibling_setup_mask) {
696 		o = &cpu_data(i);
697 
698 		if (match_pkg(c, o) && !topology_same_node(c, o))
699 			x86_has_numa_in_package = true;
700 
701 		if ((i == cpu) || (has_smt && match_smt(c, o)))
702 			link_mask(topology_sibling_cpumask, cpu, i);
703 
704 		if ((i == cpu) || (has_mp && match_llc(c, o)))
705 			link_mask(cpu_llc_shared_mask, cpu, i);
706 
707 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
708 			link_mask(cpu_l2c_shared_mask, cpu, i);
709 
710 		if ((i == cpu) || (has_mp && match_die(c, o)))
711 			link_mask(topology_die_cpumask, cpu, i);
712 	}
713 
714 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
715 	if (threads > __max_smt_threads)
716 		__max_smt_threads = threads;
717 
718 	for_each_cpu(i, topology_sibling_cpumask(cpu))
719 		cpu_data(i).smt_active = threads > 1;
720 
721 	/*
722 	 * This needs a separate iteration over the cpus because we rely on all
723 	 * topology_sibling_cpumask links to be set-up.
724 	 */
725 	for_each_cpu(i, cpu_sibling_setup_mask) {
726 		o = &cpu_data(i);
727 
728 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
729 			link_mask(topology_core_cpumask, cpu, i);
730 
731 			/*
732 			 *  Does this new cpu bringup a new core?
733 			 */
734 			if (threads == 1) {
735 				/*
736 				 * for each core in package, increment
737 				 * the booted_cores for this new cpu
738 				 */
739 				if (cpumask_first(
740 				    topology_sibling_cpumask(i)) == i)
741 					c->booted_cores++;
742 				/*
743 				 * increment the core count for all
744 				 * the other cpus in this package
745 				 */
746 				if (i != cpu)
747 					cpu_data(i).booted_cores++;
748 			} else if (i != cpu && !c->booted_cores)
749 				c->booted_cores = cpu_data(i).booted_cores;
750 		}
751 	}
752 }
753 
754 /* maps the cpu to the sched domain representing multi-core */
755 const struct cpumask *cpu_coregroup_mask(int cpu)
756 {
757 	return cpu_llc_shared_mask(cpu);
758 }
759 
760 const struct cpumask *cpu_clustergroup_mask(int cpu)
761 {
762 	return cpu_l2c_shared_mask(cpu);
763 }
764 
765 static void impress_friends(void)
766 {
767 	int cpu;
768 	unsigned long bogosum = 0;
769 	/*
770 	 * Allow the user to impress friends.
771 	 */
772 	pr_debug("Before bogomips\n");
773 	for_each_online_cpu(cpu)
774 		bogosum += cpu_data(cpu).loops_per_jiffy;
775 
776 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
777 		num_online_cpus(),
778 		bogosum/(500000/HZ),
779 		(bogosum/(5000/HZ))%100);
780 
781 	pr_debug("Before bogocount - setting activated=1\n");
782 }
783 
784 /*
785  * The Multiprocessor Specification 1.4 (1997) example code suggests
786  * that there should be a 10ms delay between the BSP asserting INIT
787  * and de-asserting INIT, when starting a remote processor.
788  * But that slows boot and resume on modern processors, which include
789  * many cores and don't require that delay.
790  *
791  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
792  * Modern processor families are quirked to remove the delay entirely.
793  */
794 #define UDELAY_10MS_DEFAULT 10000
795 
796 static unsigned int init_udelay = UINT_MAX;
797 
798 static int __init cpu_init_udelay(char *str)
799 {
800 	get_option(&str, &init_udelay);
801 
802 	return 0;
803 }
804 early_param("cpu_init_udelay", cpu_init_udelay);
805 
806 static void __init smp_quirk_init_udelay(void)
807 {
808 	/* if cmdline changed it from default, leave it alone */
809 	if (init_udelay != UINT_MAX)
810 		return;
811 
812 	/* if modern processor, use no delay */
813 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
814 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
815 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
816 		init_udelay = 0;
817 		return;
818 	}
819 	/* else, use legacy delay */
820 	init_udelay = UDELAY_10MS_DEFAULT;
821 }
822 
823 /*
824  * Wake up AP by INIT, INIT, STARTUP sequence.
825  */
826 static void send_init_sequence(u32 phys_apicid)
827 {
828 	int maxlvt = lapic_get_maxlvt();
829 
830 	/* Be paranoid about clearing APIC errors. */
831 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
832 		/* Due to the Pentium erratum 3AP.  */
833 		if (maxlvt > 3)
834 			apic_write(APIC_ESR, 0);
835 		apic_read(APIC_ESR);
836 	}
837 
838 	/* Assert INIT on the target CPU */
839 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
840 	safe_apic_wait_icr_idle();
841 
842 	udelay(init_udelay);
843 
844 	/* Deassert INIT on the target CPU */
845 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
846 	safe_apic_wait_icr_idle();
847 }
848 
849 /*
850  * Wake up AP by INIT, INIT, STARTUP sequence.
851  */
852 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
853 {
854 	unsigned long send_status = 0, accept_status = 0;
855 	int num_starts, j, maxlvt;
856 
857 	preempt_disable();
858 	maxlvt = lapic_get_maxlvt();
859 	send_init_sequence(phys_apicid);
860 
861 	mb();
862 
863 	/*
864 	 * Should we send STARTUP IPIs ?
865 	 *
866 	 * Determine this based on the APIC version.
867 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
868 	 */
869 	if (APIC_INTEGRATED(boot_cpu_apic_version))
870 		num_starts = 2;
871 	else
872 		num_starts = 0;
873 
874 	/*
875 	 * Run STARTUP IPI loop.
876 	 */
877 	pr_debug("#startup loops: %d\n", num_starts);
878 
879 	for (j = 1; j <= num_starts; j++) {
880 		pr_debug("Sending STARTUP #%d\n", j);
881 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
882 			apic_write(APIC_ESR, 0);
883 		apic_read(APIC_ESR);
884 		pr_debug("After apic_write\n");
885 
886 		/*
887 		 * STARTUP IPI
888 		 */
889 
890 		/* Target chip */
891 		/* Boot on the stack */
892 		/* Kick the second */
893 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
894 			       phys_apicid);
895 
896 		/*
897 		 * Give the other CPU some time to accept the IPI.
898 		 */
899 		if (init_udelay == 0)
900 			udelay(10);
901 		else
902 			udelay(300);
903 
904 		pr_debug("Startup point 1\n");
905 
906 		pr_debug("Waiting for send to finish...\n");
907 		send_status = safe_apic_wait_icr_idle();
908 
909 		/*
910 		 * Give the other CPU some time to accept the IPI.
911 		 */
912 		if (init_udelay == 0)
913 			udelay(10);
914 		else
915 			udelay(200);
916 
917 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
918 			apic_write(APIC_ESR, 0);
919 		accept_status = (apic_read(APIC_ESR) & 0xEF);
920 		if (send_status || accept_status)
921 			break;
922 	}
923 	pr_debug("After Startup\n");
924 
925 	if (send_status)
926 		pr_err("APIC never delivered???\n");
927 	if (accept_status)
928 		pr_err("APIC delivery error (%lx)\n", accept_status);
929 
930 	preempt_enable();
931 	return (send_status | accept_status);
932 }
933 
934 /* reduce the number of lines printed when booting a large cpu count system */
935 static void announce_cpu(int cpu, int apicid)
936 {
937 	static int width, node_width, first = 1;
938 	static int current_node = NUMA_NO_NODE;
939 	int node = early_cpu_to_node(cpu);
940 
941 	if (!width)
942 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
943 
944 	if (!node_width)
945 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
946 
947 	if (system_state < SYSTEM_RUNNING) {
948 		if (first)
949 			pr_info("x86: Booting SMP configuration:\n");
950 
951 		if (node != current_node) {
952 			if (current_node > (-1))
953 				pr_cont("\n");
954 			current_node = node;
955 
956 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
957 			       node_width - num_digits(node), " ", node);
958 		}
959 
960 		/* Add padding for the BSP */
961 		if (first)
962 			pr_cont("%*s", width + 1, " ");
963 		first = 0;
964 
965 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
966 	} else
967 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
968 			node, cpu, apicid);
969 }
970 
971 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
972 {
973 	int ret;
974 
975 	/* Just in case we booted with a single CPU. */
976 	alternatives_enable_smp();
977 
978 	per_cpu(pcpu_hot.current_task, cpu) = idle;
979 	cpu_init_stack_canary(cpu, idle);
980 
981 	/* Initialize the interrupt stack(s) */
982 	ret = irq_init_percpu_irqstack(cpu);
983 	if (ret)
984 		return ret;
985 
986 #ifdef CONFIG_X86_32
987 	/* Stack for startup_32 can be just as for start_secondary onwards */
988 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
989 #endif
990 	return 0;
991 }
992 
993 /*
994  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
995  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
996  * Returns zero if startup was successfully sent, else error code from
997  * ->wakeup_secondary_cpu.
998  */
999 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
1000 {
1001 	unsigned long start_ip = real_mode_header->trampoline_start;
1002 	int ret;
1003 
1004 #ifdef CONFIG_X86_64
1005 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1006 	if (apic->wakeup_secondary_cpu_64)
1007 		start_ip = real_mode_header->trampoline_start64;
1008 #endif
1009 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1010 	initial_code = (unsigned long)start_secondary;
1011 
1012 	if (IS_ENABLED(CONFIG_X86_32)) {
1013 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1014 		initial_stack  = idle->thread.sp;
1015 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1016 		smpboot_control = cpu;
1017 	}
1018 
1019 	/* Enable the espfix hack for this CPU */
1020 	init_espfix_ap(cpu);
1021 
1022 	/* So we see what's up */
1023 	announce_cpu(cpu, apicid);
1024 
1025 	/*
1026 	 * This grunge runs the startup process for
1027 	 * the targeted processor.
1028 	 */
1029 	if (x86_platform.legacy.warm_reset) {
1030 
1031 		pr_debug("Setting warm reset code and vector.\n");
1032 
1033 		smpboot_setup_warm_reset_vector(start_ip);
1034 		/*
1035 		 * Be paranoid about clearing APIC errors.
1036 		*/
1037 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1038 			apic_write(APIC_ESR, 0);
1039 			apic_read(APIC_ESR);
1040 		}
1041 	}
1042 
1043 	smp_mb();
1044 
1045 	/*
1046 	 * Wake up a CPU in difference cases:
1047 	 * - Use a method from the APIC driver if one defined, with wakeup
1048 	 *   straight to 64-bit mode preferred over wakeup to RM.
1049 	 * Otherwise,
1050 	 * - Use an INIT boot APIC message
1051 	 */
1052 	if (apic->wakeup_secondary_cpu_64)
1053 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1054 	else if (apic->wakeup_secondary_cpu)
1055 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1056 	else
1057 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1058 
1059 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1060 	if (ret)
1061 		arch_cpuhp_cleanup_kick_cpu(cpu);
1062 	return ret;
1063 }
1064 
1065 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1066 {
1067 	u32 apicid = apic->cpu_present_to_apicid(cpu);
1068 	int err;
1069 
1070 	lockdep_assert_irqs_enabled();
1071 
1072 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1073 
1074 	if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) ||
1075 	    !apic_id_valid(apicid)) {
1076 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1077 		return -EINVAL;
1078 	}
1079 
1080 	/*
1081 	 * Save current MTRR state in case it was changed since early boot
1082 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1083 	 */
1084 	mtrr_save_state();
1085 
1086 	/* the FPU context is blank, nobody can own it */
1087 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1088 
1089 	err = common_cpu_up(cpu, tidle);
1090 	if (err)
1091 		return err;
1092 
1093 	err = do_boot_cpu(apicid, cpu, tidle);
1094 	if (err)
1095 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1096 
1097 	return err;
1098 }
1099 
1100 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1101 {
1102 	return smp_ops.kick_ap_alive(cpu, tidle);
1103 }
1104 
1105 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1106 {
1107 	/* Cleanup possible dangling ends... */
1108 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1109 		smpboot_restore_warm_reset_vector();
1110 }
1111 
1112 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1113 {
1114 	if (smp_ops.cleanup_dead_cpu)
1115 		smp_ops.cleanup_dead_cpu(cpu);
1116 
1117 	if (system_state == SYSTEM_RUNNING)
1118 		pr_info("CPU %u is now offline\n", cpu);
1119 }
1120 
1121 void arch_cpuhp_sync_state_poll(void)
1122 {
1123 	if (smp_ops.poll_sync_state)
1124 		smp_ops.poll_sync_state();
1125 }
1126 
1127 /**
1128  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1129  */
1130 void __init arch_disable_smp_support(void)
1131 {
1132 	disable_ioapic_support();
1133 }
1134 
1135 /*
1136  * Fall back to non SMP mode after errors.
1137  *
1138  * RED-PEN audit/test this more. I bet there is more state messed up here.
1139  */
1140 static __init void disable_smp(void)
1141 {
1142 	pr_info("SMP disabled\n");
1143 
1144 	disable_ioapic_support();
1145 
1146 	init_cpu_present(cpumask_of(0));
1147 	init_cpu_possible(cpumask_of(0));
1148 
1149 	if (smp_found_config)
1150 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1151 	else
1152 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1153 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1154 	cpumask_set_cpu(0, topology_core_cpumask(0));
1155 	cpumask_set_cpu(0, topology_die_cpumask(0));
1156 }
1157 
1158 static void __init smp_cpu_index_default(void)
1159 {
1160 	int i;
1161 	struct cpuinfo_x86 *c;
1162 
1163 	for_each_possible_cpu(i) {
1164 		c = &cpu_data(i);
1165 		/* mark all to hotplug */
1166 		c->cpu_index = nr_cpu_ids;
1167 	}
1168 }
1169 
1170 void __init smp_prepare_cpus_common(void)
1171 {
1172 	unsigned int i;
1173 
1174 	smp_cpu_index_default();
1175 
1176 	/*
1177 	 * Setup boot CPU information
1178 	 */
1179 	smp_store_boot_cpu_info(); /* Final full version of the data */
1180 	mb();
1181 
1182 	for_each_possible_cpu(i) {
1183 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1184 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1185 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1186 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1187 		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1188 	}
1189 
1190 	set_cpu_sibling_map(0);
1191 }
1192 
1193 #ifdef CONFIG_X86_64
1194 /* Establish whether parallel bringup can be supported. */
1195 bool __init arch_cpuhp_init_parallel_bringup(void)
1196 {
1197 	if (!x86_cpuinit.parallel_bringup) {
1198 		pr_info("Parallel CPU startup disabled by the platform\n");
1199 		return false;
1200 	}
1201 
1202 	smpboot_control = STARTUP_READ_APICID;
1203 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1204 	return true;
1205 }
1206 #endif
1207 
1208 /*
1209  * Prepare for SMP bootup.
1210  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1211  *            for common interface support.
1212  */
1213 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1214 {
1215 	smp_prepare_cpus_common();
1216 
1217 	switch (apic_intr_mode) {
1218 	case APIC_PIC:
1219 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1220 		disable_smp();
1221 		return;
1222 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1223 		disable_smp();
1224 		/* Setup local timer */
1225 		x86_init.timers.setup_percpu_clockev();
1226 		return;
1227 	case APIC_VIRTUAL_WIRE:
1228 	case APIC_SYMMETRIC_IO:
1229 		break;
1230 	}
1231 
1232 	/* Setup local timer */
1233 	x86_init.timers.setup_percpu_clockev();
1234 
1235 	pr_info("CPU0: ");
1236 	print_cpu_info(&cpu_data(0));
1237 
1238 	uv_system_init();
1239 
1240 	smp_quirk_init_udelay();
1241 
1242 	speculative_store_bypass_ht_init();
1243 
1244 	snp_set_wakeup_secondary_cpu();
1245 }
1246 
1247 void arch_thaw_secondary_cpus_begin(void)
1248 {
1249 	set_cache_aps_delayed_init(true);
1250 }
1251 
1252 void arch_thaw_secondary_cpus_end(void)
1253 {
1254 	cache_aps_init();
1255 }
1256 
1257 /*
1258  * Early setup to make printk work.
1259  */
1260 void __init native_smp_prepare_boot_cpu(void)
1261 {
1262 	int me = smp_processor_id();
1263 
1264 	/* SMP handles this from setup_per_cpu_areas() */
1265 	if (!IS_ENABLED(CONFIG_SMP))
1266 		switch_gdt_and_percpu_base(me);
1267 
1268 	native_pv_lock_init();
1269 }
1270 
1271 void __init calculate_max_logical_packages(void)
1272 {
1273 	int ncpus;
1274 
1275 	/*
1276 	 * Today neither Intel nor AMD support heterogeneous systems so
1277 	 * extrapolate the boot cpu's data to all packages.
1278 	 */
1279 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1280 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1281 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1282 }
1283 
1284 void __init native_smp_cpus_done(unsigned int max_cpus)
1285 {
1286 	pr_debug("Boot done\n");
1287 
1288 	calculate_max_logical_packages();
1289 	build_sched_topology();
1290 	nmi_selftest();
1291 	impress_friends();
1292 	cache_aps_init();
1293 }
1294 
1295 static int __initdata setup_possible_cpus = -1;
1296 static int __init _setup_possible_cpus(char *str)
1297 {
1298 	get_option(&str, &setup_possible_cpus);
1299 	return 0;
1300 }
1301 early_param("possible_cpus", _setup_possible_cpus);
1302 
1303 
1304 /*
1305  * cpu_possible_mask should be static, it cannot change as cpu's
1306  * are onlined, or offlined. The reason is per-cpu data-structures
1307  * are allocated by some modules at init time, and don't expect to
1308  * do this dynamically on cpu arrival/departure.
1309  * cpu_present_mask on the other hand can change dynamically.
1310  * In case when cpu_hotplug is not compiled, then we resort to current
1311  * behaviour, which is cpu_possible == cpu_present.
1312  * - Ashok Raj
1313  *
1314  * Three ways to find out the number of additional hotplug CPUs:
1315  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1316  * - The user can overwrite it with possible_cpus=NUM
1317  * - Otherwise don't reserve additional CPUs.
1318  * We do this because additional CPUs waste a lot of memory.
1319  * -AK
1320  */
1321 __init void prefill_possible_map(void)
1322 {
1323 	int i, possible;
1324 
1325 	i = setup_max_cpus ?: 1;
1326 	if (setup_possible_cpus == -1) {
1327 		possible = num_processors;
1328 #ifdef CONFIG_HOTPLUG_CPU
1329 		if (setup_max_cpus)
1330 			possible += disabled_cpus;
1331 #else
1332 		if (possible > i)
1333 			possible = i;
1334 #endif
1335 	} else
1336 		possible = setup_possible_cpus;
1337 
1338 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1339 
1340 	/* nr_cpu_ids could be reduced via nr_cpus= */
1341 	if (possible > nr_cpu_ids) {
1342 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1343 			possible, nr_cpu_ids);
1344 		possible = nr_cpu_ids;
1345 	}
1346 
1347 #ifdef CONFIG_HOTPLUG_CPU
1348 	if (!setup_max_cpus)
1349 #endif
1350 	if (possible > i) {
1351 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1352 			possible, setup_max_cpus);
1353 		possible = i;
1354 	}
1355 
1356 	set_nr_cpu_ids(possible);
1357 
1358 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1359 		possible, max_t(int, possible - num_processors, 0));
1360 
1361 	reset_cpu_possible_mask();
1362 
1363 	for (i = 0; i < possible; i++)
1364 		set_cpu_possible(i, true);
1365 }
1366 
1367 /* correctly size the local cpu masks */
1368 void __init setup_cpu_local_masks(void)
1369 {
1370 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1371 }
1372 
1373 #ifdef CONFIG_HOTPLUG_CPU
1374 
1375 /* Recompute SMT state for all CPUs on offline */
1376 static void recompute_smt_state(void)
1377 {
1378 	int max_threads, cpu;
1379 
1380 	max_threads = 0;
1381 	for_each_online_cpu (cpu) {
1382 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1383 
1384 		if (threads > max_threads)
1385 			max_threads = threads;
1386 	}
1387 	__max_smt_threads = max_threads;
1388 }
1389 
1390 static void remove_siblinginfo(int cpu)
1391 {
1392 	int sibling;
1393 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1394 
1395 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1396 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1397 		/*/
1398 		 * last thread sibling in this cpu core going down
1399 		 */
1400 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1401 			cpu_data(sibling).booted_cores--;
1402 	}
1403 
1404 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1405 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1406 
1407 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1408 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1409 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1410 			cpu_data(sibling).smt_active = false;
1411 	}
1412 
1413 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1414 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1415 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1416 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1417 	cpumask_clear(cpu_llc_shared_mask(cpu));
1418 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1419 	cpumask_clear(topology_sibling_cpumask(cpu));
1420 	cpumask_clear(topology_core_cpumask(cpu));
1421 	cpumask_clear(topology_die_cpumask(cpu));
1422 	c->topo.core_id = 0;
1423 	c->booted_cores = 0;
1424 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1425 	recompute_smt_state();
1426 }
1427 
1428 static void remove_cpu_from_maps(int cpu)
1429 {
1430 	set_cpu_online(cpu, false);
1431 	numa_remove_cpu(cpu);
1432 }
1433 
1434 void cpu_disable_common(void)
1435 {
1436 	int cpu = smp_processor_id();
1437 
1438 	remove_siblinginfo(cpu);
1439 
1440 	/* It's now safe to remove this processor from the online map */
1441 	lock_vector_lock();
1442 	remove_cpu_from_maps(cpu);
1443 	unlock_vector_lock();
1444 	fixup_irqs();
1445 	lapic_offline();
1446 }
1447 
1448 int native_cpu_disable(void)
1449 {
1450 	int ret;
1451 
1452 	ret = lapic_can_unplug_cpu();
1453 	if (ret)
1454 		return ret;
1455 
1456 	cpu_disable_common();
1457 
1458         /*
1459          * Disable the local APIC. Otherwise IPI broadcasts will reach
1460          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1461          * messages.
1462          *
1463          * Disabling the APIC must happen after cpu_disable_common()
1464          * which invokes fixup_irqs().
1465          *
1466          * Disabling the APIC preserves already set bits in IRR, but
1467          * an interrupt arriving after disabling the local APIC does not
1468          * set the corresponding IRR bit.
1469          *
1470          * fixup_irqs() scans IRR for set bits so it can raise a not
1471          * yet handled interrupt on the new destination CPU via an IPI
1472          * but obviously it can't do so for IRR bits which are not set.
1473          * IOW, interrupts arriving after disabling the local APIC will
1474          * be lost.
1475          */
1476 	apic_soft_disable();
1477 
1478 	return 0;
1479 }
1480 
1481 void play_dead_common(void)
1482 {
1483 	idle_task_exit();
1484 
1485 	cpuhp_ap_report_dead();
1486 
1487 	local_irq_disable();
1488 }
1489 
1490 /*
1491  * We need to flush the caches before going to sleep, lest we have
1492  * dirty data in our caches when we come back up.
1493  */
1494 static inline void mwait_play_dead(void)
1495 {
1496 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1497 	unsigned int eax, ebx, ecx, edx;
1498 	unsigned int highest_cstate = 0;
1499 	unsigned int highest_subcstate = 0;
1500 	int i;
1501 
1502 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1503 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1504 		return;
1505 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1506 		return;
1507 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1508 		return;
1509 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1510 		return;
1511 
1512 	eax = CPUID_MWAIT_LEAF;
1513 	ecx = 0;
1514 	native_cpuid(&eax, &ebx, &ecx, &edx);
1515 
1516 	/*
1517 	 * eax will be 0 if EDX enumeration is not valid.
1518 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1519 	 */
1520 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1521 		eax = 0;
1522 	} else {
1523 		edx >>= MWAIT_SUBSTATE_SIZE;
1524 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1525 			if (edx & MWAIT_SUBSTATE_MASK) {
1526 				highest_cstate = i;
1527 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1528 			}
1529 		}
1530 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1531 			(highest_subcstate - 1);
1532 	}
1533 
1534 	/* Set up state for the kexec() hack below */
1535 	md->status = CPUDEAD_MWAIT_WAIT;
1536 	md->control = CPUDEAD_MWAIT_WAIT;
1537 
1538 	wbinvd();
1539 
1540 	while (1) {
1541 		/*
1542 		 * The CLFLUSH is a workaround for erratum AAI65 for
1543 		 * the Xeon 7400 series.  It's not clear it is actually
1544 		 * needed, but it should be harmless in either case.
1545 		 * The WBINVD is insufficient due to the spurious-wakeup
1546 		 * case where we return around the loop.
1547 		 */
1548 		mb();
1549 		clflush(md);
1550 		mb();
1551 		__monitor(md, 0, 0);
1552 		mb();
1553 		__mwait(eax, 0);
1554 
1555 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1556 			/*
1557 			 * Kexec is about to happen. Don't go back into mwait() as
1558 			 * the kexec kernel might overwrite text and data including
1559 			 * page tables and stack. So mwait() would resume when the
1560 			 * monitor cache line is written to and then the CPU goes
1561 			 * south due to overwritten text, page tables and stack.
1562 			 *
1563 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1564 			 * SMI. They will resume execution at the instruction
1565 			 * following the HLT instruction and run into the problem
1566 			 * which this is trying to prevent.
1567 			 */
1568 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1569 			while(1)
1570 				native_halt();
1571 		}
1572 	}
1573 }
1574 
1575 /*
1576  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1577  * mwait_play_dead().
1578  */
1579 void smp_kick_mwait_play_dead(void)
1580 {
1581 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1582 	struct mwait_cpu_dead *md;
1583 	unsigned int cpu, i;
1584 
1585 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1586 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1587 
1588 		/* Does it sit in mwait_play_dead() ? */
1589 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1590 			continue;
1591 
1592 		/* Wait up to 5ms */
1593 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1594 			/* Bring it out of mwait */
1595 			WRITE_ONCE(md->control, newstate);
1596 			udelay(5);
1597 		}
1598 
1599 		if (READ_ONCE(md->status) != newstate)
1600 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1601 	}
1602 }
1603 
1604 void __noreturn hlt_play_dead(void)
1605 {
1606 	if (__this_cpu_read(cpu_info.x86) >= 4)
1607 		wbinvd();
1608 
1609 	while (1)
1610 		native_halt();
1611 }
1612 
1613 /*
1614  * native_play_dead() is essentially a __noreturn function, but it can't
1615  * be marked as such as the compiler may complain about it.
1616  */
1617 void native_play_dead(void)
1618 {
1619 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1620 		__update_spec_ctrl(0);
1621 
1622 	play_dead_common();
1623 	tboot_shutdown(TB_SHUTDOWN_WFS);
1624 
1625 	mwait_play_dead();
1626 	if (cpuidle_play_dead())
1627 		hlt_play_dead();
1628 }
1629 
1630 #else /* ... !CONFIG_HOTPLUG_CPU */
1631 int native_cpu_disable(void)
1632 {
1633 	return -ENOSYS;
1634 }
1635 
1636 void native_play_dead(void)
1637 {
1638 	BUG();
1639 }
1640 
1641 #endif
1642